首页 > 论文发表知识库 > 数学思维相关的论文题目

数学思维相关的论文题目

发布时间:

数学思维相关的论文题目

毕业论文主要目的是培养学生综合运用所学知识和技能,理论联系实际,独立分析,解决实际问题的能力,你知道本科数学论文题目都有哪些吗?接下来我为你推荐本科数学毕业论文题目,仅供参考。

本科数学毕业论文题目

★浅谈奥数竟赛的利与弊

★浅谈中学数学中数形结合的思想

★浅谈高等数学与中学数学的联系,如何运用高等数学于中学数学教学中 ★浅谈中学数学中不等式的教学

★中数教学研究

★XXX课程网上教学系统分析与设计

★数学CAI课件开发研究

★中等职业学校数学教学改革研究与探讨

★中等职业学校数学教学设计研究

★中等职业学校中外数学教学的比较研究

★中等职业学校数学教材研究

★关于数学学科案例教学法的探讨

★中外著名数学家学术思想探讨

★试论数学美

★数学中的研究性学习

★数字危机

★中学数学中的化归方法

★高斯分布的启示

★a二+b二≧二ab的变形推广及应用

★网络优化

★泰勒公式及其应用

★浅谈中学数学中的反证法

★数学选择题的利和弊

★浅谈计算机辅助数学教学

★论研究性学习

★浅谈发展数学思维的学习方法

★关于整系数多项式有理根的几个定理及求解方法

★数学教学中课堂提问的误区与对策

★怎样发掘数学题中的隐含条件

★数学概念探索式教学

★从一个实际问题谈概率统计教学

★教学媒体在数学教学中的作用

★数学问题解决及其教学

★数学概念课的特征及教学原则

★数学美与解题

★创造性思维能力的培养和数学教学

★教材顺序的教学过程设计创新

★排列组合问题的探讨

★浅谈初中数学教材的思考

★整除在数学应用中的探索

★浅谈协作机制在数学教学中的运用

★课堂标准与数学课堂教学的研究与实践

★浅谈研究性学习在数学教学中的渗透与实践

★关于现代中学数学教育的思考

★在中学数学教学中教材的使用

★情境教学的认识与实践

★浅谈初中代数中的二次函数

★略论数学教育创新与数学素质提高

★高中数学“分层教学”的初探与实践

★在中学数学课堂教学中如何培养学生的创新思维

★中小学数学的教学衔接与教法初探

★如何在初中数学教学中进行思想方法的渗透

★培养学生创新思维全面推进课程改革

★数学问题解决活动中的反思

★数学:让我们合理猜想

★如何优化数学课堂教学

★中学数学教学中的创造性思维的培养

★浅谈数学教学中的“问题情境”

★市场经济中的蛛网模型

★中学数学教学设计前期分析的研究

★数学课堂差异教学

★一种函数方程的解法

★浅析数学教学与创新教育

★数学文化的核心—数学思想与数学方法

★漫话探究性问题之解法

★浅论数学教学的策略

★当前初中数学教学存在的问题及其对策

★例谈用“构造法”证明不等式

★数学研究性学习的探索与实践

★数学教学中创新思维的培养

★数学教育中的科学人文精神

★教学媒体在数学教学中的应用

★“三角形的积化和差”课例大家评

★谈谈类比法

★直觉思维在解题中的应用

★数学几种课型的问题设计

★数学教学中的情境创设

★在探索中发展学生的创新思维

★精心设计习题提高教学质量

★对数学教育现状的分析与建议

★创设情景教学生猜想

★反思教学中的一题多解

★在不等式教学中培养学生的探究思维能力

★浅谈数学学法指导

★中学生数学能力的培养

★数学探究性活动的内容形式及教学设计

★浅谈数学学习兴趣的培养

★浅谈课堂教学的师生互动

★新世纪对初中数学的教材的思考

★数学教学的现代研究

★关于学生数学能力培养的几点设想

★在数学教学中培养学生创新能力的尝试

★积分中值定理的再讨论

★二阶变系数齐次微分方程的求解问题

★浅谈培养学生的空间想象能力

★培养数学能力的重要性和基本途径 ★课堂改革与数学中的创新教育

★如何实施中学数学教学中的素质教育 ★数学思想方法在初中数学教学中的渗透 ★浅谈数学课程的设计

★培养学生学习数学的兴趣

★课堂教学与素质教育探讨

★数学教学要着重培养学生的读书能力 ★数学基础知识的教学和基本能力的培养 ★初中数学创新教育的实施

★浅谈数学教学中培养学生的数学思维能力 ★谈数学教学中差生的转化问题

★谈中学数学概念教学中如何实施探索式教学 ★把握学生心理激发数学学习兴趣

★数学教学中探究性学习策略

★论数学课堂教学的语言艺术

★数学概念的教与学

★优化课堂教学推进素质教育

★数学教学中的情商因素

★浅谈创新教育

★培养学生的数学兴趣的实施途径

★论数学学法指导

★学生能力在数学教学中的培养

★浅论数学直觉思维及培养

★论数学学法指导

★优化课堂教学焕发课堂活力

★浅谈高初中数学教学衔接

★如何搞好数学教育教学研究

★浅谈线性变换的对角化问题

本科数学毕业论文范文:高等数学教学中体现数学建模思想的方法

生产计划是对生产全过程进行合理规划的有效手段,是一个十分繁复的过程,以下是我搜集整理的一篇探究高等数学教学中体现数学建模思想的方法的范文,欢迎阅读参考。

1数学建模在煤矿安全生产中的意义

在瓦斯系统的研究过程中,应用数学建模的手段为矿井瓦斯构建数学模型,可以为采煤方案的设计和通风系统的建设提供很大的帮助;尤其是对于我国众多的中小型煤矿而言,因为资金有限而导致安全设施不完善,有的更是没有安全项目的投入,仅仅建设了极为少量的给风设备,通风系统并不完善。这些煤矿试图依靠通风量来对瓦斯体积分数进行调控,这是十分困难的,对瓦斯体积分数进行预测更是不可能的。很多小煤矿使用的仍旧是十分原始的采煤方法,没有相关的规划;当瓦斯等有害气体体积分数升高之后就停止挖掘,体积分数下降之后又继续进行开采。这种开采方式的工作效率十分低下。

只要设计一个充分合理的通风系统的通风量,与采煤速度处于一个动态的平衡状态,就可以在不延误煤炭开采的同时将矿井内的瓦斯气体体积分数控制在一个安全的范围之内。这样不仅可以保障工人的安全,还可以保证煤炭的开采效率,每个矿井都会存在着这样的一个平衡点,这就对矿井瓦斯涌出量判断的准确性提出更高的要求。

2煤矿生产计划的优化方法

生产计划是对生产全过程进行合理规划的有效手段,是一个十分繁复的过程,涉及到的约束因素很多,条理性很差。为了成功解决这个复杂的问题,现将常用的生产计划分为两个大类。

基于数学模型的方法

(1)数学规划方法这个规划方法设计了很多种各具特点的手段,根据生产计划做出一个虚拟的模型,在这里主要讨论的是处于静止状态下所产生的问题。从目前取得的效果来看,研究的方向正在逐渐从小系统向大系统推进,从过去的单个层次转换到多个层次。

(2)最优控制方法这种方式应用理论上的控制方法对生产计划进行了研究,而在这里主要是针对其在动态情况下的问题进行探讨。

基于人工智能方法

(1)专家系统方法专家系统是一种将知识作为基础的为计算机编程的系统,对于某个领域的繁复问题给出一个专家级别的解决方案。而建立一个专家系统的关键之处在于,要预先将相关专家的知识等组成一个资料库。其由专家系统知识库、数据库和推理机制构成。

(2)专家系统与数学模型相结合的方法常见的有以下几种类型:①根据不同情况建立不同的数学模型,而后由专家系统来进行求解;②将复杂的问题拆分为多个简单的子问题,而后针对建模的子问题进行建模,对于难以进行建模的问题则使用专家系统来进行处理。在整体系统中两者可以进行串行工作。

3煤矿安全生产中数学模型的优化建立

根据相关数据资料来进行模拟,而后再使用系统分析来得出适合建立哪种数学模型。取几个具有明显特征的采矿点进行研究。在煤矿挖掘的过程中瓦斯体积分数每时每刻都在变化,可以通过通风量以及煤炭采集速度来保证矿中瓦斯体积分数处在一个安全的范围之内。假设矿井分为地面、地下一层与地下二层工作面,取地下一层两个矿井分别为矿井A、矿井B,地下二层分别为矿井C、矿井D.然后对其进行分析。

建立简化模型

模型构建表达工作面A瓦斯体积分数x·1=a1x1+b1u1-c1w1-d1w2(1)式中x1---A工作面瓦斯体积分数;u1---A工作面采煤进度;w1---A矿井所对应的空气流速;w2---相邻B工作面的空气流速;a1、b1、c1、d1---未知量系数。

很明显A工作面的通风量对自身瓦斯体积分数所产生的影响要显着大于B工作面的风量,从数学模型上反映出来就是要求c1>d1.同样的B工作面(x·2)和工作面A所在的位置很相似,也就应该具有与之接近的数学关系式

式中x2---B工作面瓦斯体积分数;

u2---B工作面采煤进度;

w1---B矿井所对应的空气流速;

w2---相邻A工作面的空气流速;

a2、b2、c2、d2---未知量系数。

CD工作面(x·3、x·4)都位于B2层的位置,其工作面瓦斯体积分数不只受到自身开采进度情况的影响,还受到上层AB通风口开阔度的影响。在这里,C、D工作面瓦斯体积分数就应该和各个通风口的通风量有着密不可分的联系;于是C、D工作面瓦斯体积分数可以表示为【3】

式中x3、x4---C、D工作面的瓦斯体积分数;

e1、e2---A、B工作面的瓦斯体积分数;

a3、b3、c3、d3---未知量系数:

f1、f2---A、B工作面的瓦斯绝对涌出量。

系统简化模型的辨识这个简化模型其实就是对于参数的最为初步的求解,也就是在一段时间内的实际测量所得数据作为流通量,对上面方程组进行求解操作。而后得到数学模型,将实际数据和预测数据进行多次较量,再加入相关人员的长期经验(经验公式)。修正之后的模型依旧使用上述的方法来进行求解,因为A、B工作面基本不会受C、D工作面的影响。

模型的转型及其离散化

因为这个项目是一个矿井安全模拟系统,要对数学模型进行离散型研究,这是使用随机数字进行试数求解的关键步骤。离散化之后的模型为【1】

在使用原始数据来对数学模型进行辨识的过程中,ui表示开采进度,以t/d为单位,相关风速单位是m/s,k为工作面固定系数,h为4个工作面平均深度。为了便于将该系统转化为计算机语言,把开采进度ui从初始的0~1000t/d范围,转变为0~1,那么在数字化采煤中进度单位1即表示1000t/d,如果ui=就表示每日产煤量500t.诸如此类,工作面空气流通速度wi的原始取值范围是0~4m/s,对其进行数字化,其新数值依旧是0~1,也就表示这wi取1时表示风速为4m/s,若表示通风口的开通程度是,也就是通风口打开一半(2m/s),wi如果取1则表示通风口开到最大。

依照上述分析来进行数字化转换,数据都会产生变化,经过计算之后可以得到新的参数数据,在计算的过程之中使用0~1的数据是为了方便和计算机语言的转换,在进行仿真录入时在0~1之间的一个有效数字就会方便很多。开采进度ui的取值范围0~1表示的是每日产煤数量区间是0~1000t,而风速wi取值0~1所表示的是风速取值在0~4m/s这个区间之内。

模型的应用效果及降低瓦斯体积分数的措施

以上对煤矿生产中的常见问题进行了相关分析,发现伴随着时间的不断增长瓦斯涌体积分数等都会逐渐衰减,一段时间后就会变得微乎其微,这就表明这类资料存在着一个衰减周期,经过长期观测发现衰减周期T≈18h.而后,又研究了会对瓦斯涌出量产生影响的其他因素,发现在使用炮采这种方式时瓦斯体积分数会以几何数字的速度衰减,使用割煤手段进行采矿时瓦斯会大量涌出,其余工艺在采煤时并不会导致瓦斯体积分数产生剧烈波动。瓦斯的涌出量伴随着挖掘进度而提升,近乎于成正比,而又和通风量成反比关系。因为新矿的瓦斯体积分数比较大,所以要及时将煤运出,尽量缩短在煤矿中滞留的时间,从而减小瓦斯涌出总量。

综上所述,降低工作面瓦斯体积分数常用手段有以下几种:①将采得的煤快速运出,使其在井中停留的时间最短;②增大工作面的通风量;③控制采煤进度,同时也可以控制瓦斯的涌出量。

4结语

应用数学建模的手段对矿井在采矿过程中涌出的瓦斯体积分数进行了模拟及预测,为精确预测矿井瓦斯体积分数提供了一个新的思路,对煤矿安全高效生产提供了帮助,有着重要的现实意义。

参考文献:

[1]陈荣强,姚建辉,孟祥龙.基于芯片控制的煤矿数控液压站的设计与仿真[J].科技通报,2012,28(8):103-106.

[2]陈红,刘静,龙如银.基于行为安全的煤矿安全管理制度有效性分析[J].辽宁工程技术大学学报:自然科学版,2009,28(5):813-816.

[3]李莉娜,胡新颜,刘春峰.煤矿电网谐波分析与治理研究[J].煤矿机械,2011,32(6):235-237.

在一篇数学 教育 论文中,题目是论文的要件之首,它不同于一般 文章 的题目,我们要重视题目的重要性。以下是我为大家精心准备的数学教育论文题目,欢迎阅读!数学教育论文题目(一) 1、浅谈中学数学中的反证法 2、数学选择题的利和弊 3、浅谈计算机辅助数学教学 4、数学研究性学习 5、谈发展数学思维的 学习 方法 6、关于整系数多项式有理根的几个定理及求解方法 7、数学教学中课堂提问的误区与对策 8、中学数学教学中的创造性思维的培养 9、浅谈数学教学中的“问题情境” 0、市场经济中的蛛网模型 11、中学数学教学设计前期分析的研究 12、数学课堂差异教学 13、浅谈线性变换的对角化问题 14、圆锥曲线的性质及推广应用 15、经济问题中的概率统计模型及应用 数学教育论文题目(二) 1、二阶变系数齐次微分方程的求解问题 2、一种函数方程的解法 3、微分中值定理的再讨论 4、学生数学学习的障碍研究; 5、中学数学教育中的素质教育的内涵; 6、数学中的美; 7、数学的和谐和统一----谈论数学中的美; 8、推测和猜想在数学中的应用; 9、款买房问题的决策; 10、线性回归在经济中的应用; 11、数学规划在管理中的应用; 12、初等数学解题策略; 13、浅谈数学CAI中的不足与对策; 14、数学创新教育的课堂设计; 15、中学数学教学与学生应用意识培养; 16、关于培养和提高中学生数学学习能力的探究; 17、运用多媒体培养学生 18、高等数学课件的开发 19、 广告 效益预测模型; 数学教育论文题目(三) 1、浅谈菲波纳契数列的内涵和应用价值 2、一道排列组合题的解法探讨及延伸 3、整除与竞赛 4、足彩优化 5、向量的几件法宝在几何中的应用 6、递推关系的应用 7、坐标方法在中学数学中的应用 8、小议问题情境的创设 9、数学概念探索启发式教学 10、柯西不等式的推广与应用 11、关于几个特殊不等式的几种巧妙证法及其推广应用 12、一道高考题的 反思 13、数学中的研究性学习 15、数字危机 16、数学中的化归方法 17、高斯分布的启示 18、 的变形推广及应用 19、网络优化 20、泰勒公式及其应用 猜你喜欢: 1. 数学教育教学论文参考范文 2. 关于数学专业毕业论文题目参考 3. 数学教育专业毕业论文 4. 有关数学教育的论文范文 5. 数学教育专业毕业论文参考

学术堂整理了十个毕业论文题目供大家进行参考:1、小学数学教师几何知识掌握状况的调查研究2、小学数学教师教材知识发展情况研究3、中日小学数学“数与代数”领域比较研究4、浙江省Y县县域内小学数学教学质量差异研究5、小学数学教师教科书解读的影响因素及调控策略研究6、中国、新加坡小学数学新课程的比较研究7、小学数学探究式教学的实践研究8、基于教育游戏的小学数学教学设计研究9、小学数学教学中创设有效问题情境的策略研究10、小学数学生活化教学的研究

这里搜集了一些小学数学教学论文题目,仅供参考。1、课堂有效提问的初步探究2、小学数学数与计算教学的回顾与思考3、小学数学教材结构的研究与探讨4、小学数学应用题的研究5、改进教学方法培养创新技能6、使学生真正成为学习的主人7、改革课堂教学的着力点8、谈素质教育在小学数学教学中的实施9、素质教育与小学数学教育改革10、浅谈学生数学思维能力的培养11、实施创新教学策略,培养学生创新意识12、10以内加法整理和复习13、改良“有余数除法计算”教法14、给学生创新的时间和空间15、谈谈计算教学的改革16、面向21世纪的数学素质及其培养17、能被3整除的数的特征18、年、月、日19、培养自学能力,推进素质教育20、浅谈小学数学总复习的“步步反馈,逐层提高”法21、入情才能入理 激情方能启思22、实施“生活数学”教育,培养自主创新能力23、数学作业批改中巧用评语24、提高认知水平,培养自学能力25、圆的面积”的教案26、圆柱的认识27、运用多媒体辅助教学,优化数学教学方法28、组织课堂讨论 优化课堂教学29、重视学生获取知识的思维过程30、小论文巧算圆的面积31、联系生活实际提高课堂效率32、数学教学中如何调动学生的学习积极性33、根据心理学的理论进行计算法则教学34、简单应用题教学再探35、创设情境,培养学生创造个性36、学生“四会”能力的培养37、营造探究氛围一例38、实施创新教育 培养创新人格39、《9和几的进位加法》教学设计40、信息技术与小学数学41、合理运用学具 提高数学课堂教学效率42、略谈“问题解决”与小学数学教学43、渗透数学思想方法 提高学生思维素质44、引导学生参与教学过程 发挥学生的主体作用45、培养学生的创新意识要处理好的几个关系46、浅谈“数形结合”在小学低段数学教学中的应用47、借助学具,提高数学课堂效率48、对数学新课程理念下练习课教学的几点思考48、多通道促进数学课堂公平50、上“活”概念课,灵动新课堂51、对学生数学作业订正现状调查分析及对策52、对小学数学动态生成式课堂结构的认识53、对新课程中估算教学的几点想法54、谈小学应用题教学如何为学生自主探索创造条件55、小学数学课堂中的口头评价56、让新理念成为把握教材的支撑点57、立足现实起点,提高课堂效率58、谈课堂教学中有效情境的创设59、提高数学课堂教学效率之我见60、为学生营造一片探究学习的天地

关于思维论文的题目

1、在空闲无事的时候可以学习一些法律知识,可以从书籍上获取,也可以在电视上或者电脑上进行详细的阅读,吸收未曾了解的法律知识。2、在校内可以报名有关法律知识的课程,或者报名有关法律的社团。3、在学习课程的过程中不断使自己了解法律知识,敢于拿起法律武器维权。4、在校内开展一些普法剧情,让大学生们当主人公,从而开展普法宣传,让更多的大学生提高法治意识,善于运用法治思维。

论文 是探讨问题进行学术研究的一种手段,又是描述学术研究成果进行学术交流的一种工具。2021年优秀的论文题目有哪些?下面是我收集整理的一些优秀论文题目2021_2021 毕业 论文题目举例,欢迎大家前来阅读。

大学生论文选题参考:

1、大学生专业承诺、学习倦怠的状况及其关系

2、北京大学生心理素质及心理健康研究

3、变革中的就业环境与中国大学生就业

4、大学生 英语口语 课交际策略教学的实验 报告

5、大学生主观幸福感及其影响因素

6、大学生跨 文化 交际能力的现状调查和对策研究

7、抢抓机遇 乘势而上 加强和改进大学生思想政治 教育

8、试论大学生的信息素质教育

9、大学生社会支持、自尊和主观幸福感的关系研究

10、我国大学生创业教育模式探讨

11、基于语料库的大学生英语 议论文 中的语块使用模式研究

12、大学生上网行为及网络成瘾探讨

13、面向21世纪的大学生信息素质教育

14、广州大学生主观幸福感研究

15、关于培养大学生就业能力的思考

16、大学生学习适应量表的编制

17、元认知与中国大学生 英语阅读 理解相关研究

18、大学生心理压力及应对方式:在清华大学的调查

19、大学生学习动机的测量及其与自我效能感的关系

20、从英语议论文分析大学生 抽象思维 特点

比较好写的大学生论文题目

1、大学生心理健康状况的追踪观察

2、家庭经济收入对大学生主观幸福感的影响

3、大学生移动学习实证研究

4、大学生压力与应对方式特点的实证研究

5、理工科大学生英语词汇水平研究

6、大学生就业竞争力分析

7、大学生英语议论文中高频动词使用的语料库研究

8、大学生心理问题阅读疗法研究

9、女大学生的“同民同工”——2002年大学本科毕业生就业调查的启示

10、大学生就业能力对就业质量的影响

11、论大学生批判性思维的培养

12、我国大学生心理健康教育研究的现状与展望

13、大学生自立意识的探索性研究

14、大学生主观幸福感的跨文化研究:来自48个国家和地区的调查报告

15、“大学计算机”——所有大学生都应学习的一门计算思维基础教育课程

16、社会支持与人格对大学生压力的影响

17、大学生网络依赖测量工具的修订与应用

18、当代北京大学生工作价值观结构研究

19、大学生人际关系困扰与主观幸福感的关系研究

20、中外大学生创业教育政策的比较分析

毕业论文如何选题?

1选题要从兴趣出发

在专业允许范围中,选择自己感兴趣的方面,只有有了兴趣才能用心去做,没有兴趣是不会写出好的论文的,所以建议从自己的兴趣入手,当然也要查阅相关资料,符合专业并可以写的前提下,才能选择。

2立意要新

论文是在研究前人的论文的基础上,进行创新,如果都是别人的论点和论据,那么整个论文也就失去了意义,所以选题的时候,立意要新。但立意新并不是说是胡乱编造,而是有理有据。

3选题不要太宽泛

选题太宽泛的话,很有可能写出来的都只是皮毛,不好深入来写,这样的论文,总体上来说意义就没有专业一些,深入一些的选题要好。建议大家不要盲目选择太过宽泛的题目。

4选题要可以驾驭

选题要在自己的能力范围中,不能超过自己的能力,如果自己不能驾驭的话题最好不要去碰,在自己完全不了解的情况下,写的话比较困难,查询资料有时也不全面。

5听听老师的建议

老师对本专业的了解要比学生多,在选题上也比较有 经验 ,自己有了想法,查阅相关资料以后,和老师谈一谈,教师会有比较中肯的建议,这样的会对以后顺利完成论文会有帮助。

优秀论文题目2021相关 文章 :

★ 大学生论文题目大全2021

★ 关于再见2020你好2021主题征文作文精选【5篇】

★ 你好2021主题活动征文优秀作文参考

★ 再见2020你好2021优秀作文范文5篇

★ 收获2020展望2021优秀作文5篇

★ 再见2020你好2021优秀作文最新5篇

★ 关于2020再见2021你好话题作文满分范文【5篇】

★ 以展望2021为话题的作文5篇

★ 再见2020你好2021优秀范文大全5篇文章

★ 展望2021总结2020满分一等奖作文

创新是人类文明进步、技术进步、经济发展的原动力,是国民经济发展的基础。创新在人类社会进步中,不仅对人类科学世界观的形成和发展产生了重大而深远的影响,而且使科学成为一种在历史上起推动作用的革命力量,极大地促进了人类文明发展的进程。在我国,常规的机械设计与国外相比,缺少了创新。因此,我们要从常规中走出来,挖掘我们的创造性思维,加强我们的创新设计能力,走一条具有我们自己特色的创新之路。关键字:机械;创新设计;创新思维1.机械创新设计(1)机械创新设计是设计人员针对新的或预测的需求,充分发挥设计者的创造力和智慧,利用已有的相关科学理论、方法和原理,进行新的构思,设计和制造出新颖、,有创造性及实用性的机构或装置的实践活动。其主要强调的是人在设计过程中的主导性及创造性作用。因此,人的创新思维在创新设计中占主导地位。(2)机械创新设计的过程始于形象思维,再经过逻辑推理和判断及相应的综合分析与决策产生设计方案,然后进一步将方案具体化,即建立新的结构和机械系统等模型,进而进行计算和技术细节的设计。创新设计反映出的是和谐统一的技术美。(3)机械创新设计是创造设计出新机器和产品,以满足新的生产和生活的需要。2.机械创新设计过程、目标及特点 机械创新设计过程根据设计任务及要求确定机械结构类型、机构运动尺寸及机械运动学参数和动力参数,这便形成了机械设计的优选方案,而后进入机械结构创新设计阶段。机械创新设计与常规机械设计相比,其过程没有多大差异,它主要强调的是人在设计过程中的主导性及创造性作用。 机械创新设计的特点(1)机械创新设计是多门科学技术交叉、渗透、融合的产物;(2)机械创新设计是在知识和经验积累的基础上,经过思考、推理及判断,并运用创造性及发散思维的方法而后实现的;(3)机械创新设计是在知识、经验、灵感与想象力的系统中搜索并优化出的全新设计方案;(4)机械创新设计是多次反复,多级筛选的过程,每一设计阶段都有其特定内容及方法,各阶段之间又密切相关,形成一个整体的设计系统。3.机械创新设计思维 机械创新设计思维的定义创造性思维是指突破原有的思维模式,重新组织已有的知识、经验、信息和素材等要素,在大脑思维反应场中超序激活后,提出新的方案或程序,并创造出新的思维成果的思维方式。要创造,首先要有创造性思维,创造性思维是人类大脑的特有属性;创造性思维就是“想到别人没有想到的观念”;创造性思维是新颖独到的信息加工艺术,是人脑的各种思维活动形式和思维活动的各个要素之间相互协同进行的有机结合的高级整体过程;创造性思维不同于在设计领域常用的逻辑思维,其主要在于创造性思维有创造想象的参与,而且,创造性思维是一种立体思维,通常没有固定的延伸方向,它更加强调直观、联想、幻想和灵感,所以创新设计不是靠逻辑推理出来的,而是靠创造性思维的激发所产生的。

小学数学思维能力的培养论文

小学数学思维能力的培养论文,作为一名小学数学教师,需要通过自己的数学课堂教学不断发展自身,反思自身以得出新的科研成果,下面一起看看一些优秀的小学数学思维能力的培养论文

新形势下的小学数学教学,内容方面显出过于简单之弊端,数学思维没有得到凸显。下面,笔者从数学化、凝聚、互补与整合等几个方面,谈谈小学数学教学中数学思维培养的主要策略和实践体会。

一、突出数学化——数学思维的基本形式

我们的数学教学中,割裂了数学与生活的关系,数学课堂远离生活。如对于《简单图形的认识》的教学,对于“三角形”,教师常常手持三角板,告诉学生这个三角板就是三角形,由三个角、三条边组成;

教师在黑板上画一个“三个角、三条边”的图形,告诉学生这是三角形……这样,容易给学生造成误会:老师手里拿的三角板是三角形,黑板上画的是三角形。

其实不然,数学中的三角形是图形,不单指老师拿的三角板,也不仅仅是画出来的图形,这仅仅是具体的三角形的特例,而不是三角形的一般的概念。

也就是说,这样的直观教学法虽然生动、直观、形象,但颇失数学化。其实,教师用这些三角形特例,也就包含了数学教学的生活化——日常教学中的使用的三角板,但应注意生活化教学向数学化——数学模型的过渡。

教师应尽量避免使用:这个三角板就是三角形。如果细细思考,显然,这种说法是不科学,教师应该让学生认识到像三角板一样,有三条边、三个角的图形,是三角形。

这样的概念和定义才是数学化的定义,才是严谨的、科学的。再如,对于加法和减法的学习,教师只教给学生加法和减法的口算、列式计算、简便运算等,没有对“数学化”而有所揭示,忽略了顺序化的教学。

教师应该让小学生明白,正数的加法是“量的增加或增多”、减法是“量的减少”,这样的话,学生在计算时,会根据加号、减号而初步判断结果是否正确。

如64+24=40的情况不罕见,因为学生把“+”看成了“-”,而在检查时,只要稍微观察题目,就会发现64+24一定得大于64,这样,学生学会的不是解决一个计算题的问题,而是掌握了数理和数学思想、数学思维。

一道简单的应用题:小红第一天看了20页书,第二天看了32页,两天一共看了多少页?对于这个问题,学生们容易列出算式20+32=52(页),而如果有学生写成32+20=52(页)的话,有同学就会认为是错的。

原因就是平时的教学中,忽略了数学式与生活原型之间的区别和联系,在处理问题时,容易“单线”思考。但如果在教学加法交换律时,学生能理解a+b=b+a,而在实际运用时,则又显得“短板”。

二、凸显“凝聚”性——突出数学思维的基本形式

“凝聚”在数学中领域,是新名词,是指由“数学过程”向“数学对象”的转化而构成的算及极其数学思维的基本形式。

如加减法在最初的计算作为“过程”而运用,如对于20以内的加减法的“凑十法”,教师注重过程的讲授,即如何“凑十”,如8+6的计算,将6分为2和4,8+2=10,10+4=14,从而得出8+6=14。

这样,凑十法的计算作为一个过程而引进教学中,但不能就此止步,应转化为其他运算,在其他运算中,实施进一步的加减运算,如8+6=14,由此再让学生举一反三14-6=8,14-8=6,也由8+6的凑十法的计算,再给出更多的6+7、9+4、8+9、5+8等等的计算,让学生熟能生巧。

另外,加减简单计算,也是为了以后的更为复杂的计算。

一般情况下,简单的加减计算,被作为计算的过程而渗透和引进,即代表了输入到输出的过程:两个数相加,得到结果是和,两个数相减,得到的是差。

在以后的学习中,这个过程被视为特定的数学对象,由这个对象,去研究其各种性质,如加法的交换律和结合律,这样的心理表现形式,也是数学的思维表现的基本形式,就是“凝聚”。

再如,对于分数的教学,教师们从分数的形式而定义为“两个整数相除的值”,而不是“两个整数的比”。这就要求我们把分数的教学,不能停留在整数的除法的层面,而应该把分数当作一个数来研究。

如2/3,不能单单理解为是2÷3,而就把它当作一个特殊的数——非整数而研究,再在此基础上将它们看作“一个数”——“一个对象”而实施加减乘除等运算。

三、注重“互补与整合”——突显数学思维的重要特征

小学生在学习数学时,对一些概念、定义等方面的东西,学生们容易借助于最初的物体形象而去理解和解释,如对于分数1/2,上课时,教师呈现一个大西瓜一分为二的情境,然后引出1/2的概念。

呈现一个圆形的月饼,将月饼分为四部分,再指出其中的一块,占总体的1/4……这样,再提到分数,学生脑海中马上意识到分数是圆的一部分。这样的理解显然与分数的概念相差万里,其实,这样的教学是部分与整体的关系等。

而学生对于知识的理解,则停留在某种特定的解释中,而实际教学中,又不能将这种解释全盘否定,视为互不相关、彼此独立。经过实践证明,局限于“分数是圆的一部分”的方法,会给学习造成一定的困难,甚至是严重的概念错误。

新课改下,把解题策略的多样化作为教学的重点,作为提高学生能力的重要举措。学生的认知基础不同,方法也必然各异,如凑十法的教学。

教师教学了8+6=14之后,给出8+7、8+9的计算,学生们会仍然采用凑十法,将7和9分别2和5、2和7再计算,也有学生会在8+6=14的基础上,直接进行计算8+7=8+6+1=14+1=15,8+9=8+6+3=14+3=17,这样的思维,教师不能因为不合教学的要求而断然“断之”“斥之”,应给予充分的肯定和鼓励。

事实上,这样的想法的学生,也是“互补与整合”的思维优化的方式。数学以思维和逻辑而凸显出其数学化,数学教学应改变重视知识、忽视思维能力的培养的教学方式,应凸显其思维形式和思维特征,只有落实这一目标,才能提高学生的数学思维能力。

小学数学教学中学生数学思维能力的培养

摘要: 随着新课程改革和素质教育的推广和普及,在教学过程中,人们更加重视对学生思维能力的培养。在小学数学教学过程中,需要培养学生的数学思维能力,提升学生的.数学综合素质,加快小学生的全面发展。因此,在教学过程中,教师需要加强教学手段和方式的灵活性与多样性,加快培养学生的数学思维能力,提高其综合素质。

关键词: 小学数学;数学教学;培养;数学思维能力;有效措施

在小学数学教学过程中,加强培养学生的思维能力,促使学生掌握学习的方法与规律,是教师的主要任务。

但是就小学生来说,由于其思维比较呆板、单一,一般难以进行独立的思考,这就需要教师加强对学生思维创新性、独立性、灵活性和多向性的培养,促使学生在学习的过程中主动发现知识,探索规律,从而加强对知识的理解和掌握,完善学习方法。

一、数学思维能力的概念

数学思维指的是学生在学习数学的过程中,产生的一种特定的思维方式,学生在学习和理解数学知识的时候,能够将理论知识形象化和具体化,从而最终完成学习任务。

数学思维能力指的就是在这一过程中,学生思考的能力,通过空间想象能力推理、总结、归纳数学问题和知识,属于一种发现问题、解决问题的能力。

在培养学生数学思维能力的时候,还需要注意培养学生解决问题的能力、推理能力、想象能力以及观察能力。

二、在小学数学教学中培养学生数学思维能力的有效措施

(一)加强数形结合,深化思维

为了培养学生的思维能力,首先需要了解和掌握各种理论知识之间的内在联系,通过思维手段加强联系。

数形结合的教学方式能够将理论知识与具体实际有效结合,将抽象的内容具体化、形象化,通过空间形式与数量关系的相互转化,研究和分析出理论知识的本质,最终完成解决问题的任务,这也能深化思维。

因此,小学数学教师在教学过程中,应该尽可能借助图形分析问题和解决问题。再者就是用数量关系转化图形,用已经掌握的知识解决问题。

比如,学生在学习正方形周长公式的时候,虽然有周长的计算公式,但是在教学过程中,教师如果只是让学生把公式死记硬背下来,这样就很难灵活运用。

因此,在教学的过程中,教师需要通过灵活的方式让学生学习和掌握这些知识。

正方形由于长和宽的长度是一致的,所以计算正方形周长的时候,有四种方式:即①长+长+宽+宽;②宽×2+长×2;③长/宽×4;④(长+宽)×2。在介绍这些方法的时候,教师可以借助图形来讲解,这样,就在加快学生理解的同时,加大了思维深度,增加了对知识运用的灵活程度。

(二)创设教学情境

由于小学生的注意力难以长时间集中在某一件事情上,所以在教学过程中,教师需要适当创设教学情境,在促进学生学习和理解的同时,激发学生的积极性和创造性。

学生通过感知,发现问题、分析问题和解决问题,最终掌握理论知识。比如,在介绍长方体、圆柱体等几何图形的时候,由于学生还不具备空间想象能力,在理解和掌握方面就会具有一定的困难。

所以教师在教学的过程中可以借助积木等玩具,让学生在体验的情况下,认识这些几何图形,将抽象的理论概念实际化。这样一来,学生在学习过程中,不仅能够提高数学思维能力,还能培养空间想象能力、动手能力等,增强思维的灵活性和多向性。

(三)加强与日常生活的联系

所有的理论知识都来源于日常生活。因此,在小学数学教学过程中,教师可以将教学内容与日常生活相联系,这样一方面能够丰富教学内容,另一方面能够加快学生对理论知识的理解和掌握。

比如,在学习加减法的时候,妈妈有2个苹果,爸爸有3个苹果,那么爸爸妈妈一共有几个苹果呢?这样一来,就能将问题简单化、生活化,有利于学生数学思维能力的培养。

在小学数学教学过程中,培养学生的数学思维能力是一项重要的教学任务,在提高教学水平和质量的同时,也有利于学生后期的学习和生活。

三、结束语

在教学过程中,教师需要加强教学方式和手段的灵活性,加强数形结合的运用,深化思维、创设教学情境,加强与日常生活的联系。

通过引导学生自己去发现、分析和解决问题,从而提高其学习能力和综合能力,使其在后期的学习中能够形成学习思维和方式,有效提高综合素质。

第四篇:小学数学教学中数学思维能力的培养方法

摘要: 伴随我国社会经济的不断发展,人们也越来越重视教育工作,也明确了教育的重要性,只有教育才能加快我国发展的速度,并提高综合国力。

在小学数学教学的过程中,应该对学生的思维能力进行培养,使学生形成良好的数学思维,并在生活中加以运用,促进小学生全面发展和进步。所以,小学数学教师一定要不断提升小学生的思维能力,保证学生能够更加健康地成长。针对小学数学教学中培养学生思维能力的方法进行分析和研究,并加以阐述。

关键词: 小学数学教学;数形结合;思维能力;联系生活

伴随我国教学模式的不断更新和完善,对于小学数学教学也提出了更高的要求,新课程标准要求小学数学教师在进行课堂教学的过程中,必须对学生的思维能力进行良好的培养,使学生能够在平时的学习中进行更为有效的思考,促进学生的健康成长和学习。

所以,小学数学教师一定要运用非常高效的培养方法,不断提高学生的思维能力,进而保证小学数学的教学效果和质量都得到很大程度的提高,使数学课程成为学生获得快乐的学科,同时也获得知识和成长。

一、数学思维能力的内涵

数学思维是数学学习中一种特定的思维,它要求学生在面对数学的时候能够将数字形象化,从而形成数学运算。

而数学思维能力则是指学生能够在数学学习的过程中运用数学的逻辑思维,展开丰富的空间想象,能够归纳总结、推导出一些数学问题,并且具备发现各种数学问题、解决问题的一种思维能力。

这种思维能力的形成必须先具备良好的观察能力、想象能力、推理能力以及解决问题的能力。

二、小学数学教学中数学思维能力的培养

1、数形结合,强化思维深度

在小学数学教学过程中对学生的思维能力进行良好的培养,教师应该对数学知识之间的联系进行分析,并在分析的时候运用数学思维。

数形结合的思维方法能够让学生对数学知识和抽象的概念进行良好的联想,并使学生能够进行良好的思考,进而不断提高学生发现问题、分析和解决问题的能力,提高其思维能力。

因此,教师在讲解数学知识的时候,应该结合实际图形进行,比如,在学习人教版小学数学教材中的长方形周长公式的过程中,有些教师会让学生对公式进行死记硬背,这对于学生的思维发展有着严重的阻碍性,因此,教师应该在课堂上将长方形进行展示,并在黑板上画下长方形。

并将长方形的周长等于四个边之和进行实际演示,在演示之前让学生进行思考,进而对学生的思维能力进行培养。

2、创设情境,引导学生实践

在对小学生进行数学思维能力培养的过程中,教师应该不断创设教学情境,这样就能够使学生的学习兴趣和积极性、注意力都得到提高,并在这个过程中对自身的思维能力进行提高。

比如,教师在进行长方体和正方体的教学过程中,要是教师只是针对教材中的知识点进行叙述和讲解。

介绍长方体和正方体有几个边、几个面、具有怎样的特性等,这样就会使学生根本不明白这是什么,而且在头脑中也不会将全新的事物构建出来,影响学生思维能力的提高。

因此,教师应该开展实践课,为学生准备充足的长方体和正方体以及一些长方形和正方形,并让学生进行随意的拼接,这样就能够不断提高学生的实践能力,进而培养学生的灵活思维能力。

3、联系生活,实现教学目的

数学来源于生活,又运用于生活,因此,小学数学教师在进行数学知识教学的时候,应该将生活实际中的事物良好地运用在教学之中,并在教学的时候进行举例说明,这样就能够让学生对数学知识的理解更为容易。

比如,教师可以利用生活实际中的应用题对学生进行思维能力的培养:羊圈中有一定数量的羊,第一次将羊放出去的数量为总数量的三分之一多一百只,第二次放出的数量比总数量的一半少一百二十只,第三次放出三百二十只,羊全部放完,问羊圈中的羊一共有多少只?

在进行分析的时候,让学生使用假设法,同时教师在一旁进行引导,进而使学生能够更好地思考,提高他们分析和解决问题的能力。

总之,随着新课程标准的颁布,其对于小学数学的课堂教学也提出了全新的要求,在小学数学教学的时候,教师必须要注重对学生综合素质和能力的培养,并不断提高学生的数学思考能力和思维能力,进而提高小学数学课堂教学的效果和整体质量。

数学来源于生活,又应用于生活,所以,在进行小学数学教学的时候一定要结合生活实例,使学生能够更好地思考,也能够对数学知识进行更好的理解和记忆,提高学生的数学成绩。

另外,对学生的思维能力进行良好的培养,能够使学生更好地发现问题、分析问题和解决问题,促进学生的大脑发育,并健康成长。

关于数学思维的研究论文

数学论文培养大学生数学思维的能力论文摘要:数学不应该被看成单纯的工具,它对思维训练也有着十分重要的意义。大学生应该培养数学的形象、抽象、直觉与函数思维。培养大学生数学思维,需要优化大学生思维方式,培养逻辑思维能力与直觉思维能力。关键词:数学;大学生;思维能力一、数学思维的概念及结构分析数学思维作为思维的一种特殊形式,是人脑运用数学符号与数学语言对数学对象间接概括的反映过程。具体地说,数学思维是以数学概念为细胞,通过数学判断和数学推理的形式揭示数学对象的本质和内在联系的认识过程。数学思维既从属于一般的人类思维,受到一般思维规律的制约,又具有不同于一般思维的特点,数学思维是一种高级形态的思维,属于现代抽象思维的范畴。数学思维的功能性结构是一个三维的立体结构,三条坐标轴分别是思维内容、思维方法和个体发展水平,这三部分的相互作用就构成了数学思维能力。数学思维能力是各种数学能力的核心,内容是思维主体面临的思维对象,包括数学概念、法则、命题以及各种数学理论问题与实践问题等。数学思维方法是数学方法的核心,是数学思维活动的步骤和格式,是对思维内容进行加工的方式和程序。个体发展水平则是指主体的思维品质和非智力品质,其中思维品质包括深刻性、广阔性和灵活性等,非智力品质包括动机、情感和意志等,它们在思维活动中发挥着重要的作用。二、培养什么样的数学思维能力(一)形象思维。形象思维即具体思维,它包括非操作性的形式(观察、感知等)和操作性形式(对事物或其模型直接进行操作等)。大学生在感观、操作等方面较以前都有了很大的提高,能力有了一定的增强,记忆方式由机械性记忆逐步向理解性记忆转变,他们渴望进行自主学习。(二)抽象思维。抽象思维是与抽象化活动密切联系的思维活动,是高等数学的核心和基础,抽象思维充分体现了高等数学学科的高度严密性和严谨性,也是学生需要着重培养的一种数学思维。这里的抽象化有双重性,即在抽取其本质属性的同时剥离其余的非本质属性。(三)直觉思维。直觉思维是认识的特殊方法,它是对数学对象、结构以及规律关系的敏锐想象和迅速判断的思维方式,其特点是直接解决问题或得出真理。(四)函数思维。函数思维是指从数学对象、性质之间的相互关系中认识事物的一种思维。函数是高等数学中一个重点的研究对象,我们解决现实生活中的许多问题都涉及函数关系的确定和解决。三、如何培养大学生的数学思维能力要培养大学生具备较好的数学思维是一个长期艰巨的过程。基本策略是:重思想的形成、促观念的培养。要特别注意做到以下几点:(一)优化思维方式。如果学生在学习过程中,对所学知识的理解不够深刻、准确,或者其新旧知识不能建立联系,就会造成认识上的不足和理解上的偏差,在解决具体问题时,出现思维不够严密或者不够灵活的现象。因此,应该引导学生优化思维方式,培养思维的严密性和灵活性。1、修正思维的误差,培养思维的严密性部分学生在解决数学问题时,不注意挖掘所研究问题中的隐含条件,产生了思维误差,影响了问题的正确解决。所以,要教会学生充分挖掘隐含条件,及时调控思维过程,修正思维误差,培养思维的严密性。2、转换思维角度,培养思维的灵活性。学生在解题时习惯于从已知出发推演结论,形成单向思维,给解题带来一定的思维障碍。对逆向思维的培养要贯穿于整个学习过程中。3、培养和发展学生的数学探索能力,进而激发学生的创新思维。数学的探索及创新能力是数学思维中最具创造性和挑战性的要素,也是数学思想的核心,数学几千年的发展史就是人们不断探索和创新的历史。(二)培养逻辑思维能力。逻辑思维能力是思维能力的重要组成部分,逻辑思维的主要形式是概念、判断和推理,它是证明结论的主要工具。在抽象定义、推导公式、证明定理、运用知识解决问题时,都在运用逻辑思维。1、培养理解概念、应用概念解决问题的能力。理解能力是学习数学的基础,学生在学习过程中,如果对一些数学概念或数学原理的发生、发展过程没有深刻地理解,就不能把握问题的本质。因此,要深刻理解概念、法则、公式、定理的实质,应用概念去解决问题。2、培养推理判断的能力。推理判断能力是逻辑思维能力的重要组成部分,培养推理判断能力要在学生深刻理解概念的基础上,学生应该掌握必要的推理和判断方法,如归纳法、演绎法、类比法、穷举法、特例法、反证法等,并通过一定的训练加以巩固,从而提高推理判断的能力。提高学生的推理能力要注意推理过程的学习(包括逻辑推理和直觉推理),一开始就要养成推理过程,步步有根据步步都严密的习惯。3、培养学生的抽象概括能力。要善于将数学材料中反映的数与形的关系从具体的材料中抽象出来,概括为特定的一般关系和结构,做好抽象概括的示范工作,要特别注意重视分析和综合的学习;另外,在解题中要注意发掘隐藏在各种特殊细节后面的普遍性,找出其内在本质,善于抓住主要的、基本的和一般的东西;要鼓励学生平时对于一些问题进行经常性的概括和总结,培养学生概括的习惯。

1、从实际需求出发:比如说家人去买菜用哪种方式比较快捷到达目的地,又运用哪些方法可以省钱。这些实际的生活非常能够让孩子思考,孩子也容易理解,往往数学思维在不知不觉中形成了 。2、从问题的突破口出发:比如说方程类的解答,孩子遇到某个题目觉得很繁琐,利用方程就会很简单,当孩子遇到某些难题难以解决的时候,总会需要找到突破口,比如逆向思维、对比思维等,这些突破口的过程,本身就是一场数学思维。3、从实际的案例出发:有很多实际的典型案例,这些案例在课本上都有,利用这些案例,看看书本上是怎么分析的,哪怕孩子不能独立去完成,背会本身也有好处,可惜很多人只会说束手无策,导致越来越恶化。4、结合逻辑思维来做训练。事实上数学思维本身就是一种逻辑思维,并且两者相辅相成。家长可以帮助孩子选择一些书籍,亦或是相关的逻辑训练工具,并且总结逻辑给孩子带来的好处等等, 用这些来指导数学思考方式。5、鼓励孩子多提问:不要抑制孩子在学习过程的提问,这种提问和好奇是孩子学习的动力,将知识点与孩子年龄段能接受的方法告诉孩子才是最重要的,需要多加以引导。

和数学相关的论文题目

论文的题目是论文的眼睛 ,是一篇文章成功的关键。下面我将为你推荐关于数学专业毕业论文题目参考的内容,希望能够帮到你!

1. 圆锥曲线的性质及推广应用

2. 经济问题中的概率统计模型及应用

3. 通过逻辑趣题学推理

4. 直觉思维的训练和培养

5. 用高等数学知识解初等数学题

6. 浅谈数学中的变形技巧

7. 浅谈平均值不等式的应用

8. 浅谈高中立体几何的入门学习

9. 数形结合思想

10. 关于连通性的两个习题

11. 从赌博和概率到抽奖陷阱中的数学

12. 情感在数学教学中的作用

13. 因材施教因性施教

14. 关于抽象函数的若干问题

15. 创新教育背景下的数学教学

16. 实数基本理论的一些探讨

17. 论数学教学中的心理环境

18. 以数学教学为例谈谈课堂提问的设计原则

1. 网络优化

2. 泰勒公式及其应用

3. 浅谈中学数学中的反证法

4. 数学选择题的利和弊

5. 浅谈计算机辅助数学教学

6. 论研究性学习

7. 浅谈发展数学思维的学习方法

8. 关于整系数多项式有理根的几个定理及求解方法

9. 数学教学中课堂提问的误区与对策

10. 中学数学教学中的创造性思维的培养

11. 浅谈数学教学中的“问题情境”

12. 市场经济中的蛛网模型

13. 中学数学教学设计前期分析的研究

14. 数学课堂差异教学

15. 一种函数方程的解法

16. 积分中值定理的再讨论

17. 二阶变系数齐次微分方程的求解问题

18. 毕业设计课题(论文主题等)

19. 浅谈线性变换的对角化问题

1. 浅谈奥数竟赛的利与弊

2. 浅谈中学数学中数形结合的思想

3. 浅谈中学数学中不等式的教学

4. 中数教学研究

5. XXX课程网上教学系统分析与设计

6. 数学CAI课件开发研究

7. 中等职业学校数学教学改革研究与探讨

8. 中等职业学校数学教学设计研究

9. 中等职业学校中外数学教学的比较研究

10. 中等职业学校数学教材研究

11. 关于数学学科案例教学法的探讨

12. 中外著名数学家学术思想探讨

13. 试论数学美

14. 数学中的研究性学习

15. 数字危机

16. 中学数学中的化归方法

17. 高斯分布的启示

关于数学论文选题 在日常学习、工作生活中,大家都尝试过写论文吧,论文是对某些学术问题进行研究的手段。还是对论文一筹莫展吗?下面是我为大家整理的关于数学论文选题,欢迎大家借鉴与参考,希望对大家有所帮助。关于数学论文选题1 数学论文选题是找“热门”还是“冷门”?“热门”课题从事研究的人员众多,发展迅速。如果作者所在单位基础雄厚,在这个领域占有相当地位,当然要从这一领域深入研究或向相关领域扩展。如果自己在这方面基础差,起步晚又没有找到新的突破,就不宜跟在别人后面搞低水平重复。选择“冷门”,知识的空白处及学科交叉点为研究目标为较好的选择。无论选“冷门”还是“热门”,选题应遵循以下原则: (1)需要性 选题应从社会需要和科学发展的需要出发。 (2)创新性 选题应是国内外还没有人研究过或是没有充分研究过的问题。 (3)科学性 选题应有最基本的科学事实作依据。 (4)可行性 选题应充分考虑从事研究的主客观条件,研究方案切实可行。 请继续阅读相关推荐: 毕业论文 应届生求职 毕业论文范文查看下载 查看的论文开题报告 查阅参考论文提纲

学好数理化,走遍天下都不怕。写好数学论文的前提是需要有拟定一个优秀的数学论文题目,有哪些比较优秀的数学论文题目呢?下面我给大家带来2022最新数学方向 毕业 论文题目有哪些,希望能帮助到大家!

↓↓↓点击获取更多“知足常乐 议论文 ”↓↓↓

★ 数学应用数学毕业论文 ★

★ 大学生数学毕业论文  ★

★ 大学毕业论文评语大全 ★

★ 毕业论文答辩致谢词10篇 ★

中学数学论文题目

1、用面积思想 方法 解题

2、向量空间与矩阵

3、向量空间与等价关系

4、代数中美学思想新探

5、谈在数学中数学情景的创设

6、数学 创新思维 及其培养

7、用函数奇偶性解题

8、用方程思想方法解题

9、用数形结合思想方法解题

10、浅谈数学教学中的幽默风趣

11、中学数学教学与女中学生发展

12、论代数中同构思想在解题中的应用

13、论教师的人格魅力

14、论农村中小学数学 教育

15、论师范院校数学教育

16、数学在母校的发展

17、数学学习兴趣的激发和培养

18、谈新课程理念下的数学教师角色的转变

19、数学新课程教材教学探索

20、利用函数单调性解题

21、数学毕业论文题目汇总

22、浅谈中学数学教学中学生能力的培养

23、变异思维与学生的创新精神

24、试论数学中的美学

25、数学课堂中的提问艺术

26、不等式的证明方法

27、数列问题研究

28、复数方程的解法

29、函数最值方法研究

30、图象法在中学数学中的应用

31、近年来高考命题研究

32、边数最少的自然图的构造

33、向量线性相关性讨论

34、组合数学在中学数学中的应用

35、函数最值研究

36、中学数学符号浅谈

37、论数学交流能力培养(数学语言、图形、 符号等)

38、探影响解决数学问题的心理因素

39、数学后进学生的心理分析

40、生活中处处有数学

41、数学毕业论文题目汇总

42、生活中的数学

43、欧几里得第五公设产生背景及对数学发展影响

44、略谈我国古代的数学成就

45、论数学史的教育价值

46、课程改革与数学教师

47、数学差生非智力因素的分析及对策

48、高考应用问题研究

49、“数形结合”思想在竞赛中的应用

50、浅谈数学的 文化 价值

51、浅谈数学中的对称美

52、三阶幻方性质的探究

53、试谈数学竞赛中的对称性

54、学竞赛中的信息型问题探究

55、柯西不等式分析

56、中国剩余定理应用

57、不定方程的研究

58、一些数学思维方法的证明

59、分类讨论思想在中学数学中的应用

60、生活数学文化分析

数学研究生论文题目推荐

1、混杂随机时滞微分方程的稳定性与可控性

2、多目标单元构建技术在圆锯片生产企业的应用研究

3、基于区间直觉模糊集的多属性群决策研究

4、排队论在交通控制系统中的应用研究

5、若干类新形式的预条件迭代法的收敛性研究

6、高职微积分教学引入数学文化的实践研究

7、分数阶微分方程的Hyers-Ulam稳定性

8、三维面板数据模型的序列相关检验

9、半参数近似因子模型中的高维协方差矩阵估计

10、高职院校高等数学教学改革研究

11、若干模型的分位数变量选择

12、若干变点模型的 经验 似然推断

13、基于Navier-Stokes方程的图像处理与应用研究

14、基于ESMD方法的模态统计特征研究

15、基于复杂网络的影响力节点识别算法的研究

16、基于不确定信息一致性及相关问题研究

17、基于奇异值及重组信任矩阵的协同过滤推荐算法的研究

18、广义时变脉冲系统的时域控制

19、正六边形铺砌上H-三角形边界H-点数的研究

20、外来物种入侵的广义生物经济系统建模与控制

21、具有较少顶点个数的有限群元阶素图

22、基于支持向量机的混合时间序列模型的研究与应用

23、基于Copula函数的某些金融风险的研究

24、基于智能算法的时间序列预测方法研究

25、基于Copula函数的非寿险多元索赔准备金评估方法的研究

26、具有五个顶点的共轭类类长图

27、刚体系统的优化方法数值模拟

28、基于差分进化算法的多准则决策问题研究

29、广义切换系统的指数稳定与H_∞控制问题研究

30、基于神经网络的混沌时间序列研究与应用

31、具有较少顶点的共轭类长素图

32、两类共扰食饵-捕食者模型的动力学行为分析

33、复杂网络社团划分及城市公交网络研究

34、在线核极限学习机的改进与应用研究

35、共振微分方程边值问题正解存在性的研究

36、几类非线性离散系统的自适应控制算法设计

37、数据维数约简及分类算法研究

38、几类非线性不确定系统的自适应模糊控制研究

39、区间二型TSK模糊逻辑系统的混合学习算法的研究

40、基于节点调用关系的软件执行网络结构特征分析

41、基于复杂网络的软件网络关键节点挖掘算法研究

42、圈图谱半径问题研究

43、非线性状态约束系统的自适应控制方法研究

44、多维power-normal分布及其参数估计问题的研究

45、旋流式系统的混沌仿真及其控制与同步研究

46、具有可选服务的M/M/1排队系统驱动的流模型

47、动力系统的混沌反控制与同步研究

48、载流矩形薄板在磁场中的随机分岔

49、广义马尔科夫跳变系统的稳定性分析与鲁棒控制

50、带有非线性功能响应函数的食饵-捕食系统的研究

51、基于观测器的饱和时滞广义系统的鲁棒控制

52、高职数学课程培养学生关键技能的研究

53、基于生存分析和似然理论的数控机床可靠性评估方法研究

54、面向不完全数据的疲劳可靠性分析方法研究

55、带平方根俘获率的可变生物种群模型的稳定性研究

56、一类非线性分数阶动力系统混沌同步控制研究

57、带有不耐烦顾客的M/M/m排队系统的顾客损失率

58、小波方法求解三类变分数阶微积分问题研究

59、乘积空间上拓扑度和不动点指数的计算及其应用

60、浓度对流扩散方程高精度并行格式的构造及其应用

专业微积分数学论文题目

1、一元微积分概念教学的设计研究

2、基于分数阶微积分的飞航式导弹控制系统设计方法研究

3、分数阶微积分运算数字滤波器设计与电路实现及其应用

4、分数阶微积分在现代信号分析与处理中应用的研究

5、广义分数阶微积分中若干问题的研究

6、分数阶微积分及其在粘弹性材料和控制理论中的应用

7、Riemann-Liouville分数阶微积分及其性质证明

8、中学微积分的教与学研究

9、高中数学教科书中微积分的变迁研究

10、HPM视域下的高中微积分教学研究

11、基于分数阶微积分理论的控制器设计及应用

12、微积分在高中数学教学中的作用

13、高中微积分的教学策略研究

14、高中微积分教学中数学史的渗透

15、关于高中微积分的教学研究

16、微积分与中学数学的关联

17、中学微积分课程的教学研究

18、高中微积分课程内容选择的探索

19、高中微积分教学研究

20、高中微积分教学现状的调查与分析

21、微分方程理论中的若干问题

22、倒向随机微分方程理论的一些应用:分形重倒向随机微分方程

23、基于偏微分方程图像分割技术的研究

24、状态受限的随机微分方程:倒向随机微分方程、随机变分不等式、分形随机可生存性

25、几类分数阶微分方程的数值方法研究

26、几类随机延迟微分方程的数值分析

27、微分求积法和微分求积单元法--原理与应用

28、基于偏微分方程的图像平滑与分割研究

29、小波与偏微分方程在图像处理中的应用研究

30、基于粒子群和微分进化的优化算法研究

31、基于变分问题和偏微分方程的图像处理技术研究

32、基于偏微分方程的图像去噪和增强研究

33、分数阶微分方程的理论分析与数值计算

34、基于偏微分方程的数字图象处理的研究

35、倒向随机微分方程、g-期望及其相关的半线性偏微分方程

36、反射倒向随机微分方程及其在混合零和微分对策

37、基于偏微分方程的图像降噪和图像恢复研究

38、基于偏微分方程理论的机械故障诊断技术研究

39、几类分数阶微分方程和随机延迟微分方程数值解的研究

40、非零和随机微分博弈及相关的高维倒向随机微分方程

41、高中微积分教学中数学史的渗透

42、关于高中微积分的教学研究

43、微积分与中学数学的关联

44、中学微积分课程的教学研究

45、大学一年级学生对微积分基本概念的理解

46、中学微积分课程教学研究

47、中美两国高中数学教材中微积分内容的比较研究

48、高中生微积分知识理解现状的调查研究

49、高中微积分教学研究

50、中美高校微积分教材比较研究

51、分数阶微积分方程的一种数值解法

52、HPM视域下的高中微积分教学研究

53、高中微积分课程内容选择的探索

54、新课程理念下高中微积分教学设计研究

55、基于分数阶微积分的线控转向系统控制策略研究

56、基于分数阶微积分的数字图像去噪与增强算法研究

57、高中微积分教学现状的调查与分析

58、高三学生微积分认知状况的思维层次研究

59、分数微积分理论在车辆底盘控制中的应用研究

60、新课程理念下高中微积分课程的教育价值及其教学研究

关于数学思维的研究小论文

一、从具体的感性认识入手,积极促进学生的思维 在数学基础知识教学中,应加强形成概念、法则、定律等过程的教学,这也是对学生进行初步的逻辑思维能力培养的重要手段。然而,这方面的教学比较抽象,加之学生年龄小,生活经验缺乏,抽象思维能力较差,学习时比较吃力。学生学习抽象的知识,是在多次感性认识的基础上产生飞跃,感知认识是学生理解知识的基础,直观是数学抽象思维的途径和信息来源。我在教学时,注意由直观到抽象,逐步培养学生的抽象思维的能力。在教学“角”这部分知识时,为了使学生获得关于角的正确概念,我首先引导学生观察实物和模型:如三角板、五角星和张开的剪刀、扇子形成的角等,从这些实物中抽象出角。接着再通过实物演示,将两根细木条的一端钉在一起,旋转其中的一根,直观地说明由一条射线绕着它的端点旋转可以得到大小不同的角,并让学生用准备好的学具亲自动手演示,用运动的观点来阐明角的概念,并为引出平角、周角等概念做了准备。 二、从新旧知识的联系入手,积极发展学生思维 数学知识具有严密的逻辑系统。就学生的学习过程来说,某些旧知识是新知识的基础,新知识又是旧知识的引伸和发展,学生的认识活动也总是以已有的旧知识和经验为前提。我每教一点新知识都尽可能复习有关的旧知识,充分利用已有的知识来搭桥铺路,引导学生运用知识迁移规律,在获取新知识的过程中发展思维。如在教加减法各部分的关系时,我先复习了加法中各部分的名称,然后引导学生从35+25=60中得出:60-25=35;60-35=25。通过比较,可以看出后两算式的得数实际上分别是前一个算式中的加数,通过观察、比较,让学生自己总结出求加数的公式:一个加数=和-另一个加数。这样引导学生通过温故知新,将新知识纳入原来的知识系统中,丰富了知识,开阔了视野,思维也得到了发展。 三、精心设计问题,引导学生思维 小学生的独立性较差,他们不善于组织自己的思维活动,往往是看到什么就想到什么。培养学生逻辑思维能力,主要是在教学过程中通过教师示范、引导、指导,潜移默化地使学生获得一些思维的方法。教师在教学过程中精心设计问题,提出一些富有启发性的问题,激发思维,最大限度地调动学生的积极性和主动性。学生的思维能力只有在思维的活跃状态中,才能得到有效的发展。在教学过程中,教师应根据教材重点和学生的实际提出深浅适度,具有思考性的问题,这样就将每位学生的思维活动都激活起来,通过正确的思维方法,掌握新学习的知识。 四、进行说理训练,推动学生思维 语言是思维的工具,是思维的外壳,加强数学课堂的语言训练,特别是口头说理训练,是发展学生思维的好办法。在学习“小数和复名数”这一章节时,由于小数与复名数相互改写,需要综合运用的知识较多,这些又恰恰是学生容易出错的地方。怎样突破难点,使学生掌握好这一部分知识呢?我在课堂教学中注重加强说理训练。在学生学完例题后,启发总结出小数与复名数相互改写的方法,再让学生根据方法讲出做题的过程。通过这样反复的说理训练,收到了较好的效果,既加深了学生对知识的理解,又推动了思维能力的发展。

数学思维方法是对数学内容的思维运动形式的认识。学习数学思维,就是学习数学思维运动形式。培养数学思维方式的重点是养成良好的思维习惯。下面是我给大家推荐的有关数学思维的教育论文,希望大家喜欢!

《对数学思维与教育的分析》

摘要:首先探讨了一般意义上的数学思维和广义数学思维的内涵,将数学思维划分为掌握数学体系和运用数学思维的方式两部分,并详细分析了两部分的内涵以及教学中常见的问题,最后针对每一部分提出了系统化的合理建议。

关键词:数学思维;数学结构;创造能力;教育

1数学思维的组成简单介绍

广义的数学思维主应该有两方面组成:

关于数学体系的了解,暨数学思维的内容

这是关于数学本质和内容的认识,简单的说就是数学“是什么”。对于数学总体结构的理解是数学思维的基础,也是一切技巧的基础。这里说的不单单是对数学概念和定理的记忆和简单运用,而是对数学原理的深刻理解。

数学思维的方式

数学的思维方式,就是我们解决数学问题的思考的习惯和能力。也就是“怎么做”。解绝问题的方式有很多种,最基本的就是运用前人总结出来的解决问题的方式。然而很多时候,已有的方法是不能完全奏效的。这时候我们就需要运用我们的智慧去分析数学问题的条件,结论和特点。从而对题目进行分解转化,最终解决这个问题。在这个过程中体现出来的思维技巧和思维习惯就是数学思维方式,这也是我们所说的狭义上的“数学思维”。

2数学体系的内涵、问题、教学重点

数学体系的内涵和特点

(1)了解的必要性。

这里所说的“了解数学体系”是指对数学相关内容的整体把握,这是学习数学的基本要求也是运用数学知识的基础。

数学同所有的科学一样,是随着人类的文明的发展一步步发展而来的,本身就有着清晰的发展脉络:由简单的数字运算发展到代数运算,由最初的自然数到复数,由初等的数学方法到分析,数学在不断拓展研究的范围,丰富研究的手段。这要求我们在学习和教学的过程中不能将数学的每一部分分割开来,要尊重数学的整体性,尊重数学本身的传承关系。

和其他学科相比,数学更接近纯理论性的学科:数学的每一个分支往往是从几个基本的假设或者公理出发,通过归纳、推理、演绎、建立起自身的理论体系。数学这门学科十分强调逻辑性和严密性,结构十分的清晰严密。要想使这样的一个系统称为自己手中有力的武器,必须对系统本身有整体上的了解。

(2)了解的要求。

如果学生能够很好的回答以下四个问题,就可以说是达到了教学的目标。

①包含了什么?

学生必须了解自己所学数学的最大范围,也就是自己所掌握的所有数学工具的范围。

②每部分的结构是什么?

数学由几个相对独立的部分组成,每一部分都有自身的特点,相对独立而又自成体系。每一个体系之内的知识是有前后相继的关系的,由简单到复杂,由小的方面扩展到更大的方面,引入新的方法和思想。学生应该熟练的掌握每一部分知识的结构。

③各部分之间的关系是什么?

数学的各个部分自成体系,但又是相互紧密联系的。要真正的了解数学就要十分重视数学各个分支之间的关系,不能将数学割裂成几个孤立的部分

④数学发展的历史是什么?

数学的历史是数学思想发展的真实体现,了解数学发展的历史能够让学生更好的认识数学思维的本质。

存在的问题

部分学生对于数学整体结构的了解主要存在以下两种问题:

孤立。部分学生在学习数学的过程中,割裂知识点之间的关系,忽略知识点之间的前后发展继承的关系,不注重数学各个分支之间的交叉运用,孤立的记忆每个知识点,对数学没有总体观。由此产生的后果:知识点极容易遗忘,知识结构混乱。学习新的数学知识较为困难,方法使用僵化不灵活。

肤浅。部分学生在学习数学的过程中,对一些数学概念或数学原理的发生、发展过程没有深刻的理解,仅仅停留在表面的概括水平上,不能脱离具体表象而形成抽象的概念,自然也无法摆脱局部事实的片面性而把握事物的本质。由此而产生的后果:学生在分析和解决数学问题时,往往只顺着事物的发展过程去思考问题,注重由因到果的思维习惯,不注重变换思维的方式,缺乏多方面解决问题的能力。

数学体系教学重点

(1)教学过程要认真“描点”,作好“连线”的准备。描点,即强化知识点,具体到每课时、每章节、每单元。在强化知识点的内容、重点、难点的同时,要有意识地把该内容向前后延伸,强调该内容是哪些知识的延续和,同时又是以后的哪些知识的准备和基础。

(2)在知识的复习和应用时要尽力“连线”,使“点”成为“线”的元素。在最初的教学中,学生学习到的知识点是零散的、不连惯的。为了减轻学生的记忆负担,教学时要力求把知识归类、连线,使知识类别化、系统化,让学生了解一个知识点就可以掌握与之相关的内容。

(3)教学中要引导学生把“线”结成“网”,以达到“以点带面”的记忆效果。数学知识的主线有若干条,副线也有若干条,所有的线横纵交错。每个知识点在前后向同类主线无限延伸的同时,也在向副线延伸或辐射,甚至在向其他科目、其他领域延伸,使众多的知识点、知识线,密密麻麻地形成一张无边无际的大网。

3数学思维方式的内涵、问题、教学重点

数学思维方式的意义和内涵

思维训练是教学思维论在教学实践中的具体体现。数学思维论是思维科学的一个重要分支,它是构成数学课程论、学习论的灵魂。数学教材是以逻辑思维为主线,贯穿各个知识点。教学中培养学生能力的基础是发展学生思维,发展思维不可能脱离教学内容独立进行。因此,我们可以有理由认为,在数学教学中实施思维训练是教学思维论在教学实践中的体现。

数学思维方式包含两个方面:

(1)对于数学基本技巧的掌握比如换元,数形结合,极限法,拆分结合等等。很多新问题可以通过基本技巧的转化或者组合来解答。这些基本的技巧是前人在长期实践中对数学思维方式的经验的总结和归纳,他们不但是解决很多数学问题的有力工具,同时也很好的反应了数学的基本思维原理。

(2)运用数学思维的习惯。在生活中每当我们遇到新的问题,我们都需要运用我们的智慧去分析问题,然后去选择一个最好的方法解决问题。这就是在运用我们的思维能力。良好的思维习惯能够帮助我们更快更好的解决问题。对于数学问题也不例外。解决数学问题时我们需要养成分析问题、转化问题、将未知转化为已知等良好数学思维习惯。同时能够熟练运用方程、数形结合、分类讨论等思想解决问题。这是数学教学的重要目标之一,也体现了数学对于思维的锻炼。关于数学思维习惯,G•波利亚在他的经典作品《怎样解题》中有很好的阐释。

存在的问题

分析中学生的数学思维品质,部分学生存在着一些明显的缺陷,具体表现为以下几点。

僵化。指学生思维不够灵活,缺乏联想,只停留在课上的内容和解题思路,只会模仿、套用模式解题,一旦题型有变化,就无从下手,不能做到“举一反三”。

迟钝。指学生在解决数学问题时,一方面不大注意挖掘所研究问题中的隐含条件,抓不住问题中的确定条件,影响问题的解决。

消极。指学生习惯于依赖教师的思路,往往在已做过的题型中找思路,并且很难放弃一些陈旧的解题经验,思维僵化,不能根据新问题的特点作出灵活的反应。

造成这样的思维特点与学生过去所受的思维训练有很大关系:有些教师在教学过程中过分强调程式化和模式化,教学中给学生归纳了各种类型,并要求学生按部就班地解题,不许越雷池一步,或要求学生解答大量重复性练习题,减少了学生自己思考和探索的机会,导致学生只会模仿、套用模式解题。灌输式的教学使学生的思维缺乏应变能力。心理学家认为,培养学生的数学思维品质是发展数学能力的突破口。思维品质包括思维的深刻性、敏捷性、灵活性、批判性和创造性,它们反映了思维不同方面的特征,在教学过程中应该有不同的培养手段。

数学思维方式教学重点

培养数学思维方式的重点是养成良好的思维习惯。我们可将数学思维方式训练的课堂教学基本模式概括为:提出问题——展示新课——思维扩展——思维训练——思维测评。在这一模式中,教师是问题暴露、思维点拨、启迪和诱导者,学生是思维的主体,是知识的探索、发现和获取者。

(1)提出问题,创设情境问题“是数学的心脏”,是思维的起点。有问题才会有思考,思维是从问题开始的。巧妙恰当地提出问题,创设良好的思维情境,能够迅速集中学生注意力,激发学生的兴趣和求知欲。这是上好数学思维训练课的首要环节。

(2)研究问题,展示新课的理性认识过程是由表象的具体到思维的抽象,再由思维的抽象上升到思维的具体的过程。研究数学问题的过程首先是由具体到抽象的过程,在此环节中,将数学问题转化加工为例题形式,使被抽象出来的数学问题再回到实践中去验证,这一阶段是学生的思维定向阶段,是运用思维探索规律学会抽象的过程。

(3)解决问题,思维扩展这一环节是知识的形成阶段,属抽象思维的高级阶段。数学教学过程实质上是由一连串的转化过程所构成的。学生接受新知识要借助于旧知识,而旧知识的思维形式往往会成为新知识思维形式的障碍(如思维定势),因此,教师首先要抓好教学过程中数学思想方法的渗透,在数学知识的质变(往往是重点)过程中,帮助学生实现思维活动的转折,排除思维活动的障碍(往往是难点),渡过思维操作的“关卡”,以实现思维发展。

(4)发展问题,思维训练教学中,注意结合学生的心理特点和认识水平从不同角度、不同层次、不同侧面有目的、有针对性地不断设计组编一些探索型、开放型、判断改错型、归纳与综合型等题目,为学生提供多种类型的思维训练素材,这是发展学生的思维能力所不可缺少的。这要求教师注重挖掘课本典型题例的潜在功能,充分发挥它的导向、典型、发展和教育作用,反复渗透与运用数学思维方法,把数学知识溶入活的思维训练中去,并在不断的“问题获解”过程中深化、发展学生的思维。

(5)总结问题,思维测评是对学生思维品质的检测与评定形式。测评方法可小型多样,因课堂内容及学生实际情况而定,如选编一些口答、抢答、限定时间解答等题型对学生进行思维品质单项测评或多项综合测评。学生可先自我评价,体验成功的乐趣。

4结语

现代数学论认为,数学教学是数学思维活动的教学。思维活动的强弱,决定一个人的思维品质。在数学课堂教学中,探求问题的思考、推理论证的过程等一系列数学活动都以逻辑思维为主线。这是数学教学中实施思维训练的理论依据之一。

数学教学的核心就是促进学生思维的发展。教学中,教师要千方百计地通过学生学习数学知识,全面揭示数学思维过程,启迪和发展学生思维,将知识发生、发展过程与学生学习知识的心理活动统一起来。课堂教学中充分有效地进行思维训练,是数学教学的核心,它不仅符合素质教育的要求,也符合知识的形成与发展以及人的认知过程,体现了数学教育的实质性价值。

参考文献

[1](美)R.科朗H.罗宾.数学是什么[M].北京:科学出版社,1985.

[2](美)G•波利亚.怎样解题[M].上海:上海科技教育出版社,2007.

[3]朱智贤,林崇德.思维发展心理[M].北京:北京师范大学出版社,1990.

[4]郭思乐,喻伟.数学思维教育论[M].上海:上海教育出版社,1997.

[5]席振伟.数学的思维方式[M].南京:江苏教育出版社,1995.

点击下页还有更多>>>有关数学思维的教育论文

浅谈小学数学中学生数学思维能力的培养研究论文

在平平淡淡的日常中,大家都跟论文打过交道吧,通过论文写作可以培养我们的科学研究能力。那要怎么写好论文呢?下面是我收集整理的浅谈小学数学中学生数学思维能力的培养研究论文,仅供参考,大家一起来看看吧。

摘要:

小学时期学生的思维正处于重要的过渡阶段,对外界的认知能力日渐增强,思维模式也在逐步完善。加强学生数学思维能力的培养,有助于学生养成良好的学习习惯,为以后的学习打下稳固的根基。下文主要就如何培养小学数学中学生数学思维能力进行探讨,提出激发学生兴趣的方法,以达到提高数学思维能力的教学目标。

关键词:

小学教学;数学思维能力;培养

引言:

所谓的数学思维能力可以分成观察力、想象力和逻辑力,掌握这三种能力对学习其他学科而言就是打下了良好的基础,而且数学思维的逻辑性同样适用于生活中的方方面面。小学生的数学思维不仅受先天因素的影响,同时也会因外界环境的影响发生改变。要做好学生的数学思维培养工作,就要选择正确的培养方法。

一、数学思维能力

1.数学思维的含义

数学思维是指思考问题和解决问题的思维活动模式。数学思维有助于学生在面对数学问题时,将数字形象化,加深理解,从而形成一定的数学逻辑推理思维。而数学思维能力是指将数学逻辑思维和丰富的想象空间相结合的同时可以灵活运用,以达到在实际生活中,同样能对一切问题进行归纳与推理的目的。

2.数学思维的作用

在实际教学中,学生的学习能力良莠不齐。有的学生先天理解能力较强,能够较快接收新知识的同时还能做到学以致用;而有的学生理解能力就稍微逊色,理解问题较为困难,学习进度缓慢,因此很容易丧失对学习的兴趣。培养学生的数学思维能力就能很好的帮助学生解决这一学习烦恼,学生形成了数学思维模式后就能在自己的理解下掌握学习方法、加快学习进度,提高对问题的判断力的同时激发求知的上进心。

二、加强对小学数学中学生数学思维能力培养的具体方法

1.灵活运用教学方法

教师要先了解学生对于数学科目的学习心理,以此为基础,选择学生最能接受的教学方法。小学时期,学生对学习的兴趣最为浓厚,教师在教学过程中不能一味的只注重讲解书面知识,学生若是在被动的机械记忆模式下学习,就不会养成良好的数学思维模式,要学会用数形结合的方法生动讲解,通过借助形的某些属性来阐明数的精确性。例如:在学习图形体积计算时,老师不能只在黑板上画出立体图形标注长、宽、高,黑板是一个典型的二维物体,画出的立体图形趋于抽象化,对于小学生还未成型的思维模式而言,看不到的另外三个面就变的难以理解,因此,教师可举例说明,我们上课的教室本身就是一个标准的立体长方形,哪边是长宽高的位置就变得一目了然,这种把抽象化的概念转化成实物化的事物的教学方法,更易于学生对数学深入理解,在提高学习效果的同时也提高了学生学习的兴趣,从而培养学生的数学思维能力。

2.循序渐进的诱导

数学是一门逻辑性较强的科目,对于刚刚接触此科目的小学生来说养成逻辑性的思维非常重要。数学问题与答案之间有很强的关联性,要想解答问题就要先分析清楚问题中已知条件的因果关系,在此分析过程中,逻辑性的存在就显得十分重要,分清主次因果才能理解其中包含的数量关系。培养学生的`逻辑性是非常漫长的过程,教师无法直接教授逻辑能力,只能在教学中慢慢诱导。先为学生讲解最简单的知识,在学生能够灵活运用后再逐渐提高知识难度,不求快,要求稳;由此激发出学生对数学知识的渴求心理,提高了学生的学习兴趣后教师再加以梳理,循循善诱,故而,学生的数学逻辑思维能力也逐渐提升。

3.制定明确的新课标

制定好每堂课的新课标是一种极为科学的教学方案,教师要按照新课标的要求预先备好课,确保要讲解的知识内容在新课标范围之内,促使学生的数学思维培养程度与新课标中要求的教学模式一致,严禁出现一味追求进度却不注重质量的教学现象发生。在进行教学前,要了解学生的基本学习情况,做到“因材施教”,以防在讲解新知识的时候学生发生掉队,从而失去对学习的兴趣。

4.当堂设问锻炼思维

小学生是一个不可控的群体,由于其思维的不完善性,自控能力相对较差。有些学生在上课时间很容易被外界影响,也就发生了我们常说的“溜号”现象,等到学生的注意力转移回课堂时却发现讲解的内容发生断点,内容理解不上去;为减少此类问题的发生,当堂设问不失为是一个好方法。

小学生群体的自控性虽有欠缺,但其强烈的上进心却不容忽视。教师可在本堂新知识讲解完毕后,提出几个在新知识范围内的问题,当作课堂提问,回答正确的学生可以得到一些奖励,此方法不但能在活跃课堂气氛的同时吸引学生的注意力,还能加深学生对新知识的印象并提高学生自主思考问题的数学思维能力。

5.培养学生实践能力

学生实践能力的培养是数学思维能力培养的基础。值得注意的是,课后知识的巩固同样不可或缺,在学习过程中,难免会有部分学生出现学得快、忘得也快的问题。布置适量的课后习题会在学生接收新知识的同时加深对知识的印象,锻炼举一反三的能力,更深层次的分析数学问题与答案间的内在联系,掌握做题方法;在巩固过程中,学生会形成自己的学习思路,教师要在与学生沟通的过程中顺通学生的思路,加以正确的引导,逐步培养学生的数学思维能力。

三、结束语

综上所述,学生数学思维能力的培养不是一项短期工作,需要教育者们长时间的坚持耐心诱导。重视培养小学生的数学思维能力的同时也要与实际相结合,不能只注重表面知识,要在教授学生新知识的同时帮助学生梳通思路,启发学习;并根据学生自身先天因素差别,从多角度尝试用不同的教育方式进行培养。总而言之,帮助学生养成数学思维能力,不仅可以增强学生的求知欲、激发学习兴趣,也对日后学生的学习大有裨益、终身受用。

参考文献

[1]王耀忠.浅析小学数学课堂教学中学生思维能力培养的策略[J].新课程导学,2014(26):44-44.

[2]李振伟.浅析小学数学教学中学生逻辑思维的培养[J].数学学习与研究,2016(8):67-67.

  • 索引序列
  • 数学思维相关的论文题目
  • 关于思维论文的题目
  • 关于数学思维的研究论文
  • 和数学相关的论文题目
  • 关于数学思维的研究小论文
  • 返回顶部