首页 > 论文发表知识库 > 关于灰色预论文研究方法

关于灰色预论文研究方法

发布时间:

关于灰色预论文研究方法

我去论文答辩了,老师就问到这个。我当时回答错了。然后,他告诉我正确答案:灰色预测的数学理论基础应该是,模糊数学。

收藏小站汉语词典作文论文文秘合同计划总结成教大学英语学习古诗名句成语大全字典查字灰色预测模型理论及其应用联系客服发布时间 : 2023/1/16 11:37:25 星期一 文章灰色预测模型理论及其应用更新完毕开始阅读灰色预测模型理论及其应用灰色系统理论认为对既含有已知信息又含有未知或非确定信息的系统进行预测,就是对在一定方位内变化的、与时间有关的灰色过程的预测. 尽管过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此这一数据集合具备潜在的规律,灰色预测就是利用这种规律建立灰色模型对灰色系统进行预测.灰色预测模型只需要较少的观测数据即可,这和时间序列分析,多元回归分析等需要较多数据的统计模型不一样. 因此,对于只有少量观测数据的项目来说,灰色预测是一种有用的工具.本文主要围绕灰色预测GM(1,1)模型及其应用进行展开。一、灰色系统及灰色预测的概念灰色系统灰色系统产生于控制理论的研究中。若一个系统的内部特征是完全已知的,即系统的信息是充足完全的,我们称之为白色系统。若一个系统的内部信息是一无所知,一团漆黑,只能从它同外部的联系来观测研究,这种系统便是黑色系统。灰色系统介于二者之间,灰色系统的一部分信息是已知的,一部分是未知的。 区别白色和灰色系统的重要标志是系统各因素间是否有确定的关系。特点:灰色系统理论以“部分信息已知、部分信息未知”的 “小样本”、“贫信息”不确定型系统的研究对象。 灰色预测灰色系统分析方法是通过鉴别系统因素之间发展趋势的相似或相异程度,即进行关联度分析,并通过对原始数据的生成处理来寻求系统变动的规律。生成数据序列有较强的规律性,可以用它来建立相应的微分方程模型,从而预测事物未来的发展趋势和未来状态。灰色预测是用灰色模型GM(1,1)来进行定量分析的,通常分为以下几类:(1) 灰色时间序列预测。用等时距观测到的反映预测对象特征的一系列数量(如产量、销量、人口数量、存款数量、利率等)构造灰色预测模型,预测未来某一时刻的特征量,或者达到某特征量的时间。(2) 畸变预测(灾变预测)。通过模型预测异常值出现的时刻,预测异常值什么时候出现在特定时区内。(3) 波形预测,或称为拓扑预测,它是通过灰色模型预测事物未来变动的轨迹。 (4) 系统预测,是对系统行为特征指标建立一族相互关联的灰色预测理论模型,在预测系统整体变化的同时,预测系统各个环节的变化。上述灰预测方法的共同特点是: (1)允许少数据预测;(2)允许对灰因果律事件进行预测,比如灰因白果律事件:在粮食生产预测中,影响粮食生产的因子很多,多到无法枚举,故为灰因,然而粮食产量却是具体的,故为白果。粮食预测即为灰因白果律事件预测。 白因灰果律事件 :在开发项目前景预测时,开发项目的投入是具体的,为白因,而项目的效益暂时不很清楚,为灰果。项目前景预测即为灰因白果律事件预测。(3)具有可检验性,包括:建模可行性的级比检验(事前检验),建模精度检验(模型检验),预测的滚动检验(预测检验)。二、GM(1,1)模型(1,1)模型GM(1,1)模型是基于灰色系统的理论思想,将离散变量连续化,用微分方程代替差分方程,按时间累加后所形成的新的时间序列呈现的规律可用一阶线性微分方程的解来逼近,用生成数序列代替原始时间序列,弱化原始时间序列的随机性,这样可以对变化过程作较长时间的描述,进而建立微分方程形式的模型. 其建模的实质是建立微分方程的系数,将时间序列转化为微分方程,通过灰色微分方程可以建立抽象系统的发展模型. 经证明,经一阶线性微分方程的解逼近所揭示的原始时间数列呈指数变化规律时,灰色预测GM(1,1)模型的预测将是非常成功的. (1,1)模型的建立GM(1,1)模型是指一阶,一个变量的微分方案预测模型,是一阶单序列的线性动态模型,用于时间序列预测的离散形式的微分方程模型.模型符号含义为G M (1, 1)Grey Model 1阶方程 1个变量设时间序列X??有n个观察值,X?0??x?0??1?,x?0??2?,0?,x?0??n?,为了使其成为?有规律的时间序列数据,对其作一次累加生成运算,即令 从而得到新的生成数列X??,X?1??x?1??1?,x?1??2?,1?,x?1??n?,称?为GM(1,1)模型的原始形式。新的生成数列X??一般近似地服从指数规律. 则生成的离散形式的微分方程具体的形1式为即表示变量对于时间的一阶微分方程是连续的. 求解上述微分方程,解为 当t=1时,x(t)?x(1),即c?x(1)?体形式为其中,ax项中的x为u,则可根据上述公式得到离散形式微分方程的具adx的背景值,也称初始值;a,u是待识别的灰色参数,a为发dt展系数,反映x的发展趋势;u为灰色作用量,反映数据间的变化关系.按白化导数定义有显然,当时间密化值定义为1时,当t?1时,则上式可记为 这表明dx是一次累减生成的,因此该式可以改写为 dt当t足够小时,变量x从x(t)到x(t?t)是不会出现突变的,所以取x(t)与x(t?t)的平均值作为当t足够小时的背景值,即x(1)?1(1)(1)?x(t)?x(t?1)?(紧邻均值(MEAN)??2生成序列)将其值带入式子,整理得1x(0)(t?1)??a?x(1)(t)?x(1)(t?1)????u(GM(1,1)模型的均值形式) 2由其离散形式可得到如下矩阵:(0)(0)令 Y??x(2),x(3),?,x(0)(n)??T称Y为数据向量,B为数据矩阵,?为参数向量. 则上式可简化为线性模型: 由最小二乘估计方法得上式即为GM(1,1)参数a,u的矩阵辨识算式,式中?BB?BTY事实上是数据矩阵B的T?1广义逆矩阵.将求得的a,u值代入微分方程的解式,则其中,上式是GM(1,1)模型的时间响应函数形式,将它离散化得????t?再作累减生成可进行预测. 即 对序列x1上式便是GM(1,1)模型的预测的具体计算式. GM(1,1)模型的检验GM(1,1)模型的检验包括残差检验、关联度检验、后验差检验三种形式.每种检验对应不同功能:残差检验属于算术检验,对模型值和实际值的误差进行逐点检验;关联度检验属于几何检验范围,通过考察模型曲线与建模序列曲线的几何相似程度进行检验,关联度越大模型越好;后验差检验属于统计检验,对残差分布的统计特性进行检验,衡量灰色模型的精度. ? 残差检验残差大小检验,即对模型值和实际值的残差进行逐点检验.设模拟值的残差序列为e(0)(t),则 令?(t)为残差相对值,即残差百分比为1n令?为平均残差,????(t).nt?1一般要求??t??20%,最好是??t??10%,符合要求.? 关联度检验关联度是用来定量描述各变化过程之间的差别. 关联系数越大,说明预测值和实际值越接近.?(0)(t)??x?(0)(1),x?(0)(2),?,x?(0)(n)? 设 X序列关联系数定义为?(0)的绝对误差,?(t)为第t个数据的关联系数,?(0)(t)?x(0)(t)为第t个点x(0)和x式中,x?称为分辨率,即取定的最大差百分比,0????,一般取??(0)(t)的关联度为 x(0)(t)和x关联度大于60%便满意了,原始数据与预测数据关联度越大,模型越好.? 后验差检验后验差检验,即对残差分布的统计特性进行检验. 检验步骤如下:1、计算原始时间数列X?0???x(0)(1),x(0)(2),2、计算残差数列e(0)??e(0)(1),e(0)(2),?(0)(t),t?1,2,其中e(0)(t)?x(0)(t)?x,x(0)(n)?的均值和方差2 ,e(0)(n)?的均值e和方差s2,n为残差数列.3、计算后验差比值4、计算小误差频率令S0=,?(t)?|e(0)(t)?e|,即P?P??(t)?S0?.若对给定的C0?0,当C?C0时,称模型为方差比合格模型;若对给定的P0?0,当P?P0时,称模型为小残差概率合格模型.> > > << < < >模型精度 优 合格 勉强合格 不合格表 3 后验差检验判别参照表 GM(1,1)模型修正(残差GM(1,1)模型)当原始数据序列X(0)建立的GM(1,1)模型检验不合格时,可以用GM(1,1)残差模型来修正. 如果原始序列建立的GM(1,1)模型不够精确,也可以用GM(1,1)残差模型来提高精度.若用原始序列X(0)建立的GM(1,1)模型?(1)(k). 若取k=t, 可获得生成序列X(1)的预测值,定义残差序列e(0)(k)?x(1)(k)?xt+1, …, n,则对应的残差序列为计算其生成序列e(1)(k),并据此建立相应的GM(1,1)模型 得修正模型12Word文档下载:灰色预测模型理论及其应用.doc搜索更多:灰色预测模型理论及其应用最新浏览泽林牛津版九年级下册(初三下期)英语 Unit闽高校计算机二级C语言模拟题医院的愿景赖文俊《催官篇》白话解学习优秀奖、学习进步奖、技能竞赛奖评选办法链熸潈浠庝笟钥冭瘯棰?鍚?瓟妗?4鍒?抛光机抛光工艺-流程及技巧辩论赛四辩总结陈词,酒店制度化管理还是人性化管【最新版】水杯盖注塑模说明书毕业设计论文华师版七年级数学最基本的图形点和线测试2百科学习知识的地方免费范文大全热门浏览外贸函电复习题对外汉语教学中的文化教学与跨文化交际遗传学重点考前冲刺—行政法电子教案——Visual FoxPro程序设计文献检索题(1)新版部编人教版三年级下册语文下册课外阅读训练及答案CPC-2&3&5可编程序控制器《综合医院建设标准》作业--操作系统答案计算机组成原理-郑秋梅 - 习题社区居委会与业主委员会的关系探究化工原理 计算题成熙英语中级班听力脚本2016年国家监理工程师市政专业继续教育试题及答案[可编辑]风力发电外文文献翻译中英文精选文档|免责声明|服务条款|联系我们|举报本页文档All rights reserved Powered by 南京廖华资料来自互联网, 有任何疑问,请联系客服邮箱:xxxxx☒ qq:xxxxx 苏ICP备20003344号-1

灰色预测法毕业论文

A题:深圳人口与医疗需求预测 摘要深圳是我国经济发展最快的城市之一,近年来,随着改革开放,深圳产业结构的变化,深圳的人口也发生着巨大的变化。由此预测深圳人口的变化趋势就显得尤为重要。本文就深圳人口变化及未来医疗床位需求进行了预测。1.针对问题一:分析近十年深圳户籍人口与非户籍人口的变化特征。运用matlab编程绘出两者与总人口的关系曲线——由logstic模型求出该曲线所符合的函数如下:户籍人口: f(x)=a*exp(b*x)+c*exp(d*x) a=,b= c=0 ,d=非户籍人口:f(x) = a*exp(b*x) a = , b = 2.针对问题二:预测未来十年深圳市人口数量和结构的发展趋势。收集数据(见题目附表)运用matlab编程绘出人口数量变化曲线求出函数、灰色预测法预测人口变化,结果如下:表一 未来十年人口数量的变化 单位(万人)年份(年) 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020非户籍人口 户籍人口 1063总人口 同理可得,各年龄段,地区,性别的人口变化趋势。3.针对问题三:预测未来全市和各区医疗床位需求。首先通过互联网查得医疗床位与年份的关系的数据;然后根据灰色预测法进行可行性分析,编程对已知数据用此法求出模拟值,并绘图。然后对未来十年全市及各区床位进行预测,经后验差检验,发现此法可用。得到数据如下:表二 未来十年全市及各区床位预测 单位(个)年份 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020深圳市 24894 26825 28905 31146 33562 36164 38969 41991 45247 48756罗湖区 602 632 663 696 730 766 803 843 884 928福田区 902 925 948 971 995 1020 1045 1071 1098 1125南山区 1865 1982 2106 2238 2377 2526 2684 2852 3030 3220盐田区 368 391 416 442 470 499 530 564 599 637宝安区 5058 5330 5618 5920 6239 6576 6930 7304 7698 8113龙岗区 2656 2775 2899 3028 3163 3304 3451 3605 3766 3934关键词:深圳人口发展,医疗床位需求,灰色预测法,logstic模型,matlab 一、问题重述深圳是我国经济发展最快的城市之一,30多年来,卫生事业取得了长足发展,形成了市、区及社区医疗服务系统,较好地解决了现有人口的就医问题。从结构来看,深圳人口的显著特点是流动人口远远超过户籍人口,且年轻人口占绝对优势。深圳流动人口主要是从事第二、三产业的企业一线工人和商业服务业人员。年轻人身体强壮,发病较少,因此深圳目前人均医疗设施虽然低于全国类似城市平均水平,但仍能满足现有人口的就医需求。然而,随着时间推移和政策的调整,深圳老年人口比例会逐渐增加,产业结构的变化也会影响外来务工人员的数量。这些都可能导致深圳市未来的医疗需求与现在有较大的差异。未来的医疗需求与人口结构、数量和经济发展等因素相关,合理预测能使医疗设施建设正确匹配未来人口健康保障需求,是保证深圳社会经济可持续发展的重要条件。然而,现有人口社会发展模型在面对深圳情况时,却难以满足人口和医疗预测的要求。为了解决此问题,请根据深圳人口发展变化态势以及全社会医疗卫生资源投入情况(医疗设施、医护人员结构等方面)收集数据、建立针对深圳具体情况的数学模型,预测深圳未来的人口增长和医疗需求,解决下面几个问题:首先分析深圳近十年户籍人口、非户籍人口变化特征其次预测未来十年深圳市人口数量和结构的发展趋势,最后以此为基础预测未来全市和各区医疗床位需求;二、模型假设1.假设收集到的数据都是正确的。2.假设第二、三产业发展平稳,政府政策相对稳定,外来务工人员按正常比例增加。3.本文只选取人口数量与年龄,地区,户籍,性别方面的因素的关系,暂不考虑自然灾害等其他方面的影响。三、符号约定预测变量:表示年份(x)表示人口数,具体见模型的建立与求解 四、问题分析 问题一的分析:由于深圳经济发展迅速,人口增长变化较大,我们选取历年深圳人口的数量进行定量分析,进而求出深圳户籍人口,非户籍人口及总人口的变化曲线,再根据曲线拟合出与之相近的函数,由函数可以分析户籍人口与非户籍人口的变化特征。问题二的分析:分析近十年深圳总人口的变化走势曲线,找出与之最接近的函数曲线,运用matlab编程求出函数,再对户籍人口非户籍人口进行二次拟合,求出总函数,预测未来十年总人口数量变化。同理可求出不同的年龄,不同的地区,不同的性别的人口变化趋势。问题三的分析:医疗床位的需求与人口变化密切相关,由问题二即可求出床位的变化 五、模型的建立与求解针对问题一,建立模型并求解:首先利用已给数据用excel绘出下图图一 1979——2010年深圳市人口发展情况其次用matlab描绘出2001—2010,户籍人口变化曲线与非户籍人口变化曲线,总人口变化曲线图二:户籍人口变化曲线与非户籍人口变化曲线图 图三:总人口变化曲线图由以上两个图可以看出人口数满足阻滞增长函数拟合曲线得到函总人口变化函数f(x) = a1*exp(-((x-b1)/c1)^2) + a2*exp(-((x-b2)/c2)^2) a1 = (, ) b1 = 2011 (2007, 2015) c1 = (, ) a2 = 352 (-1679, 2383) b2 = 2000 (1997, 2003) c2 = (, )通过对以上两个图的拟合可以得到下图图四:拟合图通过对比,发现黄棕色最接近原始数据,此函数为总人口的变化函数最终得出总函数的具体模型为:f(x) = a1*exp(-((x-b1)/c1)^2) + a2*exp(-((x-b2)/c2)^2) a1 = (, ) b1 = 2011 (2007, 2015) c1 = (, ) a2 = 352 (-1679, 2383) b2 = 2000 (1997, 2003) c2 = (, )由此得出结论:1.近十年的非户籍人口数远远高于户籍人口数。2.深圳市年末户籍人口数,户籍人口及非户籍人口都呈现着随时间的推移而递增的趋势,且增长趋势基本相同3. 由编程可得到户籍人口,非户籍人口,总人口的变化函数具体模型如下户籍人口: f(x)=a*exp(b*x)+c*exp(d*x) a=,b= c=0 ,d=非户籍人口:f(x) = a*exp(b*x) a = , b = 总人口:f(x) = a1*exp(-((x-b1)/c1)^2) + a2*exp(-((x-b2)/c2)^2) a1 = (, ) a2 = 352 (-1679, 2383) b1 = 2011 (2007, 2015) b2 = 2000 (1997, 2003) c1 = (, ) c2 = (, ) 针对问题二,建立模型并求解关于人口数量和结构的变化,我们只考虑以下几方面的因素 年龄根据已有数据运用matlab绘出2000年,2005年,2010年各年龄段人口数曲线图,由此可以看出各阶段年龄人口的变化趋势。 图五 深圳市各年龄段人口变化图由这个图可以看出,这些年龄阶段人数大致吻合,由此得出的结论:各年龄段人口变化基本不大,预测未来十年人口的年龄阶段人口变化图如下: 图六 深圳市2000~2020年年龄结构图 户籍, 运用灰色预测法进行可行性分析:(1)2000-2010年户籍人口原始值与模拟值的对比如下图: 图七 2000-2010年户籍人口原始值与模拟值的对比图(2)2000-2010年户籍人口、非户籍人口的原始值与模拟值的对比如下图: 图八 2000-2010年户籍人口、非户籍人口的原始值与模拟值的对比图结论:通过图表可以看出,灰色预测法的模拟值与真实值较接近,可以运用此种方法。、运用灰色预测法进行预测:(1)对2011-2020年深圳市户籍人口进行预测:由程序可知,2011年末户籍人口模拟值为1076万人,同理可得到2012-2020年深圳市户籍人口的模拟值表三 2012-2020年深圳市户籍人口的模拟值年份 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020人口 所得结果可由下图表示: 图九2000~2020年人口变化图(2)对2011-2020年深圳市户籍人口和非户籍人口进行预测:同理可得到表四2012-2020年深圳市户籍人口的模拟值年份 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020人口 表五 2012-2020年深圳市户籍人口的模拟值年份 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020人口 1063所得结果可由下图表示: 图十2000~2020 户籍人口与非户籍人口走势图结论: 未来十年深圳市户籍人口与非户籍人口及总人口的预测数值见下表:表六 未来十年深圳市户籍人口与非户籍人口及总人口的预测数值年份 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020非户籍人口 户籍人口 1063总人口 地区根据已有数据利用excel表制得下图 图十一 2000年与2010年深圳市人口分布图结论:1.各区人口均有所增加,其中宝安区人口增加明显 性别 图十二2010年深圳市各区男女总数图图十三 2010年深圳市总人数及男女人数走势图 结论:深圳市男女人数均增加,但是男性增加趋势明显高于女性模型三的建立与分析由于收集到的数据有限,以下预测仅对深圳市政府办医院床位给出预测。据所搜集的数据,用matlab编程得到深圳市创维的初始值与模拟值图如下图十四深圳市2000~2010年床位数量走势图可行性分析:由上图可以看到,深圳市床位原始值与模拟值较接近,并且经过后验差检验,结果为good,因此对床位预测来说,灰色预测法可行编程,在Matlab中输入已知数据可得表七2012-2020年床位模拟值。年份 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020床位 24894 26825 28905 31146 33562 36164 38969 41991 45247 48756根据所得数据作图如下: 图十五 罗湖区床位数量预测图同理可得到表八 其他各区的床位,并预测未来十年的床位需求年份地区 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020福田 902 925 948 971 995 1020 1045 1071 1098 1125南山 1865 1982 2106 2238 2377 2526 2684 2852 3030 3220盐田 368 391 416 442 470 499 530 564 599 637宝安 5058 5330 5618 5920 6239 6576 6930 7304 7698 8113龙岗 2656 2775 2899 3028 3163 3304 3451 3605 3766 3934罗湖 602 632 663 696 730 766 803 843 884 928图十六 深圳市各区床位变化走势图结论:在对罗湖区床位进行预测时,由‘The model is eligibility’可知,经后验差检验,结论为‘合格’,误差稍大,但依旧可行。其他检验均为良好。综上所述,本文采用****的数学思想对深圳人口数量和结构的变化作了定量的描述与预测,得出了深圳市近十年人口在年龄,性别,地区,有无户籍方面的变化;其次通过matlab编程预测出了深圳未来十年的人口数量;最后运用灰色预测法对深圳全市及各区未来十年的医疗床位进行了定量预测 六、模型评价:优点:1. 本文采用了较为经典的logistics模型,灰色预测模型 ,短期内预测结果较准确2. 本文采用的专业软件有matlab编程软件,excel 等可以提高计算的准确度3. 建立的模型客观且较符合实际4. 本文结构清晰,层次分明,且简单易懂。5. 采用较多的图示使结论更加清晰明了缺点:1.不适用于长期的预测2.模型考虑的因素较少3. 在利用曲线拟合处理模型时有些曲线的精确度不是很高。4.数据有限,导致预测存在误差 七、模型的原理、改进与应用模型原理:关于人口增长,细菌繁殖,渔牧业的规律之类的问题,由于诸多外界因素的影响,不可能呈指数增长。对于这类问题,我们考虑到logstic模型。理想状态下是J型的,实际上是S型增长,阻滞增长模型就是根据这个演变而来的。其原理是根据数据拟合一条logstic曲线,发现很接近。其公式为:f(x)=a*exp(b*x)+c*exp(d*x)2.灰色预测均为GM(1,1)模型:其形式为: 设原始时间序列: 预测第n+1期,第n+2期,…的值: 设相应的预测模型模拟序列为: 设 为 的一次累加序列: 即: 利用 计算GM(1,1)模型参数 、 。令 则有: 式中: 由此获得GM(1,1)模型: 后验差检验:后验差比值 ,小误差频率 对于外推性好的预测来说,C要小,而p要大。C小即预测误差离散性小。预测精度及所对应值如下表:预测精度等级 P值 C值Good(好) > <(合格) > < good(勉强合格) > <(不合格) ≤ ≥.对于问题二,我们可以考虑更多的人口结构所包括的因素,从而建立更精确的模型,来预测深圳市人口结构的变化对于问题三,我们应该收集更多更全面的数据进行模型分析

加QQ8447798

灰色预测论文模板

1、不需要大量样本。

2、样本不需要有规律性分布。

3、计算工作量小。

4、定量分析结果与定性分析结果不会不一致。

5、可用于Recent、短期、中长期预测。

6、灰色预测准确度高。

1981年,中国控制论专家邓巨龙教授首次提出灰色系统的概念。后来,他出版了许多关于灰色系统的论文和专著,建立了灰色系统理论。自1982年以来,灰色系统理论在农业、工业、气象等领域得到了成功的应用。广泛应用于农业、地质、气象等学科。

扩展资料:

灰色预测模型的应用系统:

灰色预测模型可以通过DPS数据处理系统等计算软件进行计算。DPS数据处理系统的英文名称是DPS。系统采用多级下拉菜单。用户使用时,整个屏幕就像一个工作平台,可以随意调节,操作自由。因此,形象地称为DPS数据处理平台,简称为DPS平台。

DPS平台是作者设计开发的一个通用的多功能数理统计和数学模型处理软件系统。它集成了数值计算、统计分析、模型模拟、画线和制表等功能。

参考资料来源:百度百科-灰色模型

参考资料来源:百度百科-灰色系统理论

刘敏1,2 刘艳芳1,2 张雅杰1,2 刘洋1,2 夏玉平3

(1.武汉大学资源与环境科学学院,武汉,430079;2.武汉大学教育部地理信息系统重点实验室,武汉,430079;3.南方数码科技有限公司,广州,510665)

摘要:考虑到传统地价指数编制的难度和信息的滞后性以及常用预测方法忽视地价指数是随时间变化呈现上涨趋势的非平稳随机过程造成预测精度低的问题,通过为城镇地价指数提供一种新的预测方法,满足政府、开发商等市场主体对土地市场信息的需求,构建了城镇地价指数灰色——马尔柯夫预测模型,对深圳2004年第三、四季度地价指数进行预测,并将预测结果与实际值比较,吻合度较高。

关键词:地价指数;灰色理论;马尔柯夫;预测

地价指数是反映某一区域或某一城市的土地价格在时间上的平均变动和综合变动方向及变动程度的相对指标,是城镇土地市场变化的晴雨表,它体现的是基于规划条件下的各规划地块之间的相对地价比例关系,在很大程度上消除了房地产估价的实效性约束。随着社会主义市场经济的发展,土地市场的日益活跃和完善,地价指数的重要性得到越来越多的体现,无论是政府对土地市场的宏观管理,还是地产开发商的投资开发决策,或是土地估价中可比实例的交易日期修正,都离不开地价指数的指导。但采用传统的方法测算地价指数难度大,本文试通过建立灰色——马尔柯夫预测模型,采用某地区历史的地价指数数据预测同一地区未来的地价指数,是地价指数预测在方法上的一种有创意的尝试。

1 我国地价指数编制现状

目前我国对地价指数的具体测算方法主要有两种,即拉氏公式和帕氏公式。拉氏公式是以基期为权数综合方法,表明在基期地价水平的条件下地价的综合变化,公式为:

土地信息技术的创新与土地科学技术发展:2006年中国土地学会学术年会论文集

式中,P为报告期的平均地价;P0 为基期的平均地价;q0 为基期土地交易量。

帕氏公式也是加权综合指数公式,它与拉氏公式的区别在于是以报告期为权数的综合方法,表明在报告期地价水平的条件下地价综合变动的程度,公式为:

土地信息技术的创新与土地科学技术发展:2006年中国土地学会学术年会论文集

式中,P、P0 分别为报告期和基期的平均地价;qk为报告期土地的交易量。

由于拉氏公式在定基指数的数列中各期权数相同,因此采用基于拉氏指数公式的加权平均指数公式测算的地价指数不仅能较好反映地价水平的变化、反映地价结构的影响,而且还可以很方便地计算环比地价指数,使地价指数的可比性增加,并有利于地价的动态研究,所以较常采用拉氏公式测算地价指数。

但无论采用拉氏公式还是采用帕氏公式都需要取得区域基期和报告期的平均地价数据,数据的获取存在以下困难:①单纯的土地交易较少,大部分的土地交易伴随着房产交易,因此难以直接获得土地的交易价格,一般要借助估价手段,通过复杂的计算求取;②土地市场是不完全竞争市场,土地交易价格受主观因素影响大,很多交易属于非正常交易;③土地价格具有地区性和个别性特征,因此不同地块不仅价格不同,价格内涵也有可能不一致,因此要从地价的构成因素上对土地价格进行修正,直接测算地价指数难度也较大。

鉴于直接测算地价指数存在以上的困难,同时缺乏前瞻性,因此采用一定的数学方法,利用历史的地价指数数据预测未来的地价指数具有实践意义。目前地价指数预测较常采用趋势外推法,利用计算机建立线性趋势预测模型和二次曲线趋势预测模型进行预测,但是这两种预测模型没有考虑到地价指数是随时间变化呈现上涨趋势的非平稳随机过程,由于受各种随机因素(如政府部门的土地供应政策、金融政策等)的影响,时序数据总是围绕这一变化趋势出现波动、跳跃,产生偏差,因此只能用于短期预测,对于长期预测就无法保证精度。

2 地价指数的灰色——马尔柯夫预测思想

灰色预测和马尔柯夫链预测是两种用于时间序列类型问题的预测方法,灰色模型的优点是适于预测时间短,数据资料少,波动不大的系统对象,不足之处是对随机波动大的数据序列预测准确度低;马尔柯夫链理论优点是适于预测随机波动大的动态过程,局限性在于马尔柯夫链预测对象要求具有马氏性和平稳过程等均值的特点,两种方法具有互补性。

地价指数是受各种随机因素影响而随时间变化呈现上涨趋势的非平稳随机过程,因此如果将两种预测方法有效的结合起来,先采用灰色模型对地价指数的时序数据进行拟合,找出其变化趋势,则可以弥补马尔柯夫链预测的局限,而在灰色预测的基础上再进行马尔柯夫预测,又可以弥补灰色预测对随机波动大的数据序列预测准确度低的缺陷。

3 建立灰色——马尔柯夫预测模型

建立GM (1,1) 模型

设原始序列为: ,将X(0)做一次累加,得累加生成序列 。

土地信息技术的创新与土地科学技术发展:2006年中国土地学会学术年会论文集

其中,

X(1)可以通过求解一阶线性微分方程:

土地信息技术的创新与土地科学技术发展:2006年中国土地学会学术年会论文集

的解得到,其中a、u 为未知参数。

土地信息技术的创新与土地科学技术发展:2006年中国土地学会学术年会论文集

土地信息技术的创新与土地科学技术发展:2006年中国土地学会学术年会论文集

计算出a、u 后,可求出方程(2)的解为:

土地信息技术的创新与土地科学技术发展:2006年中国土地学会学术年会论文集

由(5)式可对 X(1)做出预测,由累减生成得到原始数据序列 X(0)的预测,即:

土地信息技术的创新与土地科学技术发展:2006年中国土地学会学术年会论文集

其中,

土地信息技术的创新与土地科学技术发展:2006年中国土地学会学术年会论文集

记 即为k时刻GM(1,1)模型求得的原始数据序列的灰色预测值,它反映了原始数据呈指数规律变化的总趋势。

状态划分

在灰色预测的基础上进行马尔柯夫预测,必须将序列划分为若干状态。一般是以y^k曲线为基准,划分成若干条形区域,每一条形区域构成一个状态。其中任一状态区间Qi 表达为:

Qi=[Q1i,Q2i] (i=1,2,3,…,n)

其中:

土地信息技术的创新与土地科学技术发展:2006年中国土地学会学术年会论文集

Oi,Pi为常数,数值根据具体情况确定。由于 是随时间k变化而变化,因此,Q1i,Q2i也随时序变化,即状态区间 Qi 具有动态性。

转移矩阵的计算和确定预测值

转移概率矩阵公式为:

土地信息技术的创新与土地科学技术发展:2006年中国土地学会学术年会论文集

式中, 为由状态Qi经过m步转移到Qj的概率;n为划分的状态数目;Mi为原始数据按一定的概率落入状态Qi的样本数; 为由状态Qi经m步转移到Qj的原始数据样本数。

土地信息技术的创新与土地科学技术发展:2006年中国土地学会学术年会论文集

一般只需考察一步转移概率矩阵P(1),但当状态的未来转向难以确定时,则需要考察多步转移概率矩阵 P(m),多步转移概率矩阵可以根据切普曼 -柯尔莫哥洛夫方程确定。

确定了预测对象未来的状态转移以后,即确定了预测值变动的灰区间Qi=[Q1i,Q2i],可以用区间的中位数作为预测对象未来时刻的预测值: 。

4 实证研究

选取样本数据

深圳作为我国最早实行改革开放的地区,土地市场相对于其他城市而言要完善和发达许多,而综合地价指数能较为准确的反映深圳土地价格的总体水平,具有较强的综合性和趋势性,鉴于数据获取的可得性,笔者选取深圳 2001年第一季度到 2004年第二季度的综合地价指数作为样本数据,2004年第三第四季度的综合地价指数作为检验数据。具体数据见表1。

表1 深圳2001年1季度~2004年4季度综合地价指数

数据来源:深圳地价指数报告。

建立 GM (1,1) 模型

原始序列X(0)={,,,,,,,,,,,,,}

根据公式(1),一次累加序列 X(1)={,,,,,,,,,,,,,}

根据公式(3)、(4)可求得

土地信息技术的创新与土地科学技术发展:2006年中国土地学会学术年会论文集

划分状态

根据深圳地价指数变化的实际情况,划分为Q0 (持平)、Q1 (微升)、Q2 (上升)、Q3 (微降)和Q4 (下降)五种状态。具体划分标准如下:

土地信息技术的创新与土地科学技术发展:2006年中国土地学会学术年会论文集

土地信息技术的创新与土地科学技术发展:2006年中国土地学会学术年会论文集

其中: ,为深圳2001年第一季度至2004年第二季度综合地价指数的平均数。

状态Qi(i=0,1,2,3,4)表示原始数据序列X(0)偏离预测曲线 的程度,落入各状态的样本点数分别为M0=3,M1=6,M2=1,M3=2,M4=2。由于原始数据序列中最后一个数的状态转向不确定,所以,应删掉最后一个数据,然后根据由i经一步转移到j的样本点数Mij,计算一步状态矩阵M,再根据M计算 经一步转移到 的转移概率Pij从而得到一步状态转移矩阵P(1),结果如下:

土地信息技术的创新与土地科学技术发展:2006年中国土地学会学术年会论文集

深圳2004年第二季度综合地价指数处于Q0 状态,考察一步转移概率矩阵第一行可知,下一季度转为状态Q1、Q2 的概率均为1/2,因此根据此一步转移概率矩阵无法预测深圳2004年第三季度综合地价指数所处的状态,需要进一步考察二步转移概率矩阵。根据切普曼-柯尔莫哥洛夫方程确定二步转移概率矩阵P(2),结果如下:

土地信息技术的创新与土地科学技术发展:2006年中国土地学会学术年会论文集

考察此二步转移概率矩阵第一行可知,处于Q0 状态的第二季度综合地价指数在第三季度转为状态Q1 的概率最大,概率值为,因此可预测2004年第三季度综合地价指数处于Q1,即微升状态。指数预测值为:

土地信息技术的创新与土地科学技术发展:2006年中国土地学会学术年会论文集

同理,根据第三季度地价指数预测值,判定其所处的状态为 Q0,可预测出深圳2004年第四季度地价指数状态转向Q1,综合地价指数值为: ,预测结果与现实数据的比较见表2。

表2 地价指数预测效果比较

由表2 预测结果可以看出,用灰色——马尔柯夫模型对深圳2004年第三、四季度的综合地价指数进行预测所得结果与现实数据吻合度较高。

5 结语

由于我国过去长期实行的是计划经济体制,土地市场的形成和发育时间都较短,因此土地市场信息相对较少,但是随着市场经济的不断发展和完善,政府、开发商等市场主体对土地市场信息的需求越来越迫切,这在信息的供给与需求之间就形成了一种矛盾。本文建立的灰色——马尔柯夫模型,综合考虑了市场规律本身的趋势性和国家的宏观调控和大政方针对土地市场的影响造成地价指数的波动性,用城镇较少的历史地价指数数据预测城镇未来的地价指数,并通过实例验证预测结果与现实情况吻合度较高,能够较好预测土地市场的价格走势,较好地解决了土地市场贫信息和多需求的矛盾。

本文实例验证采用的是市场化程度较高的深圳地价指数数据,但是由于我国目前大部分城市的土地市场发育程度还不理想,而且模型预测结果从根本上来说仍然需要市场交易资料的斧正,所以适用范围和程度有一定限制,但不失为一种有益的尝试。

参考文献

[1]李何超,汪四文.论城镇地价指数编制方法[J].城市发展研究,2000,4:56~58

[2]岳朝龙,王琳.股票价格的灰色——马尔柯夫预测[J].系统工程,1999,11:54~59

[3]贾 华,祝国瑞.土地利用规划中农作物单产预测的灰色——马尔柯夫链方法 [J].武汉测绘科技大学学报,1998,23 (2):149~152

[4]刘耀林,刘艳芳,张玉梅.基于灰色——马尔柯夫模型的耕地总量预测模型[J].武汉大学学报.信息科学版2004,29 (7):575~580

灰色预测模型所需要的数据量比较少,预测比较准确,精度较高。样本分布不需要有规律性,计算简便,检验方便。 灰色预测模型适用于中长期预测。

你的感觉是正确的,见下面截图(摘录于《基于灰色模型的中国人口预测》)

基于灰色关联分析的研究论文

资料分析是指用适当的统计分析方法对收集来的大量资料进行分析,提取有用资讯和形成结论而对资料加以详细研究和概括总结的过程。这一过程也是质量管理体系的支援过程。在实用中,资料分析可帮助人们作出判断,以便采取适当行动。以下是我为大家精心准备的:资料分析在混凝土配合比设计中的应用探究相关论文。内容仅供参考,欢迎阅读!

资料分析在混凝土配合比设计中的应用探究全文如下:

混凝土是全世界范围应用最为广泛的建筑材料。在混凝土诞生的一百多年中,无数科研工作者、工程实践者付诸大量的心血探索混凝土的奥秘。但是由于混凝土是一种从细观到巨集观都是高度非均质的多项复杂体系,在科学实践中存在众多问题。

混凝土配合比设计的研究对于混凝土生产企业优化工艺、降低成本有着重要意义,为此全世界范围内的学者都给出过不同的研究方法。但是现行的配合比设计方法仍存在较多问题亟待解决。究其原因主要是有关混凝土材料的基础理论性研究不足,导致现行的众多的配合比设计方法均不能以材料科学: 组成、结构与效能的科学方法来阐述混凝土的内在问题。

我们可以对国内外几种配合比设计方法进行简单的评价: 美国ACI 方法: 其优点在于简单易行,通过查表即可得出配合比,但是各个引数的选择理论依据不强,对于材料性状变化的敏感性差,是经验性配合比设计方法最为典型的案例。而英国BRE 方法,相比美国ACI 方法引数选择相似,但是其选择依据考虑的因素更多,缺点也比较明显,仍是图表选择的形式,可能导致普适性较差。法国Dreux 方法的优点在于各个引数考虑细致。但是,Dreux 级配曲线可能有一定局限性。法国 de. larrad 则在理论上更胜一筹,以物理模型和数学模型建立的设计方法。而我国现行的配合比设计方法更注重的是经验性设计。应该注意到,这样的配合比设计方法理论基础相对薄弱,经验性选择居多,并且计算结果偏差很大。具体表现在,强度公式引起的误差波动,其次用水量与砂率的选择依据也并不充分。

近年来,随着“人工神经网路”等资料分析方法研究的兴起,越来越多的人开始尝试用资料探勘与分析的方法来进行混凝土配合比的设计与优化。比如人工神经网路方法就具有非线性处理能力强、不需要明确的函式关系式等特点。一个三层BP 神经网路可以以任意精度近似任何连续函式。甚至有研究指出采用人工神经网路技术进行混凝土配合比设计,具有适应性强、准确有效的优点,是进行多组分混凝土配合比设计的一种切实可行的方法。

本文针对混凝土配合比设计的研究工作已经取得的进展,阐明混凝土配合比设计所存在的问题,分析并讨论资料分析在混凝土配合比设计中的地位与意义,为混凝土配合比设计的进一步研究与工程实践提供一定的参考价值。

1 资料分析与混凝土配合比设计

1. 1 人工神经网路

1. 1. 1 人工神经网路技术简介通常意义上的BP人工神经网路是以输入单元为自变数、输出单元为因变数、网路单元间的连线权值为调整参量,按最小误差原则逐步反馈修正而使网路达到最佳模拟状态的一种数学演算法,即误差反传误差反向传播演算法的学习过程,由资讯的正向传播和误差的反向传播两个过程组成。输入层各神经元负责接收来自外界的输入资讯,并传递给中间层各神经元; 中间层是内部资讯处理层,负责资讯变换,根据资讯变化能力的需求,中间层可以设计为单隐层或者多隐层结构; 最后一个隐层传递到输出层各神经元的资讯,经进一步处理后,完成一次学习的正向传播处理过程,由输出层向外界输出资讯处理结果。

当实际输出与期望输出不符时,进入误差的反向传播阶段。误差通过输出层,按误差梯度下降的方式修正各层权值,向隐层、输入层逐层反传。周而复始的资讯正向传播和误差反向传播过程,是各层权值不断调整的过程,也是神经网路学习训练的过程,此过程一直进行到网路输出的误差减少到可以接受的程度,或者预先设定的学习次数为止。

1. 1. 2 在混凝土配合比设计中的应用人工神经网路的特点是非线性处理能力强、不需要明确的函式关系式等,正是因为这些优点,人工神经网路技术慢慢渗透到了各行各业当中且有着非常广泛的应用。理论上讲,一般的三层BP 神经网路可以以任意精度近似任何连续函式。有科学研究指出,采用人工神经网路技术进行混凝土配合比设计,具有适应性强、准确有效的优点,是进行多组分混凝土配合比设计的一种切实可行的方法。刘国华等人曾以BP 网路表达的混凝土效能——配合比关系作为约束条件,以成本函式作为目标条件,采用Monte - Carlo 随机试验法建立直接优化设计模型,并对网路输入输出单元的选择和预测结果稳定性进行较深入的探讨,最终开发出了实用软体。

1. 1. 3 应用例项

用BP 人工神经网路技术建立一个混凝土配合比设计的预测模型,首先必须能够让输入单元反映出影响混凝土最终效能的各个因素,且输出单元要包括所设计混凝土的各项效能指标。因此输入单元主要包括各种原材料的用量和混凝土制作工艺,主要有以下几种: 胶凝材料水泥的品种、强度、初终凝时间; 砂的用量与细度模数; 石子的用量、颗粒级配和最大、最小粒径;矿物掺合料如膨润土、粘土、粉煤灰、矿渣、矿粉等的用量; 用水量; 外加剂 主要指减水剂用量及其减水率 。对于混凝土的制作工艺,主要是指其拌合方式,因为不同的拌合方式成本不同,得到的混凝土效能也有差异。而输出单元主要包括混凝土强度、流动度与和易性,其他各项效能因一般情况暂不要求顾不做考虑。

为了提高模型在实际运算中的效率,可根据不同要求对输入输出单元做适当取舍。将输入单元中原材料的影响分为用量与质量指标两类。对于原材料的用量,由于在具体工程中某些材料如矿物掺合料等不会被采用,因此可以忽略; 质量指标往往对于同一工程而言,同产地原材料效能变化不大,在计算中可视为常值不予考虑。如果样本中原材料种类过多,包含了预设输入单元以外的原材料,则视作无效样本,不予采用; 但当样本中原材料种类少于网路单元中原材料的种类时,此类样本中未使用的原材料用量可以以0 代替。当然,如果试验得到的混凝土效能种类少于网路输出单元的效能种类,则视为无效样本。

1. 2 模糊聚类分析

1. 2. 1 模糊聚类分析简介模糊聚类分析是用数学方法研究和处理所要研究物件的分类问题,即用数学定量地确定分析物件之间在性质、特征等方面的亲疏关系和相似性,从而实现对事物客观地分型划类的数学方法。它是一种非常有效的分类手段,广泛地应用于天气预报、地震预测、地质勘探、环境保护以及影象语言识别等领域之中; 但是模糊 *** 论不同于普通的 *** 论,它是一种全新的理论,因而理解起来需要作一下思维的变换。而聚类分析是数理统计中的一种多元分析方法,它是用数学方法定量地确定样本的亲疏关系,从而客观地进行型别的划分。在客观世界中,事物之间的界限有确切的亦有模糊的。

当分类要求涉及事物之间的模糊界限时,需运用模糊聚类分析方法。通常把被聚类的事物称为样本,将被聚类的一组事物称为样本集。模糊聚类分析有两种基本方法: 系统聚类法和逐步聚类法。聚类分析是用数学方法研究和处理所要研究物件的分类问题,即用数学定量地确定分析物件之间在性质、特征等方面的亲疏关系和相似性,从而实现对事物客观地分型划类的数学方法。用模糊聚类分析事物更加的灵活,客观和计算简便。

1. 2. 2 在混凝土配合比设计中的应用模糊聚类分析在混凝土配合比设计中的应用主要是采用基于模糊等价关系的动态聚类法,其计算过程主要是样本与聚类指标的选择、资料标准化、计算模糊相似关系、确定模糊等价关系和聚类,模糊聚类分析的结论并不表征物件绝对属于某一类,而是以清晰的阈值表征物件在一定程度上相对属于某一类。模糊聚类分析与BP 人工神经网路结合进行预测比单纯的模糊预测精度要高,所需的训练次数要少,而且预测效果要好。这是因为通过模糊聚类分析可以预先将各个模式分成若干类别,而如果单纯地通过隶属度进行预测计算则无法充分利用各个模式间存在的相容相斥关系,这样将会导致可利用的资讯不完整。

相反。如果能够很好地配合BP 人工神经网路的资讯处理机制,则可以充分增强神经网路的分类能力。除此之外,还可以使各个模式间的相容相斥资讯得以利用,预测精度会相应提高。模糊聚类由于可以从量上把握研究体系中的复杂和模糊不确定的关系,因此在混凝土配合比设计中应用模糊聚类方法可以解决那些往往无法定量讨论的问题。模糊聚类还可以通过对混凝土配合比基础理论的修正,来侧面优化通过人工神经网路建立的混凝土配合比设计系统。周双喜曾以钢渣粉、粉煤灰、矿渣粉、烧黏土等作为试验物件,把掺加不同掺合料胶砂的3d与28d 抗压、抗折强度作为样品的指标,通过模糊聚类分析了掺合料的活性,并由此避免了凭经验选择所带来的主观片面性。

李敏等人采用抗压强度损伤系数、外观损伤系数和耐久度损伤系数为一级评价指标,以爆裂度、裂缝宽度为二级指标,确定了评价因子的权重,建立了评价计算模型,实现了无损伤快速的对高强混凝土受火后的综合评价。田华等人指出通过选取两类指标: 最简单直观的水灰比、矿物掺合料用量、砂率、水泥强度、混凝土外加剂用量和骨料最大粒径或者体现混凝土强度、工作性、耐久性和经济性的抗压强度、坍落度、抗渗性和原材料,将模糊聚类分析法用于混凝土质量控制中可改进传统混凝土质量评定结果的不客观性。赵运德等人以人力、机械、材料、方法和环境为指标采用模糊聚类分析法,建立了一种快捷方便的混凝土质量评估模型,可预测混凝土质量评价中的影响因素,以确保工程质量的合格。

1. 3 灰色关联分析

1. 3. 1 灰色关联分析简介灰色关联分析方法是根据各个因素之间发展趋势的相似相异程度 灰色关联度 作为衡量因素间关联程度的一种方法。灰色关联分析的基本原理是考察各行因素之间微观或巨集观的几何接近,以分析和确定各因素之间的影响程度或若干个子因素对主因素的贡献程度。灰色系统理论实际上提出了对各子系统进行灰色关联分析的概念,该理论企图通过一定的方法来寻求系统中各子系统 或因素 之间的数值关系。也正因为此,灰色关联度分析对于任意一个系统的发展变化态势都提供了数量化的度量。关联度是针对于两个系统之间的因素中随时间或不同物件而变化的关联性大小的量度。在系统发展过程当中,若两个因素变化的趋势具有一致性 同步变化程度高 ,则可以说二者关联程度大,因此可以得出在某个包含多种因素的系统中具体的某个因素是属于主要的、次要的还是影响比较小的。

1. 3. 2 在混凝土配合比设计中的应用

混凝土是一种可用于多种环境下的非均质材料,其效能受多种因素的影响,而应用灰色关联理论可以将混凝土多个影响因素的“影响力”进行量化、排序,不仅使人们在理论上更好的认识混凝土,而且有助于混凝土配合比设计方法在理论层面上的完善。冯庆革等人曾借助灰色关联理论计算出养护龄期为7、28d 的混凝土抗压和抗拉强度与10nm ~ 20nm 范围的孔关联度最大, 91d 时与大于400nm 的孔关联度最大。梁本亮的结论与按照单因素敏感性分析方法得出的结果一致,即应用灰色关联建立了氯离子浓度、水灰比、环境溼度和构件表面氯离子浓度与氯离子侵蚀寿命之间的关联度,得出混凝土结构氯离子侵蚀寿命影响因子敏感度中,以构件表面氯离子浓度为最高,其次是氯离子浓度和环境溼度,水灰比敏感度最低。

张永娟等人通过灰色关联理论分别分析了钢渣粉和矿粉颗粒与混凝土强度之间的关系,指出要想提高钢渣粉颗粒群的反应活性,应增加粒径为5μm ~ 30μm,尤其是粒径为5μm ~ 10μm 的颗粒含量,而矿渣粉则是0 ~20 μm范围内的颗粒对混凝土强度有积极作用。席峰等人通过分析聚苯乙烯泡沫混凝土的原材料用量与混凝土强度和密度的关联度,指出在密度不变的情况下,水灰比的改变和减水剂的使用对混凝土强度影响最大; 而在强度不变的情况下,砂石和EPS 的含量是影响密度的主要因素。

C. Y. Chang和他的团队曾将灰色关联和赋权技术结合起来确定了应用再生骨料生产混凝土的最佳引数。冯庆革等人通过灰色关联分析法计算出养护龄期为7、28d 的混凝土抗拉、抗压强度与10nm ~ 20nm 范围的孔关联度最大,91d时与大于400nm 的孔关联度最大。罗洵利用灰色关联法,分析了胶凝材料用量、水胶比、磨细矿渣掺量、矽灰掺量与混凝土坍落度和28d 强度的关联度,得出胶凝材料的用量对混凝土强度和流动性的影响最大的结论。袁晓露的团队还通过灰色关联法分析了水泥矿物组成与韧性间的主次相关性。陈志江等人利用灰色关联分析法得到了各个因素对混凝土碳化深度的影响,按照大小依次排序为: 水灰比、相对溼度、水泥用量、碳化时间。

2 总结

1 采用人工神经网路技术进行混凝土配合比设计,具有适应性强、准确有效的优点,是进行多组分混凝土配合比设计的一种切实可行的方法。

2 模糊聚类分析与BP 人工神经网路结合进行预测比单纯的模糊预测精度要高,所需的训练次数要少,而且预测效果要好。

3 灰色关联理论可以将混凝土多个影响因素的“影响力”进行量化、排序,不仅使人们在理论上更好的认识混凝土,而且有助于混凝土配合比设计方法在理论层面上的完善。

试析基于QFD与TRIZ的产品质量优化研究

产品质量(Quality)指的是在商品经济范畴,企业依据特定的标准,对产品进行规划、设计、制造、检测、计量、运输、储存、销售、售后服务、生态回收等全程的必要的信息披露。以下是一篇关于试析基于QFD与TRIZ的产品质量优化研究的论文范文,供大家阅读参考!

论文摘要: 随着经济的持续发展和技术的不断进步,如何使自身产品可以紧随时代潮流并经久不衰,成为企业越来越重视的话题。需求是经济发展的动力,面对顾客需求的多变性和多样化,企业应该不断创新、改进自己的产品,增加产品功能,提升产品质量,以动态、持续地满足顾客需求,扩大市场份额,提升产品市场竞争力。

论文关键词: QFD TRIZ 产品质量 优化研究

1 绪论

选题背景及意义

质量功能展开(QFD)作为在产品设计和生产过程中分析顾客需求与技术特性、为产品质量改进和优化提供方向的一种技术方法理论,被应用于诸多企业的质量管理中。它通过质量屋(HOQ)将顾客需求分层次展开,确定需求重要度,并进行重要性排序;构建顾客需求-技术特性相关矩阵,以及技术特性自相关矩阵,依照需求重要度和技术特性相关关系,进行工艺改进和质量优化,实现产品创新。为了增强质量功能展开理论应用过程中的客观性和科学性,诸多学者将 QFD 与各种理论方法(如模糊集理论、AHP、RAHP、KANO 模型、田口方法、TRIZ 理论等)相结合,以便更加深入分析、抽取顾客需求,找出需要改进的技术特性,为产品创新提供方向。创新是一切进步的源泉!国家对创新的重视和制定的相关政策,既引领着企业的发展道路,也推动了创新技术方法在国内的推广和应用。发明问题解决理论(TRIZ)作为创新方法中的一种,与其他方法相比具有打破思维定势,提升创新效率的优势,已逐步在我国得到推广和应用,并日益受到企业的重视[1]。它是阿奇舒勒审阅世界 250 万份专利后,总结出来的发明规律和发明问题解决模式,是最切合企业实际和行之有效的创新方法。TRIZ 理论现已在美国、日本、韩国、欧洲等地得到广泛应用,并在企业应用中取得了成效。但在我国,该理论只是在近几年才得到重视,应用于少数省份和企业。目前,国内外学者逐步加强了对 TRIZ 理论的应用拓展研究,并结合企业实际,将其与诸如计算机辅助创新技术、六西格玛、QFD、冲突解决图表等结合使用,以提升创新的效率。但众多成功应用 TRIZ 的企业案例以国外居多,国内屈指可数。

国内外研究状况

质量功能展开(QFD)主要应用于产品设计阶段,确定客户需求与质量特性的关系,以最大限度提升顾客满意度为目的,进行产品的优化设计与改进。国外学者对质量功能展开的定义有不同的理解:20 世纪 70 年代,赤尾洋二教授第一次提出了质量展开(Quality Development, QD)的概念:将顾客的需求转换为质量属性,将产品质量标准系统地展开到影响各个零部件和生产工艺的要素上,使产品或服务预先实现质量保证,符合客户需求[2]。水野滋博士认为,QFD 是将保证质量的职能或业务,按照目的、手段系统展开,以确保满足客户需求,它是一种体系化的管理方法[2]。Mazur 和 Glenn 认为,QFD 就是用于提高产品/服务顾客满意水平的工具[3]。Joachim K. 和 Feng J. W 等人认为,QFD 是将顾客需求进行分解、展开和转化,通过一系列的量化评分表和相关矩阵组合,对影响质量的主要因素和指标进行详细分析,最后实现系统化[4]。Lou Colen 认为,QFD 是一种评价和衡量方法,使得产品开发小组能够清晰了解客户的需求,并对产品或服务的性能满足客户需求的程度进行系统地评价[5]。20 世纪 50 年代企业质量控制活动在日本得到广泛开展,人们意识到生产过程需要进行质量控制,设计过程更需要进行质量控制,提前控制产品质量,可以减少原材料损耗,进而降低企业成本。质量功能展开(QFD)最早产生于日本,在质量展开的概念被提出后,日本的神户造船厂开发出了质量表的雏形,弥补了质量展开的不足。

2 相关理论概述

质量功能展开(QFD)理论

如何了解客户对企业产品的需求,发现顾客的魅力型需求,以及产品应如何改进才能更好地满足顾客需求是企业在产品设计与质量优化中的重点。质量功能展开可通过质量屋技术细化顾客需求,识别需要改进的技术特性和工艺,为产品质量优化提供方向。赤尾洋二教授对 QFD 的定义在国外比较具有代表性,而国内具有代表性的观点认为 QFD 既是一种直观的、系统的、强有力的产品规划工具,又是一种以顾客需求为依据、综合产品开发阶段的各项技术要素进行系统创新的方法[22]。其基本思想是将顾客的需求贯穿到产品开发与生产的全过程。综合国内外学者的研究,本文认为质量功能展开(QFD)是指结合市场、成本等因素,综合各种量化方法和管理思想分析客户的当然需求,挖掘客户的魅力型需求,寻找符合客户需求的产品技术特性及产品关键控制点进行产品设计,以提升客户满意度和产品市场竞争力的系统性的`技术与方法。四个阶段的矩阵相当于简易的质量屋,各个阶段的质量屋存在内在联系,即下一道工序使上一道工序的“顾客”,将上一道工序的顾客需求转变为下一道工序的技术特性。产品规划矩阵将客户需求转化为技术特性;零部件开发阶段将产品规划阶段的技术特性作为顾客需求,分析影响该技术特性的零部件特性(如技术参数、大小尺寸、材料等),进行产品设计,并利用最重要的零件特征构建产品质量屋。前两个阶段是产品设计阶段的质量屋构建,本文主要应用的是 QFD 的前两个阶段,即通过分析顾客需求,确定需要改进的技术特性,并进一步具体到与需要改进的技术特性相关联的零件生产和加工工艺。

灰色关联分析

灰色关联分析(Grey Relational Analysis, GRA)是根据各因素变化曲线几何形状的相似程度,来判断因素之间关联程度的方法[23]。此方法主要用于计算比较数列和参考数列的相关关系;灰色关联度越大,表示比较数列与参考数列的关系越密切[24]。故障模式与影响分析(Failure Mode and Effect Analysis,FMEA)是在一项产品出厂之前,确认、消除产品整个设计、生产过程中已知的和潜在的问题与错误的技术方法,也称作潜在失效模式及后果分析[25]。该方法是通过 FMEA 表格分析产品或服务的零部件或工艺流程的故障模式及其影响,预先查找产品质量缺陷或故障,降低产品生产风险和成本,提升顾客满意度。FMEA 一般分为设计 FMEA 和过程 FMEA,其中设计 FMEA 的表格构成为:设计功能、潜在故障模式、潜在故障影响、关键特性、严重度(SEV)、故障原因、发生度(OCC)、检测方法、检测度(DET)、风险顺序数(RPN)、建议措施、责任人/责任范围/完成日期、落实措施的结果[25]。

3 矛盾分析与系统优化模型的构建 21

构建基于灰色关联分析与 FMEA 的质量屋模型 ...... 21

建立系统优化模型.......... 29

确定矛盾冲突 29

解决矛盾冲突 30

系统优化模型 32

4 汽车安全气囊发生器质量优化实证分析 .......... 34

分析 A15 汽车安全气囊发生器组件的顾客需求 ...... 34

构建 A15 汽车安全气囊发生器质量屋 354

基于 TRIZ 的 A15 汽车安全气囊发生器质量优化方案设计........ 47

5 结论与展望. 50

研究工作与结论.. 50

研究展望........... 50

4 汽车安全气囊发生器质量优化实证分析

安全气囊是汽车必不可少的一部分,它的质量和可靠性与乘员的生命安危息息相关。汽车在行驶中出现安全事故时,会产生两次碰撞,第一次是汽车和外部事物的碰撞,导致汽车行驶的速度迅速下降;第二次是由于汽车速度急速下降所产生的惯性使乘员和汽车内部构件之间发生碰撞。汽车安全气囊的主要作用是:在两次碰撞之间,安全气囊迅速弹出、膨胀,降低乘员的碰撞程度,以起到保护作用。汽车安全气囊的工作原理为:当汽车发生碰撞事故时,安全气囊控制系统检测到冲击力(减速度)超过设定值时,安全气囊电子控制装置立即接通充气元件中的传爆管电路,点燃传爆管内的点火介质,火焰引燃点火药粉和气体发生剂,产生大量气体,在 的时间内即将气囊充气,使气囊急剧膨胀,冲破方向盘,缓冲碰撞对驾驶员和乘员的冲击,随后又将气囊中的气体放出[26]。X 汽车安全系统有限公司主要从事汽车主、被动安全技术和产品的研发、设计和制造,是国内最大的自主品牌安全气囊和安全带的供应商。公司在生产过程中实行ISO/TS16949 质量保证体系,并通过了 ISO14001 环境体系认证。公司根据顾客对不同车型安全气囊发生器的需求,进行产品的创新设计和质量优化,以最大限度满足顾客需求,赢得市场份额。本文选择 X 公司的 A15 汽车安全气囊发生器组件作为研究对象,通过 QFD 与 TRIZ 的集成应用,帮助企业分析顾客需求,实现产品创新设计和质量优化。

结论

本文基于 FMEA 与灰色关联分析构建了质量屋规划模型,并利用 TRIZ 对 A15 汽车安全气囊发生器进行优化设计和改进。其中所做的研究工作主要有:

(1)对 QFD、TRIZ 的拓展研究以及 QFD 与 TRIZ 的集成应用做了国内外研究现状评价和总结,并提出了自己对 QFD 定义的理解;

(2)介绍了 QFD 的相关理论知识和内容及其核心技术——质量屋技术,并对质量屋的组成部分和构建过程进行了详细、重点介绍;

(3)对 QFD 质量屋构建过程中使用的灰色关联分析和故障模式与影响分析(FMEA)进行详细介绍,通过灰色关联分析方法计算顾客需求重要度,确定顾客需求与技术特性相关关系矩阵,利用 FMEA 修正技术特性重要度,既消除了数据获取的主观性和随意性,又尽量避免了产品优化过程中的质量缺陷和成本、资源浪费,使产品在提升顾客满意度的前提下实现质量优化。

(4)QFD 的质量屋构建过程是根据顾客需求发现产品或系统中存在的冲突,而TRIZ 则是根据发现的冲突,运用固有的技术方法解决冲突和问题。QFD 与 TRIZ 的集成应用实现了优势互补,将发现问题、分析问题和解决问题结合起来,推动产品创新设计与质量优化。

(5)本文将 X 公司的 A15 汽车安全气囊发生器作为研究和模型应用对象,通过灰色关联分析和 FMEA 将安全气囊发生器进行质量功能展开,发现产品设计与优化过程中的冲突和问题,并用 TRIZ 分析问题,提出相应的解决思路,以实现该类汽车安全气囊发生器的优化设计,为 X 公司和类似公司产品的质量优化提供借鉴。

参考文献(略)

这一篇就简单介绍一下灰色关联分析吧。灰色关联分析主要有两个作用,一是进行系统分析,判断影响系统发展的因素的重要性。第二个作用就是用于综合评价问题,给出研究对象或者方案的优劣排名。 不过这里我只能简单介绍一下,更加深入的原理,可能需要我专门学习之后才能清楚地表达出来。不过应用起来倒不是很难,部分原理理解不清晰应该也不影响使用,就当作了解一个新方法吧。 事实上越往后学,例如多元回归分析、运筹学相关、时间序列分析、各类预测模型、聚类分类等等,都涉及到很多有难度的数学推导。我自己即使有所理解和学习,但想要比较简单易懂地表达出来,还是需要更长时间沉淀的。所以目前写学习笔记,就只能简单说明一下原理,然后讲一下傻瓜式应用了。等我理解得更加深入了,再回头把写得不够深入清晰的文章翻新一下吧。 好的,言归正传,讲一讲灰色关联分析吧~ “在系统发展过程中,若两个因素变化的趋势具有一致性,即同步变化程度较高,即可谓二者关联程度较高;反之,则较低。因此,灰色关联分析方法,是根据因素之间发展趋势的相似或相异程度,亦即“灰色关联度”,作为衡量因素间关联程度的一种方法。” 以上内容摘自百度,大概就是这么回事。灰色关联分析的研究对象往往是一个系统。系统的发展会受到多个因素的影响。我们常常想知道,在众多的影响因素中,哪些是主要因素,哪些是次要因素;哪些因素影响大,哪些因素影响小;哪些具有促进作用,哪些具有抑制作用等等。 数理统计中常常使用回归分析、方差分析、主成分分析等来探究这个问题。但上述的方法有一些共同的不足之处。例如这些方法都要求大量的数据,数据小则结果没有太大意义;有时候还会要求样本服从某个特殊分布,或者出现量化结果与定性分析不符合的情况。而灰色关联分析则可以较好地应对这种问题。 灰色关联分析对样本量的多少和样本有无规律并没有要求(当然样本量也不能太少,就两、三个样本还分析什么),量化结果基本上与定性分析相符合。灰色关联分析的基本思想是,根据序列曲线几何形状的相似程度来判断其联系是否紧密。曲线形状越接近,相应序列之间的关联度就越大,反之就越小。 嗯,对于上述原理,简单翻译一下,就是研究两个或多个序列(序列可以理解为系统中的因素或者指标)构成的曲线的几何相似程度。越相似,越说明他们的变化具有某种紧密的联系,也就是关联度高。所以这个方法也几乎是从纯数据的角度去研究关联性,如果两个没啥关系的指标,在曲线形状上表现得极为相似,那灰色关联分析就会认为二者关联程度很高。当然这只是一个比较极端的例子,对于一般的数据或者系统,用曲线形状来衡量关联度,也是有一定的道理的。 我们首先来介绍一下第一个应用,也是它的基本应用,系统分析。其分析的主要内容,就是给“影响系统发展的各因素”在重要程度或者说影响程度方面排序。用灰色关联分析的说法,就是给出各个因素与系统总体的关联度排序。关联度越高,说明相应因素对系统发展的影响越大。至于关联度,就是上文提到的曲线形状的近似程度了。嗯,其实模模糊糊还是可以理解灰色关联分析的,就是感觉上有一点儿不靠谱hhh 下面直接举个例子来讲解应用灰色关联分析的方法。(原理已经讲过了呀) 下表为某一地区国内生产总值的统计数据(单位:百万元),问该地区从2000年到2005年之间哪一种产业对GDP总量影响最大。 诺,这就是一个典型的系统分析问题,找出对GDP发展影响最大的一个因素。那我们需要怎么做呢?想想看,灰色关联分析的原理是,比较序列曲线几何形状的相似性,那当然要先把序列曲线给画出来呀。嗯,第一步就是画出序列曲线啦。 这里需要注意,我们想要研究各因素对系统总体的关联度,就需要找出一个可以代表系统总体发展的指标,这里就是GDP。类似的,我们想要反映教育发达程度,就可以使用国民平均接受教育的年数来代表;我们想要反映社会治安面貌,就可以使用刑事案件的发生率来表达;想要反映国民健康水平,就可以使用医院挂号次数来表达。不管怎样,总是需要找到一个指标,对系统整体的发展进行刻画。 别的不说,只看曲线形状,我就觉得第一产业对GDP的影响最小了。GDP一直往高处走,而第一产业曲线的形状几乎就是平着的。而单看相似性,好像第二产业,也就是灰色曲线与GDP曲线最为相似。不过画出图像只是为了给出一个直观的感受和分析,曲线形状的近似程度,还是需要计算的。 第二步是确定分析序列。分析序列分为两类,一类称之为母序列,也就是反映系统整体行为特征或发展的数据序列,可以理解为回归分析中的因变量,这里就是GDP这一列。另一类称之为子序列,也就是影响系统发展的因素组成的数据序列,可以理解为回归分析中的自变量,这里就分别是第一产业,第二产业,第三产业的生产总值数据。 第三步是对数据进行预处理。预处理我们讲到许多了,例如正向化,标准化,归一化等等。这里预处理的目的就是去除量纲的影响,以及缩小数据范围方便计算。数据标准化往往就是这个作用。数据标准化有多种方法,例如 标准化,就是原数据减去均值除以方差,随机变量往往使用这种方法;再比如 标准化,就是 。这两个方法之前都提到过。 那在这里,我们使用的标准化方法是每一个元素除以对应指标的均值,也就是 。嗯,我们展示一下处理之后的数据。用excel处理就可以了,比较方便。第四步,计算处理后的子序列中各个元素与母序列相应元素的关联程度。记母序列为 ,子序列为 , , 。我们首先计算出母子序列最小差 ,之后再计算一下母子序列最大差 。计算如下表。嗯,可以发现, 就是上表中最小的元素, 就是上表最大的元素。然后我们就可以计算子序列中每个元素与母序列相应元素的关联度啦。 灰色关联分析中,定义 ,其中 是分辨系数,一般位于 之间,往往取 。至于为什么要用这样一个公式定义子序列某元素与母序列相应元素的关联度呢?我就不晓得了……嗯,自行查阅,如果知道了请留言告诉我,谢谢! 第五步,计算各个序列,也就是指标与系统总体的关联程度。我们定义 ,用它来表达某个指标与系统总体发展的关联度。 嗯,其实就是第四步,求出了指标内部各个元素与母序列对应元素的关联度,把他们求个平均值,就可以看作该指标与系统总体的关联度了。如果你可以接受上文中的关联度计算公式,想来接受这个关联度均值,应该不是太难。 上图就是该题的最终计算结果了,计算证明,取分辨系数为时,第三产业对国内生产总值的影响最大。好像跟那个图片不是很符合……毕竟从图片上直观感受,应该是第二产业的曲线形状与GDP的曲线形状最为相近,结果计算出的是第三产业。那,我们换一下 试试。一番操作,还是第三产业对GDP影响最大。不过再次提醒,实际使用时, 是最常用的。 如果要强行解释一波,大概就是GDP的增长率是有起伏的,2002-2005之间每一段折线的斜率是不同的,而第二产业2002-2005之间,基本是一条直线过去,相比之下,第三产业的增长变化,更像GDP的变化……好吧就是强行解释一下啦 上图是每一年的增量情况……嗯,好像也是灰色和蓝色更像,不过2003-2005的增量,也就是2002-2005这四年来看,第三产业和GDP的增长更加相似。而第二产业只有一两年比较相似,所以综合来看,可能还是第三产业对GDP的影响更大吧。 嗯,强行解释完毕。 最后对于系统分析问题,还有两个问题。 嗯,系统分析讲到这里。 灰色关联分析用于综合评价的核心是,通过指标的关联度确定每个指标的权重,之后加权求和打分。 还是这二十条河流。评价水质,我们用灰色关联分析怎么做呢? 第一步、把所有指标进行正向化处理。正向化处理知道是什么吧,就是把极小型,中间型,区间型指标,全部转化为极大型指标。也就是要求数据值越大,最后得分越高。 第二步、对正向化的矩阵进行标准化。这里的标准化跟上面系统分析的标准化是一个东西。也就是用每一个元素除以对应指标的均值, ,把数据的范围缩小,消除量纲影响。将经过了上述两步处理的矩阵记为 第三步、将正向化、预处理之后的矩阵,每一行取出一个最大值,作为母序列。嗯,这里就是灰色关联分析用于综合评价问题需要注意的点了,也就是人为的构造出这么一个母序列。 第四步、按之前提到的方法,计算各个指标与母序列的灰色关联度,记为 。 第五步、计算各个指标的权重。每个指标的权重 。也就是关联度占总体关联度之和的比重。 第六步、我们求出每个评价对象的得分。对于第 个评价对象,其得分 。这里的 ,也就是上面提到的经过正向化和标准化的矩阵 。 中的每一个指标都是极大型指标,数值越大分数应该越高,同时消除了量纲的影响。因此我们直接把 中的元素作为每个指标下对每个评价对象的打分,然后对指标的分数进行加权求和。权重就是我们上面使用灰色关联度求得的权重。这样子,我们就求出了最终的分数。 第七步、对分数进行归一化处理。 ,这样子可以把分数全部放在0-1之间。归一化的好处就是,此时的分数可以解释成相应的研究对象在总体研究对象中“水某平”的百分比,也就是所处的位置。在水质题目中,也就是某河流水质情况在所有河流中所处的位置。嗯,用一个更通俗的说法,就类似于“您的成绩超越了百分之xx的同学”。这就是归一化的目的。 下图展示了对于水质情况的评价,使用TOPSIS方法与灰色关联分析的结果。 可以看到,这两种方法对于该问题最后的排序是不同的。第一名的取法就不一样,中间一部分顺序也比较不同,不过总体上还是比较相近的。hhh,不如再使用一个层次分析法,把三种方法得出的归一化后的分数,再取个平均,作为最终排序的依据。嗯,你看这个模型,是不是一下子就复杂了。 好的,本文就到这里,其实还是有几个迷惑的问题没有解决。 后两个好像可以强行解释,因为我们把正向化以及标准化后的矩阵当成分数矩阵了,所以取每一行的最大值,用来构造系统的最优得分序列,每一项方案就相当于系统的一次发展。之后计算关联度,就是看指标对系统最优序列的影响程度,影响程度越大,我们就赋给它更大的权重……嗯,强行解释 上面这三个问题,如果谁有比较好的想法,希望可以留个言告诉我,现在这里谢过!如果我以后慢慢理解了,也会在文章中更新。(不过发在微信公众号上可能是无法更新了,知乎和都可以) 灰色关联分析,我能分享的也就这么多了。如果想要继续了解,可以阅读《灰色系统理论及其应用》,刘思峰等著。嗯,灰色系统还有灰色系统预测,灰色组合模型,灰色决策,灰色聚类评估等应用,没事儿可以看看。 这两天知乎给我推送了一些数学建模相关的问答,其中一个是数学建模相关书籍。我把高赞回答推荐的书的电子版找了一下,如果需要的话,在微信公众号“我是陈小白”后台回复“数学建模书籍”即可。 以上

灰色预测建模论文模板

你可以去下个灰色预测的程序,改改数据

随着科学技术特别是信息技术的高速发展,数学建模的应用价值越来越得到众人的重视,

数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,以下是一篇关于数学建模教育开展策略探究的论文 范文 ,欢迎阅读参考。

大学数学具有高度抽象性和概括性等特点,知识本身难度大再加上学时少、内容多等教学现状常常造成学生的学习积极性不高、知识掌握不够透彻、遇到实际问题时束手无策,而数学建模思想能激发学生的学习兴趣,培养学生应用数学的意识,提高其解决实际问题的能力。数学建模活动为学生构建了一个由数学知识通向实际问题的桥梁,是学生的数学知识和应用能力共同提高的最佳结合方式。因此在大学数学教育中应加强数学建模教育和活动,让学生积极主动学习建模思想,认真体验和感知建模过程,以此启迪创新意识和 创新思维 ,提高其素质和创新能力,实现向素质教育的转化和深入。

一、数学建模的含义及特点

数学建模即抓住问题的本质,抽取影响研究对象的主因素,将其转化为数学问题,利用数学思维、数学逻辑进行分析,借助于数学 方法 及相关工具进行计算,最后将所得的答案回归实际问题,即模型的检验,这就是数学建模的全过程。一般来说",数学建模"包含五个阶段。

1.准备阶段

主要分析问题背景,已知条件,建模目的等问题。

2.假设阶段

做出科学合理的假设,既能简化问题,又能抓住问题的本质。

3.建立阶段

从众多影响研究对象的因素中适当地取舍,抽取主因素予以考虑,建立能刻画实际问题本质的数学模型。

4.求解阶段

对已建立的数学模型,运用数学方法、数学软件及相关的工具进行求解。

5.验证阶段

用实际数据检验模型,如果偏差较大,就要分析假设中某些因素的合理性,修改模型,直至吻合或接近现实。如果建立的模型经得起实践的检验,那么此模型就是符合实际规律的,能解决实际问题或有效预测未来的,这样的建模就是成功的,得到的模型必被推广应用。

二、加强数学建模教育的作用和意义

(一) 加强数学建模教育有助于激发学生学习数学的兴趣,提高数学修养和素质

数学建模教育强调如何把实际问题转化为数学问题,进而利用数学及其有关的工具解决这些问题, 因此在大学数学的教学活动中融入数学建模思想,鼓励学生参与数学建模实践活动,不但可以使学生学以致用,做到理论联系实际,而且还会使他们感受到数学的生机与活力,激发求知的兴趣和探索的欲望,变被动学习为主动参与其效率就会大为改善。数学修养和素质自然而然得以培养并提高。

(二)加强数学建模教育有助于提高学生的分析解决问题能力、综合应用能力

数学建模问题来源于社会生活的众多领域,在建模过程中,学生首先需要阅读相关的文献资料,然后应用数学思维、数学逻辑及相关知识对实际问题进行深入剖析研究并经过一系列复杂计算,得出反映实际问题的最佳数学模型及模型最优解。因此通过数学建模活动学生的视野将会得以拓宽,应用意识、解决复杂问题的能力也会得到增强和提高。

(三)加强数学建模教育有助于培养学生的创造性思维和创新能力

所谓创造力是指"对已积累的知识和 经验 进行科学地加工和创造,产生新概念、新知识、新思想的能力,大体上由感知力、 记忆力 、思考力、 想象力 四种能力所构成"[1].现今教育界认为,创造力的培养是人才培养的关键,数学建模活动的各个环节无不充满了创造性思维的挑战。

很多不同的实际问题,其数学模型可以是相同或相似的,这就要求学生在建模时触类旁通,挖掘不同事物间的本质,寻找其内在联系。而对一个具体的建模问题,能否把握其本质转化为数学问题,是完成建模过程的关键所在。同时建模题材有较大的灵活性,没有统一的标准答案,因此数学建模过程是培养学生创造性思维,提高创新能力的过程[2].

(四)加强数学建模教育有助于提高学生科技论文的撰写能力

数学建模的结果是以论文形式呈现的,如何将建模思想、建立的模型、最优解及其关键环节的处理在论文中清晰地表述出来,对本科生来说是一个挑战。经历数学建模全过程的磨练,特别是数模论文的撰写,学生的文字语言、数学表述能力及论文的撰写能力无疑会得到前所未有的提高。

(五)加强数学建模教育有助于增强学生的团结合作精神并提高协调组织能力建模问题通常较复杂,涉及的知识面也很广,因此数学建模实践活动一般效仿正规竞赛的规则,三人为一队在三天内以论文形式完成建模题目。要较好地完成任务,离不开良好的组织与管理、分工与协作[3].

三、开展数学建模教育及活动的具体途径和有效方法

(一)开展数学建模课堂教学

即在课堂教学中,教师以具体的案例作为主要的教学内容,通过具体问题的建模,介绍建模的过程和思想方法及建模中要注意的问题。案例教学法的关键在于把握两个重要环节:

案例的选取和课堂教学的组织。

教学案例一定要精心选取,才能达到预期的教学效果。其选取一般要遵循以下几点。

1. 代表性:案例的选取要具有科学性,能拓宽学生的知识面,突出数学建模活动重在培养兴趣提高能力等特点。

2. 原始性:来自媒体的信息,企事业单位的 报告 ,现实生活和各学科中的问题等等,都是数学建模问题原始资料的重要来源。

3. 创新性:案例应注意选取在建模的某些环节上具有挑战性,能激发学生的创造性思维,培养学生的创新精神和提高创造能力。

案例教学的课堂组织,一部分是教师讲授,从实际问题出发,讲清问题的背景、建模的要求和已掌握的信息,介绍如何通过合理的假设和简化建立优化的数学模型。还要强调如何用求解结果去解释实际现象即检验模型。另一部分是课堂讨论,让学生自由发言各抒己见并提出新的模型,简介关键环节的处理。最后教师做出点评,提供一些改进的方向,让学生自己课外独立探索和钻研,这样既突出了教学重点,又给学生留下了进一步思考的空间,既避免了教师的"满堂灌",也活跃了课堂气氛,提高了学生的课堂学习兴趣和积极性,使传授知识变为学习知识、应用知识,真正地达到提高素质和培养能力的教学目的[4].

(二)开展数模竞赛的专题培训指导工作

建立数学建模竞赛指导团队,分专题实行教师负责制。每位教师根据自己的专长,负责讲授某一方面的数学建模知识与技巧,并选取相应地建模案例进行剖析。如离散模型、连续模型、优化模型、微分方程模型、概率模型、统计回归模型及数学软件的使用等。学生根据自己的薄弱点,选择适合的专题培训班进行学习,以弥补自己的不足。这种针对性的数模教学,会极大地提高教学效率。

(三)建立数学建模网络课程

以现代 网络技术 为依托,建立数学建模课程网站,内容包括:课程介绍,课程大纲,教师教案,电子课件,教学实验,教学录像,网上答疑等;还可以增加一些有关栏目,如历年国内外数模竞赛介绍,校内竞赛,专家点评,获奖心得交流;同时提供数模学习资源下载如讲义,背景材料,历年国内外竞赛题,优秀论文等。以此为学生提供良好的自主学习网络平台,实现课堂教学与网络教学的有机结合,达到有效地提高学生数学建模综合应用能力的目的。[5,6]

(四)开展校内数学建模竞赛活动

完全模拟全国大学生数模竞赛的形式规则:定时公布赛题,三人一组,只能队内讨论,按时提交论文,之后指导教师、参赛同学集中讨论,进一步完善。笔者负责数学建模竞赛培训近 20 年,多年的实践证明,每进行一次这样的训练,学生在建模思路、建模水平、使用软件能力、论文书写方面就有大幅提高。多次训练之后,学生的建模水平更是突飞猛进,效果甚佳。

如 2008 年我指导的队荣获全国高教社杯大学生数学建模竞赛的最高奖---高教社杯奖,这是此赛设置的唯一一个名额,也是当年从全国(包括香港)院校的约 1 万多个本科参赛队中脱颖而出的。又如 2014 年我校 57 队参加全国大学生数学建模竞赛,43 队获奖,获奖比例达 75%,创历年之最。

(五)鼓励学生积极参加全国大学生数学建模竞赛、国际数学建模竞赛

全国大学生数学建模竞赛创办于 1992 年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛, 国际大学生数学建模竞赛是世界上影响范围最大的高水平大学生学术赛事。参加数学建模大赛可以激励学生学习数学的积极性,提高运用数学及相关工具分析问题解决问题的综合能力,开拓知识面,培养创造精神及合作意识。

四、结束语

数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,而高校数学教学改革的目的之一是要着力培养学生的创造性思维,提高学生的创新能力。因此应将数学建模思想融入教学活动中,通过不断的数学建模教育和实践培养学生的创新能力和应用能力从而提高学生的基本素质以适应社会发展的要求。

参考文献:

[1]辞海[M].上海辞书出版社,2002,1:237.

[2]许梅生,章迪平,张少林。 数学建模的认识与实践[J].浙江科技学院学报,2003,15(1):40-42.

[3]姜启源,谢金星,一项成功的高等教育改革实践[J].中国高教研究,2011,12:79-83.

[4]饶从军,王成。论高校数学建模教学[J].延边大学学报(自然科学学版),2006,32(3):227-230.

[5]段璐灵。数学建模课程教学改革初探[J].教育与职业,2013,5:140-142.

[6]郝鹏鹏。工程网络课程教学的实践与思考[J]科技视界,2014,29:76-77.

大部分数学知识是抽象的,概念比较枯燥,造成学生学习困难,而数学建模的运用,在很大程度上可以将抽象的数学知识转化成实体模型,让学生更容易理解和学习数学知识。教师要做的就是了解并掌握数学建模的方法,并且把这种 教学方法 运用到数学教学中。

对教师来说,发现好的教学方法不是最重要的,而是如何把方法与教学结合起来。通过对数学建模的长期研究和实践应用,笔者 总结 了数学建模的概念以及运用策略。

一、数学建模的概念

想要更好地运用数学建模,首先要了解什么是数学建模。可以说,数学建模就像一面镜子,可以使数学抽象的影像产生与之对应的具体化物象。

二、在小学数学教学中运用数学建模的策略

1.根据事物之间的共性进行数学建模

想要运用数学建模,首先要对建模对象有一定的感知。教师要创造有利的条件,促使学生感知不同事物之间的共性,然后进行数学建模。

教师应做好建模前的指导工作,为学生的数学建模做好铺垫,而学生要学会尝试自己去发现事物的共性,争取将事物的共性完美地运用到数学建模中。在建模过程中,教师要引导学生把新知识和旧知识结合起来的作用,将原来学习中发现的好方法运用到新知识的学习、新数学模型的构建中,降低新的数学建模的难度,提高学生数学建模的成功率。如在教学《图形面积》时,教师可以利用不同的图形模板,让学生了解不同图形的面积构成,寻找不同图形面积的差异以及图形之间的共性。这样直观地向学生展示图形的变化,可以加深学生对知识的理解,提高学生的学习效率。

2.认识建模思想的本质

建模思想与数学的本质紧密相连,它不是独立存在于数学教学之外的。所以在数学建模过程中,教师要帮助学生正确认识数学建模的本质,将数学建模与数学教学有机结合起来,提高学生解决问题的能力,让学生真正具备使用数学建模的能力。

建模过程并不是独立于数学教学之外的,它和数学的教学过程紧密相连。数学建模是使人对数学抽象化知识进行具体认识的工具,是运用数学建模思想解决数学难题的过程。因此,教师要将它和数学教学组成一个有机的整体,不仅要帮助学生完成建模,更要带领学生认识数学建模的本质,领悟数学建模思想的真谛,并逐渐引导学生使用数学建模解决数学学习过程中遇到的问题。

3.发挥教材在数学建模上的作用

教材是最基础的教学工具,在数学教材中有很多典型案例可以利用在数学建模上,其中很大一部分来源于生活,更易于小学生学习和理解,有助于学生构建数学建模思想。教师要利用好教材,培养学生的建模能力,帮助学生建造更易于理解的数学模型,从而提高学生的学习效率。如在教学加减法时,教材上会有很多数苹果、香蕉的例题,这些就是很好的数学模型,因为贴近生活,可以激发学生的学习兴趣,培养学生数学建模的能力,所以教师应该深入研究教材。

数学建模是一种很好的数学教学方法,教师要充分利用这种教学方法,真正做到实践与理论完美结合。

1、层次分析法,简称AHP,是指将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。该方法是美国运筹学家匹茨堡大学教授萨蒂于20世纪70年代初,在为美国国防部研究"根据各个工业部门对国家福利的贡献大小而进行电力分配"课题时,应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。

2、多属性决策是现代决策科学的一个重要组成部分,它的理论和方法在工程设计、经济、管理和军事等诸多领域中有着广泛的应用,如:投资决策、项目评估、维修服务、武器系统性能评定、工厂选址、投标招标、产业部门发展排序和经济效益综合评价等.多属性决策的实质是利用已有的决策信息通过一定的方式对一组(有限个)备选方案进行排序或择优.它主要由两部分组成:(l) 获取决策信息.决策信息一般包括两个方面的内容:属性权重和属性值(属性值主要有三种形式:实数、区间数和语言).其中,属性权重的确定是多属性决策中的一个重要研究内容;(2)通过一定的方式对决策信息进行集结并对方案进行排序和择优。

3、灰色预测模型(Gray Forecast Model)是通过少量的、不完全的信息,建立数学模型并做出预测的一种预测方法.当我们应用运筹学的思想方法解决实际问题,制定发展战略和政策、进行重大问题的决策时,都必须对未来进行科学的预测.预测是根据客观事物的过去和现在的发展规律,借助于科学的方法对其未来的发展趋势和状况进行描述和分析,并形成科学的假设和判断。

4、Dijkstra算法能求一个顶点到另一顶点最短路径。它是由Dijkstra于1959年提出的。实际它能出始点到 其它 所有顶点的最短路径。

Dijkstra算法是一种标号法:给赋权图的每一个顶点记一个数,称为顶点的标号(临时标号,称T标号,或者固定标号,称为P标号)。T标号表示从始顶点到该标点的最短路长的上界;P标号则是从始顶点到该顶点的最短路长。

5、Floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在)从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。所以,我们假设Dis(i,j)为节点u到节点v的最短路径的距离,对于每一个节点k,我们检查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,证明从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j) = Dis(i,k) + Dis(k,j),这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的最短路径的距离。

6、模拟退火算法是模仿自然界退火现象而得,利用了物理中固体物质的退火过程与一般优化问题的相似性从某一初始温度开始,伴随温度的不断下降,结合概率突跳特性在解空间中随机寻找全局最优解。

7、种群竞争模型:当两个种群为争夺同一食物来源和生存空间相互竞争时,常见的结局是,竞争力弱的灭绝,竞争力强的达到环境容许的最大容量。使用种群竞争模型可以描述两个种群相互竞争的过程,分析产生各种结局的条件。

8、排队论发源于上世纪初。当时美国贝尔电话公司发明了自动电话,以适应日益繁忙的工商业电话通讯需要。这个新发明带来了一个新问题,即通话线路与电话用户呼叫的数量关系应如何妥善解决,这个问题久久未能解决。1909年,丹麦的哥本哈根电话公司.埃尔浪(Erlang)在热力学统计平衡概念的启发下解决了这个问题。

9、线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。决策变量、约束条件、目标函数是线性规划的三要素。

10、非线性规划:非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。20世纪50年代初,库哈() 和托克 () 提出了非线性规划的基本定理,为非线性规划奠定了理论基础。这一方法在工业、交通运输、经济管理和军事等方面有广泛的应用,特别是在“最优设计”方面,它提供了数学基础和计算方法,因此有重要的实用价值。

数学建模全国优秀论文相关 文章 :

★ 数学建模全国优秀论文范文

★ 2017年全国数学建模大赛获奖优秀论文

★ 数学建模竞赛获奖论文范文

★ 小学数学建模的优秀论文范文

★ 初中数学建模论文范文

★ 学习数学建模心得体会3篇

★ 数学建模论文优秀范文

★ 大学生数学建模论文范文(2)

★ 数学建模获奖论文模板范文

★ 大学生数学建模论文范文

前两个可以参照灰色系统在残缺图像的修补来预测第3问用GM(1,1)模型来预测 会写程序就很简单了

你可以去下个灰色预测的程序,改改数据,就好啦

  • 索引序列
  • 关于灰色预论文研究方法
  • 灰色预测法毕业论文
  • 灰色预测论文模板
  • 基于灰色关联分析的研究论文
  • 灰色预测建模论文模板
  • 返回顶部