解:∵10+27=37;30+24=54;∴(1)所填数为92-50=42(2)所填数为26+3=29(3)所填数为30和36或者20和46…… 希望我的回答对您有帮助,有问题可以追问。满意请及时采纳,谢谢!
33
小红比小明多14张,那么,小红给小明14÷2=7张 两人就一样多了 这就是说 小红的七分之二 等于7. 由部分求整体 7÷2/7=49÷2=.(张)小红原有 张,小明10,5张 讨论:此题数据不合常理,邮票不能出半张的.如果14改为12,或16,可以. 否则,把七分之二改为 七分之一, 也可以. 如果是七分之一 则 7÷1/7=49 (小红49张小明35张)
学习周报,青少年报,红树林,特区教育
7时吧,应该是没有数字的钟面。。
应该是比40少吧。这样就是36朵花因为六六三十六
钟上没有数字的话就是7,有数字的话就是5
二年级上册小学生学学报,你们有鸡兔同笼那道题在第12期。
解:做对X题. 则做错(20-X)题5X-(20-X)=82 5X+X =82+20 6X=102 X=17答:做对了17题
题啊= =题能写一下吗 楼上已经答了。。
下一期的报缝里有
植树节时,六年级同学植树240棵树。实际第一周就植了五分之二,还要在植()棵,就使已植树与未知数的比是2比1解:设还要植的树为X,由题意得:已植的树为(96+x)则没有种的树为240-(96+x)=144-x由题意得:(96+x)/(144-x)=2/1得:x=64(棵)
20*5=100(分)100-82=18(分05+1=618除6=3(道)20-3=17(道)OK啦
做对了x道题,可得5x-(20-x)=82,解方程得x=17
题啊= =题能写一下吗 楼上已经答了。。
自己想!!!!!!!!!!!
浅谈如何培养一年级学生主动有效地参与课堂摘要: 一年级学生刚踏入小学门槛,学习时间、方式和要求的骤变使他们处于不适应状态,从而不能养成良好的学习观,对学习缺乏主动和持久的耐性,表现在课堂上为被动,不专心等,影响了教学效果。因此,教师要针对学生的年龄特征进行教育,设计并实践学生乐于参与的课堂,让他们感受到学习数学是重要和有趣的,知道怎样做才能更好地学好数学。本文从培养一年级学生正确的学习观,激发学习兴趣和教给学生发言的方法和要求三方面,结合自己的实践,阐述了如何激发一年级小朋友主动参与课堂活动的欲望,提高数学课堂的有效性这个问题。 关键词:学习观 学习兴趣 发言 主动参与 有效性 一、问题的提出 伟大的教育家孔子说过:“知之者不如好知者,好知者不如乐知者”。由此可见,兴趣在学生学习中发挥了催化作用。课堂教学是素质教育的主阵地,不仅应该担负培养学生基本素质的教学任务,更应该让学生产生一种强大的内趋力去主动探索数学的奥秘,体验学习数学的乐趣。 数学是一门反映现实世界中数量关系和空间形式的科学,具有高度的抽象性、严密的逻辑性和应用的广泛性等特征。它作为一门重要的基础学科和工具学科,在小学阶段同样占有重要的地位。作为启蒙阶段的小学数学,仍然是抽象的、概括的。一年级小朋友的抽象思维还很稚嫩,而且大部分小朋友学习数学还依赖教师、家长,不能自觉完成学习任务,普遍存在着学习目的性不强,学习兴趣比较淡薄,缺乏积极主动的探究精神,对学好数学缺乏信心等问题,这严重影响了学生参与学习活动的积极程度。 二、主要概念和理论依据 (一)学生的主体性地位 马克思的人学思想认为:在活动中,人是主体,起着决定的作用。数学的学习是以学生为主体的。教师是学生数学活动的组织者、引导者与合作者;要根据学生的具体情况,对教材进行再加工,有创造地设计教学过程;要正确认识学生个体差异,因材施教,使每个学生都在原有的基础上得到发展;要让学生获得成功的体验,树立学好数学的自信心 (二)学生的心理需求 兴趣是一种个性心理特征,它是在一定的情感体验影响下的一种积极探究某种事物或从事某种活动的心理倾向。小学生对数学有了兴趣,便会产生一种内驱力,就会主动愉快地去探究它,并形成一种强烈的乐于研究的欲望。 数学教学,要紧密联系学生的生活实际,从学生的生活经验和已有知识出发,创设生动有趣的情境,引导学生开展观察、操作、猜想、推理、交流等活动,使学生通过数学活动,掌握基本的数学知识和技能,初步学会从数学的角度去观察事物、思考问题,激发对数学的兴趣,
数学小论文今天数学课上,老师出了一道例题,题目是:学校组织老师和同学参观科技馆。有100名学生和50名老师。科技馆的门票是成人10元,儿童半价。问:需要多少元?小红举手,老师点小红上黑板解答,小红的算式是这样的:10/2=5(元)100*5=500(元)50*10=500(元)500+500=1000(元)答:需要1000元。老师说:“好的,有没有别的方法?”小月举手,老师点小月上黑板解答,小月的算式是这样的:(100/2)+50=50+50=100(名)100*10=1000(元)答:需要1000元。老师说:“非常好,请小月上台讲解。”“我的是先用100/2=50(名),它的意思是:因为成人票价是儿童票价的2倍,有100名儿童,所需要的票价就等于50名成人。再用50+50=100(名),也就是加上老师,一共有100名“成人”,最后用100*10=1000(元),就可以算出一共要多少元。”小月解说道。“很好,谢谢小月,你的解说很全面。我们今天学的就是‘巧算门票’,好,下课。”老师说。数学小论文数学小论文大千世界,数学无处不在。真的,只要你留心观察,善于动脑,你就觉得自己好像置身于数学的海洋。是的,数学无处不在,这个假期,我就深深地感到了这一点。我的肚子莫名其妙地奏起了狂响曲,“好饿啊_”我呻吟道。“来,吃个苹果吧!”还是妈妈好,“但是……”“但是什么?吃个苹果,哪有什么但是啊?”我笑问道,伸手向一个又大又红的苹果抓去。谁知,妈妈一把抓住苹果,夺了过去,神秘兮兮的。我一脸茫然,妈妈这是卖哪门子的药啊?我不耐烦了“妈,别闹了,还让不让人吃啦?”妈妈还是微笑着,洗起苹果来“吃,谁说不让你吃啦,我这不是洗了吗?”“哦!”我还是一脸疑惑。“但是,我还是有一个要求。”终于说出来了,我就知道不对劲了吗。“什么要求啊?”我有点生气了,不就是吃一个苹果嘛,怎么有那么多要求啊。“你不是学过体积了吗?”“是啊,怎么了?”这根吃苹果有关吗?我心想。“那你能不能把数学知识,带到生活中去,算算这个苹果的体积呢?”妈妈又笑了笑,好像小瞧我似的,我的心里升起了一股力量,恩,我一定要做给你看!一定!于是,我赶忙把这个令人馋涎欲滴的红苹果,拿在手里,琢磨起怎样算体积来。苹果既不是长方体,也不是正方体,更不是圆柱体,怎么算它的体积呢?我摆来摆去,没有头绪了,此时的肚子还在咕咕作响,我可不能不遵守承诺,就吃了呀,我可不能让妈妈瞧不起我呀,加油,一定还有什么好方法。于是我又鼓起勇气,忍住饥饿,继续埋头考虑起来。过了一会儿,我终于豁然开朗,我不能用量杯,先在里面装些水,记下水位。随后把那个苹果放入水中,此时的水位上升了不少,再记下上升后的水位。最后用上升后的水位,减去先前的水位,不就算出苹果的体积了吗?我高兴极了,向妈妈汇报了实验结果,妈妈这回是满意的笑了。我大口地啃着苹果,这正是最甜美的食物!数学无处不在,你说是吗?数学小论文数学小论文“你碰到问题就不会自己想一想再问吗?!”妈妈火冒三丈。哎呀,谁叫我这个头脑不是数学头脑呢?做难一点的题目就开始问这问那,唉,还是自己想想吧!我呆呆地望着这道数学题:同学们去植树,如果每人栽8棵,则少7棵树;如果每人栽7棵,则多出8棵树,问有多少个学生?他们一共要植树多少棵?讨厌,又是盈亏问题,这奥赛快乐训练就不能出些别的题吗?但是气归气,到头来不还是要做吗?这道题有两种方案,每人栽8棵和每人栽7棵,这样每人少栽1棵,原来的少7棵就变成多8棵两种分配总差额是:7+8=15(棵),诶,这样接下来的步骤不就和前面的例题一样了吗?先根据方案找出个体差,再根据结果找出总差,然后求出总差中包含个体差的个数,最后根据数学公式:总差额÷个体差=个数来求出结果。这道题也可以运用这个公式啊。得到:学生:(7+8)÷(8-7)=15(个)树:8×15-7=113(棵)或者15×7+8=113(棵)答案不就出来了吗?有15个学生,一共要植树113棵。这认真想,还就有了思路和兴趣了,我便“唰唰唰”地往下做:鼓号队同学排队,如果每行站8人,则多24人;如果每行站9人,则多4人,问一共站多少行?有多少个学生?同样的思路,求出两种分配的总差额为24-4=20(人),再运用公式得到:行数:(24-4)÷(9-8)=20(行)学生:20×8+24=184或者20×9+4=184(人)我越做越高兴,自己能解出这么多难题,并得到一个重要的公式:总差额÷个体差=个数,以后可以更好的运用来解难题。做着做着,我渐渐悟到:其实做难题并不难。
关于什么的数学小论文?
数学小论文一 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 作为一个小学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。 2数学是什么 什么是数学?有人说:“数学,不就是数的学问吗?” 这样的说法可不对。因为数学不光研究“数”,也研究“形”,大家都很熟悉的三角形、正方形,也都是数学研究的对象。 历史上,关于什么是数学的说法更是五花八门。有人说,数学就是关联;也有人说,数学就是逻辑,“逻辑是数学的青年时代,数学是逻辑的壮年时代。” 那么,究竟什么是数学呢? 伟大的革命导师恩格斯,站在辩证唯物主义的理论高度,通过深刻分析数学的起源和本质,精辟地作出了一系列科学的论断。恩格斯指出:“数学是数量的科学”,“纯数学的对象是现实世界的空间形式和数量关系”。根据恩格斯的观点,较确切的说法就是:数学——研究现实世界的数量关系和空间形式的科学。 数学可以分成两大类,一类叫纯粹数学,一类叫应用 数学。