事实上,所谓“大数据时代”的说法并不新鲜,早在2010年,“大数据”的概念就已由美国数据科学家维克托·迈尔·舍恩伯格系统地提出。他在 大数据时代一书中说,以前,一旦完成了收集数据的目的之后,数据就会被认为已经没有用处了。比如,在飞机降落之后,票价数据就没有用了;一个网络检索命令完成之后,这项指令也已进入过去时。但如今,数据已经成为一种商业资本,可以创造新的经济利益。数据能够成为一种资本,与移动互联网有密切关系。随着智能手机、平板电脑等移动数码产品的“白菜化”,Wi-Fi信号覆盖的无孔不入,越来越多的人不再有“在线时间”和“不在线时间”之分,只要他们愿意,便可几乎24小时一刻不停地挂在线上;在线交易、在线支付、在线注册等网络服务的普及固然方便了用户,却也让人们更加依赖网络,依赖五花八门的网上平台。而随着科技的进步,以往需要几盒软盘或一张光盘保存的信息,如今只需一片指甲盖大小的芯片,即可全部储存而且绰绰有余;以往需要电脑、显示器、读卡器等专门设备才能读取的数码信息载体,如今或许只需一部智能手机和一个免费下载的APP第三方应用程序,便可将数据一览无余。大数据时代的科技进步,让人们身上更多看似平常的东西成为“移动数据库”,如带有存储芯片的第二代银行卡、信用卡,带有芯片读取功能的新型护照、驾驶证、社保卡、图书证,等等。在一些发达国家,官方为了信息录入方便,还不断将多种“移动数据库”的功能组合成一体。数字化时代使得信息搜集、归纳和分析变得越来越方便,传统的随机抽样被“所有数据的汇拢”所取代,基于随机抽样而变得重要的一些属性,如抽样的精确性、逻辑思辨和推理判断能力,就变得不那么重要,尽可能汇集所有数据,并根据这些数据得出趋势和结论才至为关键。简单说,以往的思维决断模式是基于“为什么”,而在“大数据时代”,则已可直接根据“是什么”来下结论,由于这样的结论剔除了个人情绪、心理动机、抽样精确性等因素的干扰,因此,将更精确,更有预见性。不过,一些学者指出,由于“大数据”理论过于依靠数据的汇集,那么一旦数据本身有问题,在“只问有什么,不问为什么”的模式下,就很可能出现“灾难性大数据”,即因为数据本身的问题,而做出错误的预测和决策。(如能帮到你,望您采纳!!谢谢!!)
浅谈基于大数据时代的机遇与挑战论文推荐
在学习和工作中,大家总少不了接触论文吧,论文的类型很多,包括学年论文、毕业论文、学位论文、科技论文、成果论文等。为了让您在写论文时更加简单方便,以下是我精心整理的浅谈基于大数据时代的机遇与挑战论文,仅供参考,希望能够帮助到大家。
浅谈基于大数据时代的机遇与挑战论文
1、大数据的基本概况
大数据(Big Data)是指那些超过传统数据库系统处理能力的数据,其具有以下四个基本特性,即海量性、多样性、易变性、高速性。同时数据类型繁多、数据价值密度相对较低、处理速度快、时效性要求高等也是其主要特征。
2、大数据的时代影响
大数据,对经济、政治、文化等方面都具有较为深远的影响,其可帮助人们进行量化管理,更具科学性和针对性,得数据者得天下。大数据对于时代的影响主要包括以下几个方面:
(1)“大数据决策”更加科学有效。如果人们以大数据分析作为基础进行决策,可全面获取相关决策信息,让数据主导决策,这种方法必将促进决策方式的创新和改变,彻底改变传统的决策方式,提高决策的科学性,并推动信息管理准则的重新定位。2009 年爆发的甲型H1N1 流感就是利用大数据的一个成功范例,谷歌公司通过分析网上搜索的大量记录,判断流感的传播源地,公共卫生机构官员通过这些有价值的数据信息采取了有针对性的行动决策。
(2)“大数据应用”促进行业融合。虽然大数据源于通信产业,但其影响绝不局限于通信产业,势必也将对其他产生较为深远的影响。目前,大数据正逐渐广泛应用于各个行业和领域,越来越多的企业开始以数据分析为辅助手段加强公司的日常管理和运营管理,如麦当劳、肯德基、苹果公司等旗舰专卖店的位置都是基于大数据分析完成选址的,另外数据分析技术在零售业也应用越来越广泛。
(3)“大数据开发”推动技术变革。大数据的应用需求,是大数据新技术开发的源泉。相信随着时代的不断发展,计算机系统的数据分析和数据挖掘功能将逐渐取代以往单纯依靠人们自身判断力的领域应用。借助这些创新型的大数据应用,数据的能量将会层层被放大。
另外,需要注意的是,大数据在个人隐私的方面,容易造成一些隐私泄漏。我们需要认真严肃的对待这个问题,综合运用法律、宣传、道德等手段,为保护个人隐私,做出更积极的努力。
3、大数据的应对策略
布局关键技术研发创新。
目前而言,大数据的技术门槛较高,在这一领域有竞争力的多为一些在数据存储和分析等方面有优势的信息技术企业。为促进产业升级,我们必须加强研究,重视研发和应用数据分析关键技术和新兴技术,具体可从以下几个方面入手:第一,夯实发展基础,以大数据核心技术为着手点,加强人工智能、机器学习、商业智能等领域的理论研究和技术研发,为大数据的应用奠定理论基础。二是加快基础技术(非结构化数据处理技术、可视化技术、非关系型数据库管理技术等)的研发,并使其与物联网、移动互联网、云计算等技术有机融合,为解决方案的制定打下坚实基础。三是基于大数据应用,着重对知识计算( 搜索) 技术、知识库技术、网页搜索技术等核心技术进行研发,加强单项技术产品研发,并保证质量的提升,同时促使其与数据处理技术的有机结合,建立科学技术体系。
提高软件产品发展水平。
一是促进以企业为主导的产学研合作,提高软件发展水平。二是运用云计算技术促进信息技术服务业的转型和发展,促进中文知识库、数据库与规则库的建设。三是采取鼓励政策引导软硬件企业和服务企业应用新型技术开展数据信息服务,提供具有行业特色的系统集成解决方案。四是以大型互联网公司牵头,并聚集中小互联网信息服务提供商,对优势资源进行系统整合,开拓与整合本土化信息服务。五是以数据处理软件商牵头,这些软件商必须具备一定的基础优势,其可充分发挥各自的数据优势和技术优势,优势互补,提高数据软件开发水平,提高服务内容的精确性和科学性。同时提高大数据解决方案提供商的市场能力和集成水平,以保障其大数据为各行业领域提供较为成熟的解决方案。
加速推进大数据示范应用。
大数据时代,我们应积极推进大数据的示范应用,可从以下几个方面进行实践:第一,对于一些数据量大的领域(如金融、能源、流通、电信、医疗等领域),应引导行业厂商积极参与,大力发展数据监测和分析、横向扩展存储、商业决策等软硬件一体化的行业应用解决方案。第二,将大数据逐渐应用于智慧城市建设及个人生活和服务领域,促进数字内容加工处理软件等服务发展水平的提高。第三,促进行业数据库(特别是高科技领域)的深度开发,建议针对不同的行业领域建立不同的专题数据库,以提供相应的内容增值服务,形成有特色化的服务。第四,以重点领域或重点企业为突破口,对企业数据进行相应分析、整理和清洗,逐渐减少和去除重复数据和噪音数据。
优化完善大数据发展环境。
信息安全问题是大数据应用面临的主要问题,因此,我们应加强对基于大数据的情报收集分析工作信息保密问题的研究,制定有效的防范对策,加强信息安全管理。同时,为优化完善大数据发展环境,应采取各种鼓励政策(如将具备一定能力企业的数据加工处理业务列入营业税优惠政策享受范围)支持数据加工处理企业的发展,促使其提高数据分析处理服务的水平和质量。三是夯实大数据的应用基础,完善相关体制机制,以政府为切入点,推动信息资源的集中共享。
做到上面的几点,当大数据时代来临的时候,面临大量数据将不是束手无策,而是成竹在胸,而从数据中得到的好处也将促进国家和企业的快速发展。
大数据为经营的横向跨界、产业的越界混融、生产与消费的合一提供了有利条件,大数据必将在社会经济、政治、文化等方面对人们生活产生巨大的影响,同时大数据时代对人类的数据驾驭能力也提出了新的挑战与机遇。面对新的挑战与发展机遇,我们应积极应对,以掌握未来大数据发展主动权。
结构
论文一般由名称、作者、摘要、关键词、正文、参考文献和附录等部分组成,其中部分组成(例如附录)可有可无。
1、论文题目
要求准确、简练、醒目、新颖。
2、目录
目录是论文中主要段落的'简表。(短篇论文不必列目录)
3、内容提要
是文章主要内容的摘录,要求短、精、完整。
4、关键词定义
关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作计算机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。
主题词是经过规范化的词,在确定主题词时,要对论文进行主题分析,依照标引和组配规则转换成主题词表中的规范词语。(参见《汉语主题词表》和《世界汉语主题词表》)。
5、论文正文
(1)引言:引言又称前言、序言和导言,用在论文的开头。引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。
(2)论文正文:正文是论文的主体,正文应包括论点、论据、论证过程和结论。主体部分包括以下内容:
a.提出问题-论点;
b.分析问题-论据和论证;
c.解决问题-论证方法与步骤;
d.结论。
6、参考文献
一篇论文的参考文献是将论文在研究和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方式按进行。
7、论文装订
论文的有关部分全部抄清完了,经过检查,再没有什么问题,把它装成册,再加上封面。论文的封面要朴素大方,要写出论文的题目、学校、科系、指导教师姓名、作者姓名、完成年月日。论文的题目的作者姓名一定要写在表皮上,不要写里面的补页上。
树妈妈生了一些可爱的嫩芽弟弟妹妹.许多叶儿宝宝都穿着绿色的礼服去凑热闹,从远处看,像一块无暇的翡翠,给大树妈妈增添了许多生机.忽然,从远处传来了一阵扑鼻的芳香.原来是美人蕉妹妹为春天姐姐的到来,穿上了华丽的礼服,以表示欢迎.咦,那边怎么那么多花朵,红的、白的、紫的、黄的等,五彩缤纷.走近一看,哦,原来花儿们正在比美比艺.花儿们有的显示着自己.有的在唱歌,声音是那么好听,所有的演员都被吸引住了.有的在表演优美的舞蹈《天鹅湖》、《白雪公主》等.真是太精彩了.
摘要: 在互联网技术的发展和各种数据信息化、共享化的背景之下, 大数据时代得到了应用与发展。在现代的生活之中,我们可以明显的 看到,在人们的日常生活或者在各行各业的管理之中大数据时代得到 了广泛的应用与发展。在这些的领域之中,大数据时代发展的最为理 想的就是在企业大的管理之中。大数据时代的运用使得企业的人力资 源大的管理更加的优化。
关键字: 大数据时代;电力供电企业;人力资源;绩效管理;
正文:
一、大数据对供电企业绩效管理的影响
(一)职位多元化
大数据时代可能促进新职位的产生,如首席数据官、数据科学家、数据分析师等,他们的主要职责是管理供电企业拥有的及其他的数据资源,挖掘、分析和利用这些数据为供电企业创造价值。因此,面对供电企业复杂多样的绩效管理数据,人力资源部门无需进行分析和解读,只需进行简单地收集和提取,这样他们将从以往重复且低效的绩效管理任务中跳脱出来,从而大大提高管理效率。
(二)管理工具高效化,
传统人力资源管理部门对绩效相关信息的处理效率低,同时处理手段过于主观粗糙,很难对员工的绩效、素质等内容做出客观公正的评价。大数据时代下,绩效管理工具将变得更加多元且高效,如绩效仪表盘、基于“云计算”技术下的“共同体GTT供电企业云管理平台”等。
(三)考核目的多元化,
大数据时代下考核结果不仅是薪酬奖金、职务晋升的可靠依据,更是成为员工职业发展的指导标杆。一方面,通过对绩效数据的收集处理,测试员工和岗位的匹配度,帮助供电企业了解员工并将其调整到更适合的位置;另一方面,员工可通过考核反馈了解自己的兴趣,并且充分利用供电企业中的发展机会。
二、我国供电企业人力资源绩效管理现状分析
(一)绩效考核的主观性较强,缺乏客观数据认识
绩效管理是部门领导对该部门员工的考核和评价过程。目前,我国大部分供电企业的人力资源管理系统是通过管理部门把数据导出,利用数据库或EXCEL办公软件进行处理,最终得出绩效考核的结果,而部门领导在面对该考核结果时往往容易看重员工在某一方面或某一时期的表现,因此,这在很大程度上容易受上级观念的影响,从而使考核结果具有片面性和主观随意性。
(二)供电企业缺乏数据复合型人才,智能化程度较低
传统供电企业信息处理局限于某一职位人的单项工作,且由于受到晋升机制和管理的束缚,企业无法引进高素质人才,数据复合型人才匮乏。同时,许多供电企业的绩效管理成为一种形式,大多数时候仅仅在月末及季末、年终的时候进行绩效考核,相关领导也只是凭借有限的材料对员工的表现进行总结和评价。
(三)管理者对数据的挖掘不够深入,绩效管理成果没有得到充分应用
对于绩效信息的处理和分析结果,诸多企业高层并未进行深入挖掘,他们对数据库中的数据关联了解不透彻,只单一注重供电企业的年度财务报表和供电企业的利润情况,而不对数据存在的问题进行分析,忽视一些看似不相关的数据,如饮食情况、工作环境等。实际上,这些信息如若经过整合分析,将能够更合理地解释员工现阶段的绩效情况,并有利于供电企业改进人力资源管理的方法。
三、在大数据时代下对于供电企业人力资源绩效管理的新举措
(一)充分的数据信息
为了进一步提升供电企业中人力资源的管理水平,各供电企业管理阶层除了要进一步完善供电企业内部的管理机制和运行方式,最重要的就是要及时利用各种数据对人员进行管理。而在大数据时代之下,利用其特点,可以充分的利用其所能提供的相关数据信息,根据具体详尽的数据信息对人员进行进一步的管理。在人力资源管理中,主要是注意以下3个方面的数据信息。
1、客观的基础数据信息。这些信息主要是在人力资源管理中最为基础的信息。这些信息都是员工们最客观的基本信息。主要包括员工的姓名、性别、年龄、籍贯、学历、特长和工作时间等。根据这些最为基本的信息,了解员工最基本的`情况,同时人力资源部门要将这些信息进一步记录存档,进一步完善,做好整理工作,为以后的人员的管理提供相应的数据支持。
2、人员变动情况的相关信息。人员的变动情况主要有调动、辞退、招聘和重新分配等。人力资源部门在对这些信息进行整理时,要着重关心员工的变动情况,一名员工何时参加工作,何时进行岗位调动,何时提升岗位等。
3、人员的质量信息所谓的人员的质量信息是指员工在供电企业的工作过程中,对于供电企业的奉献的情况,以及员工对于供电企业的人力资源管理的满意度的情况。在了解这些数据和信息的基础之上,有利于企业进一步了解员工的向心力和内在的优势。只有在了解这些数据的基础之上,才能准确的运用员工的特点进行人员的管理,进一步完善人力资源绩效的管理。
(二)进一步创新人力资源绩效管理的方式方法
在大数据时代之下,供电企业的人力资源绩效管理得到了进一步的发展。为了进一步提升供电企业的人员绩效管理的能力,全面的发挥大数据时代的有利作用。在人力资源绩效管理方面还需要从几个方面进行进一步的考虑优化。主要表现在以下几个方面:
1、进一步创新人力资源绩效的管理办法。在之前的一般的供电企业的考评时,对于员工的考评主要是一句员工对于供电企业的奉献和年终的表现情况进行考核评价。这样的考核方法一定程度上是可以表现员工的总体的贡献的,但是由于数据考虑的不慎全面,对于员工的考核也是存在一定的不平等。
2、建立健全供电企业绩效考核体系。在对员工进行绩效考核是,对于一些具体的数据和信息的收集对于供电企业员工的绩效公平的管理也是十分重要的。只有在全面的核查过每一位员工和供电企业相关的具体信息之后才能进一步完善员工的考核体系。在考核体系进一步确定的基础之上才能实现对于供电企业中人力资源绩效管理工作的优化。
3、合理的利用全面的考核方法。在对于供电企业的员工进行考评时,供电企业的管理部门还可以改变考核方法,完善考核机制。其中360度考核方法就是一种对于员工的全面的考核方法。
参考文献:
[1] 刘雅辉,张铁赢,靳小龙等.大数据时代的个人隐私保护[J].计算机研究与发展,2015,52(1):229-247.
[2] 卢黎歌,吴欢.基于大数据时代的大学生价值观教育[J].西安交通大学学报(社会科学版),2016,36(6).
[3] 何振,周芳检,杨文等.大数据时代城市应急管理行业协作体制创新研究?[J].湘潭大学学报(哲学社会科学版),2016,40(6)::.
[4] 孙光宁.大数据时代对司法审判的冲击及其应对——从指导性案例29号切入[J].湖北社会科学,2016,(5).
《大数据技术对财务管理的影响》
摘 要:大数据可以快速帮助财务部门建立财务分析工具,而不是单纯做账。大数据应该不仅仅局限于本单位的微观数据,更为重要的关注其他单位的宏观数据。大数据技术不仅带来了企事业单位财务数据搜集的便利和挑战,而且也衍生出了诸多关于单位人员个人信息保密等问题的积极探索。本文主要研究大数据技术(meta-data或big data)对企业或事业单位财务管理的影响,以期为财务数据管理的安全性提供一种分析的依据和保障。
关键词:大数据;财务管理;科学技术;知识进步
数据是一个中性概念。人类自古以来几千年的辉煌变迁,无外乎就是数据的搜集和使用过程而已。纵观古今中外的人际交流与合作,充满着尔虞我诈和勾心斗角,那么他们在争什么呢?实际上是在争夺信息资源;历史上品相繁多的战争,实际上不是在维持什么所谓的正义和和平,抑或为了人间的正道,而是在争夺数据的使用权;“熙熙攘攘皆为利往、攘攘熙熙皆为利来”的世俗变迁逻辑已经让位于数据游戏的哲学法则。人类自英国产业革命以来所陆续发明的技术,尽管被人们美其名曰“第四次科技革命的前沿技术”,实际上不过就是“0”和“1”两个数字的嬉戏而已。正如有学者指出的,汽车技术、生命科学技术、基因技术、原子能技术、宇宙航天技术、纳米技术、电子计算机技术,看起来美轮美奂,实则隐含着杀机,那就是由于人们把技术当成了目的后,导致了“技术专制”后的“技术腐败”和“技术灾难”。人类一方面在懒惰基因的诱惑下,发明了诸多所谓的机械装置,中国叫“机巧”;另一方面又在勤奋的文化下,发明了诸多抑制懒惰的制度和机制。本来想寻求节俭,结果却越来越奢侈;本来想节约,结果却越来越浪费;本来想善良,结果却越来越邪恶;本来想美好,结果却越来越丑陋。正如拉美特里所说:“人是什么?一半是天使,一半是野兽。当人拼命想成为天使的时候,其实他会逐渐变成野兽;当人想极力崇拜野兽的时候,结果会逐渐接近天使。”我们不是在宣讲宿命的技术,我们只是在预测技术的宿命。本文主要研究大数据技术(meta-data或big data)对企业或事业单位财务管理的影响,以期为财务数据管理的安全性提供一种分析的依据和保障。
一、大数据技术加大了财务数据收集的难度
财务数据的收集是一个复杂的系统工程,国际上一般采用相对性原则,即首先利用不完全统计学的知识对数据进行初步的计算,接着对粗糙的数据进行系统的罗列,最后对类型化的数据进行明分梳理。使用者如果想进入该数据库,就必须拥有注册的用户名和密码。由于国际上对于网络数据的监督均采取了实名注册的模式,所以一旦该用户进入到核心数据库之后想窃取数据,一般都会暴露自己的bug地址源,网管可以循着这一唯一性存留,通过云计算迅速找到该网络终端的IP地址,于是根据人机互动原理,再加上各种网吧所安装的监控平台,可以迅速找到数据库的剽窃者。如果按照上述数据变迁逻辑,那么财务数据的收集似乎变得易如反掌,而事实并非如此。因为:①数据的量化指标受制于云计算服务器的安全性。当云服务器受到不可抗力的打击,如地震、水患、瘟疫、鼠疫、火灾、原子能泄露或各种人为破坏的作用,数据会呈现离散型散落。这时的数据丢失会演变成数字灾难;②各种数据版权的拥有者之间很难实现无缝隙对接。比如在经过不同服务器的不同数据流之间,很难实现现实意义上的自由流通。正如专家所指出的,教育服务器的事业单位的人员数据、行政部门人事管理部门的保密性数据、军事单位的军事数据、医疗卫生事业的数据、工商注册数据、外事数据等在无法克服实际权力的分割陷阱之前,很难实现资源的共享,这时对数据的所谓搜集都会演化为“不完全抽样”的数字假象。由此而衍生的数据库充其量只是一部分无用的质料而已。
二、大数据技术影响了财务数据分析的准确性
对于搞财务管理的人来说,财务数据的收集只是有效实现资源配置的先决条件,真正有价值的或者说最为关键的环节是对财务数据的分析。所谓“财务数据分析”是指专业的会计人员或审计人员对纷繁复杂的单位人力资源信息进行“去魅”的过程。所谓“去魅”就是指去粗取精、去伪存真、由此及彼、由表及里、内外互联,彼此沟通、跨级交流、跨界合作。在较为严格的学术意义上,分析的难度广泛存在与财务工作人员的日常生活中。大数据技术尽管为数据的搜集提供了方便法门,但同时加大了财务人员的工作量和工作难度。原先只是在算盘或者草稿纸上就可以轻松解决的数据计算,现在只能借助于计算机和云图建模。对于一些借助于政治权力因素或者经济利益因素,抑或是借助于自身的人际关系因素上升到财务管理部门的职工来说,更大的挑战开始了。他们不知道如何进行数据流的图谱分析,不知道基于计算机软件技术的集成线路技术的跌级分类,不知道基于非线性配置的液压传动技术的模板冲压技术,不知道逆向网络模型来解决外部常态财务变量的可篡改问题。由于技术不过硬,导致了领导安排的任务不能在规定的时间内完成,即时仓促做完的案例,也会因为数据分析技术的落后而授人以柄,有的脾气不好的领导可能会大发雷霆;脾气好的领导只是强压着内心的怒火,那种以静制动的魄力和安静更是摄魂夺魄。所以说数据分析难度的增加不是由于财务人员的良心或善根缺失,在很大程度上是由于技术的进步和大数据理念给我们带来的尖锐挑战。对于普通的没有家庭和社会背景的财务管理人员来说,能做的或者说唯一可做的就是尊重历史发展的周期律,敬畏生生不息的科学革命,认真领会行政首长的战略意图,提升自己的数据分析技术,升华在自身的“硬实力”。否则觊觎于领导的良心发现和疏忽大意,期望技术的静止或者倒退,抑或是在违法犯罪之后天真的认为可以相安无事,可能都只会落得“恢恢乎如丧家之犬”的境遇。
三、大数据技术给财务人事管理带来了挑战
一个单位的财务人事管理牵扯到方方面面的问题,其意义不可小视。一般来讲,单位在遴选财务管理部门管理人员的时候,大多从德才绩行四个方面全面权衡。然而这种“四有标准”却隐含着潜在的危机和不可避免的长远威胁,这其中的缘由就在于人性的复杂性和不可猜度性。历史和现实一再告诉人们,单纯看眼前的表现和话语的华丽,不仅不能对人才的素质进行准确的评价,而且还会导致官员的远期腐败和隐性腐败。对于中国的腐败,国人大多重视了制度和道德的缘起,却往往忽视了财务管理的因素。试想如果财务管理人员牢牢践行“焦裕禄精神”,不对任何政治权力开绿灯,国有资产又如何流出国库而了无人知晓呢?事实上,中国的所有腐败,不论是国有资产的国外流失抑或是国内流失,都在很大程度上与财务人员有关,可能有些管理人员会强调那不是自己的责任,出纳签字是领导的授意,会计支出费用那是长官的意思清晰表示。实际上,处于权力非法授予的签字、盖章、取现、流转和变相洗钱都是违法的,甚至是犯罪的。间接故意也是应当追究责任的。值得高兴的是,伴随着数字模拟技术的演进,财务管理中的腐败现象和人事管理科学化问题得到了极大的改善,相关领导伸手向财务要钱的行为,不仅会受到数据进入权限的限制,而且还会受到跟数据存留的监控,只要给予单位科技人员以足够的权限,想查找任何一笔资金的走向就变得非常简单,而且对于每一笔资金的经手者的信息也会了如指掌。这在一定程度上减少了只会指挥、不懂电脑的首长的孵化几率。
四、大数据技术加大了单位信息保密的难度
IMA(美国注册会计师协会)研发副总裁Raef・Lawson博士曾经指出:“客观上讲,大数据技术的正面效用是非常明显的,但一个不容回避的事实是大数据技术为财务信息的安全性提出了越来越严峻的挑战。我们已经注意到,在欧洲大陆、美洲大陆已经存在基于数据泄露而产生的各种抗议活动,这些活动牵扯到美国的数据窃听丑闻、俄罗斯对军事数据的强制性战友举动、以色列数据专家出卖阿拉伯世界经济数据的案件、在东方的中国香港一部分利用数据的窃取而发家致富的顶尖级黑客专家。”在数据集成的拓扑领域,大数据技术的保密性挑战肇始于蚁群算法的先天性缺陷。本来数据流的控制是依靠各种所谓的交易密码,实际上这些安全密码只是数据的另一种分类和组合而已。在数据的非线性组合和线路的真空组装模式下,任何密码都只是阻挡了技术侏儒的暂时性举动,而没有超出技术本身的惰性存在。当一个hacker掌握了源代码的介质性接洽技术之后,所剩下的就是信息和数据的搜集了,只要有足够的数据源,信息的户的几乎是轻而易举的。
2003年,北京的一家名为飞塔公司的防火墙安全软件在中关村科技城闪亮上市。该安全控制软件的开发者随机开发了一款名曰MAZE天网的软件,并且采用了“以其之矛攻其之盾”的攻防策略。测试的结果是尽管maze的源代码采用了24进制蝶形加密技术,但 FortiGate防火墙技术仍然能够阻挡住善意木马对电脑终端用户信息的剽窃和非法利用。FortiWeb已经通过全球权威的ICSA认证,可以阻断如跨站脚本、SQL注入、缓冲区溢出、远程文件包含、拒绝服务,同时防止敏感数据库外泄,为企事业单位Web应用提供了专业级的应用安全防护。飞塔公司之所以耗费人力和物力去开发这一新型的换代产品,就在于大数据时代对单位信息保密性的冲击。试想,如果一个单位连职工最起码的个人信息都不能安全存储的话,那么财务管理的科学性和人本性将从何谈起?只能说,即使在人权保护意识相对薄弱的法治环境里,我们也应该尽量提升自己的保密意识,加强对个人信息的保护和合理运用。
作者简介:田惠东(1967- ),女,汉族,河北定兴人,副高级会计师,本科学历,研究方向:财务管理,单位:保定市第一医院
"大数据"是一个体量特别大,数据类别特别大的数据集,并且这样的数据集无法用传统数据库工具对其内容进行抓取、管理和处理。 "大数据"首先是指数据体量(volumes)?大,指代大型数据集,一般在10TB?规模左右,但在实际应用中,很多企业用户把多个数据集放在一起,已经形成了PB级的数据量;其次是指数据类别(variety)大,数据来自多种数据源,数据种类和格式日渐丰富,已冲破了以前所限定的结构化数据范畴,囊括了半结构化和非结构化数据。接着是数据处理速度(Velocity)快,在数据量非常庞大的情况下,也能够做到数据的实时处理。最后一个特点是指数据真实性(Veracity)高,随着社交数据、企业内容、交易与应用数据等新数据源的兴趣,传统数据源的局限被打破,企业愈发需要有效的信息之力以确保其真实性及安全性。从所周知,大数据已经不简简单单是数据大的事实了,而最重要的现实是对大数据进行分析,只有通过分析才能获取很多智能的,深入的,有价值的信息。那么越来越多的应用涉及到大数据,而这些大数据的属性,包括数量,速度,多样性等等都是呈现了大数据不断增长的复杂性,所以大数据的分析方法在大数据领域就显得尤为重要,可以说是决定最终信息是否有价值的决定性因素。基于如此的认识,大数据分析普遍存在的方法理论有哪些呢?大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。大数据分析广泛应用于网络数据挖掘,可从用户的搜索关键词、标签关键词、或其他输入语义,分析,判断用户需求,从而实现更好的用户体验和广告匹配。大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。 大数据分析的基础就是以上五个方面,当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。当下我国大数据研发建设应在以下四个方面着力一是建立一套运行机制。大数据建设是一项有序的、动态的、可持续发展的系统工程,必须建立良好的运行机制,以促进建设过程中各个环节的正规有序,实现统合,搞好顶层设计。二是规范一套建设标准。没有标准就没有系统。应建立面向不同主题、覆盖各个领域、不断动态更新的大数据建设标准,为实现各级各类信息系统的网络互连、信息互通、资源共享奠定基础。三是搭建一个共享平台。数据只有不断流动和充分共享,才有生命力。应在各专用数据库建设的基础上,通过数据集成,实现各级各类指挥信息系统的数据交换和数据共享。四是培养一支专业队伍。大数据建设的每个环节都需要依靠专业人员完成,因此,必须培养和造就一支懂指挥、懂技术、懂管理的大数据建设专业队伍。
摘要: 在互联网技术的发展和各种数据信息化、共享化的背景之下, 大数据时代得到了应用与发展。在现代的生活之中,我们可以明显的 看到,在人们的日常生活或者在各行各业的管理之中大数据时代得到 了广泛的应用与发展。在这些的领域之中,大数据时代发展的最为理 想的就是在企业大的管理之中。大数据时代的运用使得企业的人力资 源大的管理更加的优化。
关键字: 大数据时代;电力供电企业;人力资源;绩效管理;
正文:
一、大数据对供电企业绩效管理的影响
(一)职位多元化
大数据时代可能促进新职位的产生,如首席数据官、数据科学家、数据分析师等,他们的主要职责是管理供电企业拥有的及其他的数据资源,挖掘、分析和利用这些数据为供电企业创造价值。因此,面对供电企业复杂多样的绩效管理数据,人力资源部门无需进行分析和解读,只需进行简单地收集和提取,这样他们将从以往重复且低效的绩效管理任务中跳脱出来,从而大大提高管理效率。
(二)管理工具高效化,
传统人力资源管理部门对绩效相关信息的处理效率低,同时处理手段过于主观粗糙,很难对员工的绩效、素质等内容做出客观公正的评价。大数据时代下,绩效管理工具将变得更加多元且高效,如绩效仪表盘、基于“云计算”技术下的“共同体GTT供电企业云管理平台”等。
(三)考核目的多元化,
大数据时代下考核结果不仅是薪酬奖金、职务晋升的可靠依据,更是成为员工职业发展的指导标杆。一方面,通过对绩效数据的收集处理,测试员工和岗位的匹配度,帮助供电企业了解员工并将其调整到更适合的位置;另一方面,员工可通过考核反馈了解自己的兴趣,并且充分利用供电企业中的发展机会。
二、我国供电企业人力资源绩效管理现状分析
(一)绩效考核的主观性较强,缺乏客观数据认识
绩效管理是部门领导对该部门员工的考核和评价过程。目前,我国大部分供电企业的人力资源管理系统是通过管理部门把数据导出,利用数据库或EXCEL办公软件进行处理,最终得出绩效考核的结果,而部门领导在面对该考核结果时往往容易看重员工在某一方面或某一时期的表现,因此,这在很大程度上容易受上级观念的影响,从而使考核结果具有片面性和主观随意性。
(二)供电企业缺乏数据复合型人才,智能化程度较低
传统供电企业信息处理局限于某一职位人的单项工作,且由于受到晋升机制和管理的束缚,企业无法引进高素质人才,数据复合型人才匮乏。同时,许多供电企业的绩效管理成为一种形式,大多数时候仅仅在月末及季末、年终的时候进行绩效考核,相关领导也只是凭借有限的材料对员工的表现进行总结和评价。
(三)管理者对数据的挖掘不够深入,绩效管理成果没有得到充分应用
对于绩效信息的处理和分析结果,诸多企业高层并未进行深入挖掘,他们对数据库中的数据关联了解不透彻,只单一注重供电企业的年度财务报表和供电企业的利润情况,而不对数据存在的问题进行分析,忽视一些看似不相关的数据,如饮食情况、工作环境等。实际上,这些信息如若经过整合分析,将能够更合理地解释员工现阶段的绩效情况,并有利于供电企业改进人力资源管理的方法。
三、在大数据时代下对于供电企业人力资源绩效管理的新举措
(一)充分的数据信息
为了进一步提升供电企业中人力资源的管理水平,各供电企业管理阶层除了要进一步完善供电企业内部的管理机制和运行方式,最重要的就是要及时利用各种数据对人员进行管理。而在大数据时代之下,利用其特点,可以充分的利用其所能提供的相关数据信息,根据具体详尽的数据信息对人员进行进一步的管理。在人力资源管理中,主要是注意以下3个方面的数据信息。
1、客观的基础数据信息。这些信息主要是在人力资源管理中最为基础的信息。这些信息都是员工们最客观的基本信息。主要包括员工的姓名、性别、年龄、籍贯、学历、特长和工作时间等。根据这些最为基本的信息,了解员工最基本的`情况,同时人力资源部门要将这些信息进一步记录存档,进一步完善,做好整理工作,为以后的人员的管理提供相应的数据支持。
2、人员变动情况的相关信息。人员的变动情况主要有调动、辞退、招聘和重新分配等。人力资源部门在对这些信息进行整理时,要着重关心员工的变动情况,一名员工何时参加工作,何时进行岗位调动,何时提升岗位等。
3、人员的质量信息所谓的人员的质量信息是指员工在供电企业的工作过程中,对于供电企业的奉献的情况,以及员工对于供电企业的人力资源管理的满意度的情况。在了解这些数据和信息的基础之上,有利于企业进一步了解员工的向心力和内在的优势。只有在了解这些数据的基础之上,才能准确的运用员工的特点进行人员的管理,进一步完善人力资源绩效的管理。
(二)进一步创新人力资源绩效管理的方式方法
在大数据时代之下,供电企业的人力资源绩效管理得到了进一步的发展。为了进一步提升供电企业的人员绩效管理的能力,全面的发挥大数据时代的有利作用。在人力资源绩效管理方面还需要从几个方面进行进一步的考虑优化。主要表现在以下几个方面:
1、进一步创新人力资源绩效的管理办法。在之前的一般的供电企业的考评时,对于员工的考评主要是一句员工对于供电企业的奉献和年终的表现情况进行考核评价。这样的考核方法一定程度上是可以表现员工的总体的贡献的,但是由于数据考虑的不慎全面,对于员工的考核也是存在一定的不平等。
2、建立健全供电企业绩效考核体系。在对员工进行绩效考核是,对于一些具体的数据和信息的收集对于供电企业员工的绩效公平的管理也是十分重要的。只有在全面的核查过每一位员工和供电企业相关的具体信息之后才能进一步完善员工的考核体系。在考核体系进一步确定的基础之上才能实现对于供电企业中人力资源绩效管理工作的优化。
3、合理的利用全面的考核方法。在对于供电企业的员工进行考评时,供电企业的管理部门还可以改变考核方法,完善考核机制。其中360度考核方法就是一种对于员工的全面的考核方法。
参考文献:
[1] 刘雅辉,张铁赢,靳小龙等.大数据时代的个人隐私保护[J].计算机研究与发展,2015,52(1):229-247.
[2] 卢黎歌,吴欢.基于大数据时代的大学生价值观教育[J].西安交通大学学报(社会科学版),2016,36(6).
[3] 何振,周芳检,杨文等.大数据时代城市应急管理行业协作体制创新研究?[J].湘潭大学学报(哲学社会科学版),2016,40(6)::.
[4] 孙光宁.大数据时代对司法审判的冲击及其应对——从指导性案例29号切入[J].湖北社会科学,2016,(5).
大数据时代下高中数学教学探讨论文
摘要: 大数据时代的到来,为人们的生产生活带来了极大的便利,也为教育教学的创新以及发展带来很大的影响。因此,在大数据时代下,要分析大数据的相关概念,然后对大数据时代下的高中数学教学方式的创新以及应用进行研究,以此来提高高中数学教学的有效性。
关键词: 大数据时代;高中数学;教学方式
信息技术的发展促使了大数据时代的到来,不仅增加了知识获取的途径,也改变了传统的学科教学方式,对促进高中数学教学改革的推进具有重要影响。因此,在大数据时代下,高中数学教师要利用大数据的技术优势,对现存的教学模式进行改革,突出数学教学的时代性,使学生在数学学习中既能够获得相应的知识,还能够树立正确的价值观念,促进高中生数学综合素养的形成,从而促进高中数学学科的健康发展。下面本文将对其进行详细论述。
1大数据相关概念
第一,大数据概念。数据是知识的来源,也是信息的一种记载方式。随着社会的发展和科学的进步,数据数量不断增多,对数据进行记录、测量以及分析的范围也就不断扩大,这标志着人类已经获得越来越多的知识和信息。大数据可以从宏观和微观两个角度去理解,多数学者都是从宏观上对大数据概念进行定义的,即用新的处理模式提高数据出来的执行力,洞察能力以及海量信息的优化能力。大数据具有数据信息量大、种类多种多样、真实性以及实效性强等特点。
第二,大数据分析概念。大数据分析简单来说就是要对大规模的数据进行科学分析,而对这些庞大的数据资源进行分析最根本的目的就是要发现和总结出这些数据中存在的规律以及模式,然后再利用数据的动态性特征去预测事物的未来发展趋势。
2大数据时代下高中数学教学方式的应用
利用大数据转变教师的教学角色
第一,应用大数据技术为教师教学模式的创新提供了机会。大数据时代的到来,传统的教学方法弊端逐渐显现,不仅体现出了与现代社会的不适应,也影响了学生学习积极性的提高。因此,在大数据时代,教师要利用大数据技术开展例如合作探究、个性化教学等多样化的教学方式,丰富课堂教学形式和内容,使学生不再死板地接受学习内容,而教师也能够根据学生的不同阶段开展针对性的.教学活动。教师教学角色和教学模式的转变,强调了学生在课堂中的主体地位,对活跃课堂气氛,提升课堂教学的有效性具有重要作用。例如:在学习“集合”这节课时,教师就可以采用合作探究的教学方式。首先,结合学生的差异性,将学生分成不同的小组,然后设计不同的问题组织学生进行探究,如:①用什么对集合进行表示?可以用一个元素表示集合吗?集合与元素之间有什么关系呢?②集合都有哪些特征呢,结合具体题目进行判断。之后,小组之间对研究结果进行互相交流。再后教师设计突出本节课重点的习题,给学生锻炼的机会。通过这样的教学方式,不同的学生组织到一起集思广益,互相帮助,不仅有利于促进学生思维的发散,还转变了教师的教学角色,提升了课堂学习效率。
第二,应用大数据技术对学生的学习情况进行深入了解。在传统的课堂教学形式下,教师过于侧重学生学习成绩的提升,忽视对学生的了解,导致教学针对性不强,影响教学效果。通常情况下,教师对学生了解是通过考试以及随堂测试的形式进行侧面分析,但这种分析得出的结果并不准确。但在大数据时代,利用大数据技术教师能够对学生的真实情况进行挖掘,然后根据学生之间的个性差异,对学生进行充分的了解,同时教师利用网络技术能够对学生的兴趣点和薄弱点进行准确判断,从而使自己的教学活动与学生的学习需求相吻合,突出数学教学的针对性。
利用大数据发挥学生的主体作用
第一,应用大数据提升学生的学习兴趣。在以往的教学方式下,学生是知识的接受者,部分教师为了提高教学效率甚至一味地向学生进行知识传输,殊不知这种填鸭式的教学方式,不仅无法激发学生的学习兴趣,还会造成学生的抵触情绪,对学习产生厌烦心理,进而影响数学学科教学效率的提升。因此,在大数据时代下,要充分发挥大数据的优势,利用大数据技术去激发学生的学习兴趣,丰富数学课堂的内容,使学生产生主动求知的欲望,能够积极主动地参与到教师组织的教学活动中来。大数据技术的具体应用可以从以下几个方面进行。首先,教师可以利用计算机平台设计预习内容,然后学生能够通过计算机平台自己完成教师布置的习题,教师之后可以借助大数据进行数据分析,这样教师在授课之前就能够找到学生学习的弱点以及难懂点。例如,教师可以利用大数据对学生在“函数”知识中存在的问题进行分析,然后了解到学生易错点和薄弱的地方,之后据此设计相应的课程教案。这样在课堂上学生就能够根据教师针对性的教学设计进行学习,以此来提升课堂教学的有效性。
第二,应用大数据提升学生的学习自主性。学科教学最关键的就是要提高学生的学习积极性,所以在高中数学教学中教师要注重学生自主性的提升。在高中数学教学中,课后知识巩固与习题练习是提高学生学习成绩的重要组成部分,但以往学生通常都是靠手抄错题的形式进行习题纠错和解答的,这种方式取得的效果并不显著,一是浪费了较多的学习时间,二是形式枯燥,学生学习自主性不高,在整理之后查漏补缺效果也不好。所以在此环节可以应用大数据技术为学生的课后自主学习提供平台。在大数据技术的支持下,教师可以将学生之前做好的试卷或者解答过程的问题输入到计算机系统当中,之后学生通过网络进行问题的下载和解答,以便于学生对问题进行查漏补缺。这种方式相比于传统的纠错形式,具有实时性的特征,有利于学生对纠错内容进行更好的掌握。
第三,应用大数据开展分层式的教学形式。目前我国多数高中数学课堂教学采取的都是班级统一上课的教学形式,模式单一固定,缺乏创新性,不仅不利于激发学生的学习积极性,还会影响学生的个性发挥,进而影响学生的潜能的挖掘。“因材施教”是孔子提出的教学思想,所以在大数据环境下,教师要利用大数据技术采取分层式教学的方式,结合每个学生的差异性,开展不同类型的教学活动。每个学生都是独立存在的个体,在思想、能力以及身心发展上都具有差异性,所以针对不同学生的不同特性开展分层教学活动,不仅能够满足学生层次化的学习需求,还能够有效地激发学生的学习兴趣。同时,教师在数学教学中尝试不同的教学方法,应用创新型的教学模式,也能够很好地活跃课堂氛围,调动学生的课堂参与度,从而达到提升学生学习效果的目的。
利用大数据拓宽学生获取知识的途径
大数据时代下,数据量和知识信息不断扩大,学生能够接触和学习到的内容也不断增多,所以教师要利用网络信息技术,在网络上搜集和整理更多的学习资料和信息,然后结合具体的教学目标和学习内容进行这些信息的分析和处理,以此来提高教师的教学效果。而在大数据环境下,学生也能够利用网络技术自行进行数学资源的获取,不断丰富自身的学习的内容,对抽象的数学知识进行简化。另外,在大数据环境下,教师要为学生提供真实、可靠的数据教学服务,引导学生养成善于开发和应用数据的意识和能力,能够根据自身的需要进行数据的获取,这也能够为教师教学互动的开展提供针对性,促进师生间的共同进步。例如:在学习“数列”这节课时,教师可以在课前引导学生利用网络自己进行课前的预习,对数列这节课的知识有个简单的认识,并能够对基本的知识点以及概念进行理解。之后,在课堂上教师可以利用多媒体技术开展具体的教学活动,将教学知识点直观、形象地展现在学生的面前,在课程结束之后,教师组织学生对自己设计的随堂测试问题进行解答,然后对错题进行整理。这种一系列的教学活动,能够提高学生大数据技术的利用与开发能力,对拓宽学生的知识获取途径,提高学生的学习效率具有关键作用。
利用大数据为家长提供教育平台
家庭在学生教育中具有非常重要的作用,家庭是学生的第一所学校,但以往的高中数学教学对家庭教育并不重视,家长没有广泛地参与到学校教育中去,而学校也没有为家长提供更多学习教育的机会,除了每次家长会之外,教师其他时间很少能见到家长,也就很少能参与学生的学习。但大数据时代,网络技术的应用为家长与学校教育的沟通提供了很宽广的平台,家长可以通过固定的软件进行账号的绑定,然后随时对自己家孩子的上课以及课后情况进行了解,进而更好地了解学生近期的表现情况。同时,家长也可以利用这些软件与教师进行交流,对学生的学习和生活情况进行了解,与教师进行充分的沟通和互动。使家长能够更好地配合学校的教育活动,在提高学生数学学习效果的同时,促进学生的健康成长。
3结语
综上所述,大数据时代下数据数量不断增多,网络技术的应用越发广泛,在此种环境下开展高中数学教学活动,不仅有利于创新教师的教学思想和教学方式,也有利于激发学生的学习兴趣,提高学生对数学学科的学习热情,从而达到大数据促进学科教学效果提升的目的。高中数学是一门综合性学科,能够培养学生的逻辑思维和推理能力,同时数学也是一门与人们日常生活密切相关的一门学科。所以在大数据时代,教师要利用好大数据信息,发挥好信息技术在教学中的优势,不断改善自身的教学角色,突出学生的主体地位,拓宽学生获取知识的途径,加强家长与学校的沟通等,使学生在大数据环境下能够养成乐于学习的好习惯和科学的学习方法,推动高中数学教学效果的有效提升,促进学生身心健康成长。
参考文献
[1]孟越飞.大数据背景下的高中数学教学[J].中小学电教(下半月),2018(1):22.
大数据论文【1】大数据管理会计信息化解析
摘要:
在大数据时代下,信息化不断发展,信息化手段已经在我国众多领域已经得到较为广泛的应用和发展,在此发展过程,我国的管理会计信息化的应用和发展也得到了非常多的关注。
同时也面临着一些问题。
本文通过分析管理会计信息化的优势和应用现状以及所面临的的问题,以供企业在实际工作中对这些问题的控制和改善进行参考和借鉴。
关键词:
大数据;管理会计信息化;优势;应用现状;问题
在这个高速发展的信息时代,管理会计的功能已经由提供合规的信息不断转向进行价值创造的资本管理职能了。
而管理会计的创新作为企业管理创新的重要引擎之一,在大数据的时代下,管理会计的功能是否能够有效的发挥,与大数据的信息化,高效性、低廉性以及灵活性等特点是密不可分的。
一、大数据时代下管理会计信息化的优势及应用现状
在大数据时代下,管理者要做到有效地事前预测、事后控制等管理工作,在海量类型复杂的数据中及时高效的寻找和挖掘出价值密度低但是商业价值高的信息。
而管理会计信息化就能够被看做是大数据信息系统与管理会计的一个相互结合,可以认为是通过一系列系统有效的现代方法,
不断挖掘出有价值的财务会计方面的信息和其他非财务会计方面的综合信息,随之对这些有价值的信息进行整理汇总、分类、计算、对比等有效的分析和处理,
以此能够做到满足企业各级管理者对各个环节的一切经济业务活动进行计划、决策、实施、控制和反馈等的需求。
需要掌控企业未来的规划与发展方向就能够通过预算管理信息化来实现;需要帮助管理者优化企业生产活动就能够通过成本管理信息化对
供产销一系列流程进行监控来实现;需要对客观环境的变化进行了解以此帮助管理者为企业制定战略性目标能够通过业绩评价信息化来实现。
(一)预算管理信息化
在这个高速发展的信息时代下,预算管理对于企业管理而言是必不可少的,同时对企业的影响仍在不断加强。
正是因为企业所处的环境是瞬息万变,与此同此,越来越多的企业选择多元化发展方式,选择跨行业经营的模式,经营范围的跨度不断增大。
这就需要企业有较强的市场反应能力和综合实力,对企业的预算管理提出了新的发展挑战要求。
虽然不同企业的经营目标各不相同,但对通过环境的有效分析和企业战略的充分把握,从而进行研究和预测市场的需求是如出一辙的。
企业对需求的考量进而反应到企业的开发研发、成本控制以及资金流安排等各个方面,最终形成预算报表的形式来体现企业对未来经营活动和成果的规划与预测,
从而完成对企业经营活动事后核算向对企业经营活动全过程监管控制的转变。
然而从2013国务院国资委研究中心和元年诺亚舟一起做的一项针对大型国有企业的调研结果中得出,仅仅有4成的企业完成了预算管理的信息化应用,
大型的国有企业在预算管理信息化应用这方面的普及率都不高,足以说明我国整体企业的应用情况也不容乐观。
所以从整体上来讲,预算管理信息化的应用并未在我国企业中获得广泛的普及。
(二)成本管理信息化
企业由传统成本管理企业向精益成本管理企业转换是企业发展壮大的必然选择。
而基于大数据信息系统能够为企业提供对计划、协调、监控管理以及反馈等过程中各类相关成本进行全面集成化管理。
而进行成本管理的重中之重就是对企业价值链进行分析以及对企业价值流进行管理。
企业能够通过成本管理信息化对有关生产经营过程中的原材料等进行有效地信息记录及进行标示,并结合在财务信息系统中产生的单独标签,
使与企业有关的供应商、生产经营过程和销售等的过程全都处于企业的监控。
以此企业可以做到掌握生产经营的全过程,即能够通过财务信息系统实时了解到原材料的消耗,产品的入库及出库等一切企业生产经营活动。
同时,结合价值链的分析和价值流管理,企业通过将生产过程进行有效地分解,形成多条相互连接的价值链,运用信息化手段对企业的
每条价值链的成本数进行有效的追踪监管和综合分析,以此为基础为企业提出改进方案,并使用历史成本进行预测,达到减少企业的不需要的损失及浪费,最终达到优化生产经营过程。
虽然成本管理信息化是企业发展的一个重要趋势,以大数据信息技术为基础的信息系统可以使得企业完成全面的成本管理,给企业的成本管理带来了巨大的推动力。
然而信息化在成本控制方面的实施效果并不是很理想。
(三)业绩评价信息化
业绩评价是对企业财务状况以及企业的经营成果的一种反馈信息,当企业的绩效处于良好状态,代表企业的发展状况良好,
也反映了企业现阶段人才储备充足,发展处于上升期,由此企业定制扩张战略计划。
而当企业的绩效不断减少,代表企业的发展状况在恶化,也反映了企业的人才处在流失状态,企业在不断衰退,此时企业应该制定收缩战略计划。
企业进行业绩评价信息化的建设,通过对信息系统中的各类相关数据进行综合分析,有效地将对员工的业绩评价与企业的财务信息、顾客反馈、学习培训等各方面联系在一起。
对于企业而言,具备一套完善且与企业自身相适应的业绩评级和激励体系是企业财务信息系统的一个重要标志,也是企业组织内部关系成熟的一种重要表现。
然而,如今对于具备专业的业绩评价信息化工具平衡分卡等在企业的发展过程中并未得到广泛的应用。
其中最大的原因应该是对业绩评价的先进办法对于数据信息的要求比较简单,通常可以由传统方式获得。
所以,现如今能够完全将业绩评价纳入企业信息系统,并能够利用业绩评价信息化来提高企业管理效率的企业数量并不多。
二、大数据时代下管理会计信息化存在的主要问题
(一)企业管理层对管理会计信息化不重视
我国企业管理层对企业管理会计信息化建设存在着不重视的问题。
首先,对管理会计信息化概念和建设意义没有正确的认识,有甚至由于对于企业自身的认识不够充分,会对管理会计信息化的趋势产生了质疑和抵触心理。
再者,只有在一些发展较好的企业中进行了管理会计信息化的建设工作及应用,但是,企业应用所产生的效果并不是很理想,进而促使管理会计信息化在企业的发展速度缓慢。
(二)管理会计信息化程度较低
大数据时代下,信息化手段已经在我国众多领域已经得到较为广泛的应用和发展,在此发展过程,我国的管理会计信息化的应用和发展也得到了非常多的关注。
但是,由于管理会计在我国受重视程度不够,企业在进行管理会计信息化建设的过程中对与软件的设计和应用也要求较高,所以与管理会计信息化建设相关的基础建设还相对较落后。
(三)管理会计信息化理论与企业经管机制不协调
虽然随着国家政策鼓励和扶持,很多行业的不断涌现出新的企业,企业数量不断增多,但是由于这些企业在规模以及效益等方面都存在着较大的差距,同时在管理决策方面也产生了显著地差别。
很多企业在发展的过程中并没有实现真正的权责统一,产生了管理层短视行为,没有充分考虑企业的长远利益等管理水平低下的问题。
三、管理会计信息化建设的措施
(一)适应企业管理会计信息化发展的外部环境
企业在进行管理会计信息化建设时,要结合企业所处的外部环境进行全方面的规划和建设。
在企业进行规划和建设时,国家的法律法规等相关政策占据着十分重要的位置,需要对市场经济发展的相关法律法规进行充分理解和考虑,为企业管理会计信息化建设提供好的法律环境。
管理会计信息化系统的正常运转要求企业处于相对较好的环境之中,以此充分发挥出其应有的作用。
(二)管造合适的管理会计信息化发展内部环境
企业管理会计信息化的良好发展要求企业能够提供良好的内部环境。
树立有效推进企业管理会计信息化建设的企业文化,企业文化作为企业股东、懂事、管理层以及每个员工的价值观念体现,
有利于各级员工都能够正确认识到管理会计信息化建设的重要性,接受管理会计信息化的价值取向。
再者,企业要储备足够的管理会计人才,为管理会计信息化的建设提供源源不断的血液。
同时,为企业管理会计信息化建设提供强大的资金保障。
最后,对企业内部控制体系不断完善,为企业创造长足的生命力,为管理会计信息化赖以生存的环境。
(三)开发统一的企业信息化管理平台
在大数据时代下,信息化不断发展,对于企业而言,会同时使用多种不同的信息系统进行组合使用,并且这种情况在未来也可能将持续下去,企业需要建立综合统一的企业信息化管理平台。
四、结束语
管理会计信息化已经成为企业发展的重要趋势。
同时也面对着一些问题。
因此,相应的措施和不断地完善和改进是必不可少的,以此才能够促进管理会计信息化的不断发展。
作者:李瑞君 单位:河南大学
参考文献:
[1]冯巧根.
管理会计的理论基础与研究范式[J].
会计之友,2014(32).
[2]张继德,刘向芸.
我国管理会计信息化发展存在的问题与对策[J].
会计之友,2014(21).
[3]韩向东.
管理会计信息化的应用现状和成功实践[J].
会计之友,2014(32).
大数据论文【2】大数据会计信息化风险及防范
摘要:
随着科学技术的不断进步和社会经济的不断发展,大数据时代的发展速度加快,同时也推动着会计信息化的发展进程,提高了企业会计信息化工作的效率和质量,资源平台的共享也大大降低了会计信息化的成本。
但大数据时代下会计信息化的发展也存在一定的风险。
本文将会对大数据时代下会计信息化中所存在的风险给予介绍,并制定相应的防范对策,从而使大数据时代在避免给会计
信息化造成不良影响的同时发挥其巨大优势来促进会计信息化的发展进程。
关键词:
大数据时代;会计信息化;风险;防范
前言
近年来经济全球化进程不断加快,经济与科技的迅猛发展,我国在经历了农业、工业和信息时代以后终于踏入了大数据时代。
大数据是指由大量类型繁多、结构复杂的数据信息所组成的`数据集合,运用云计算的数据处理模式对数据信息进行集成共享、
交叉重复使用而形成的智力能力资源和信息知识服务能力。
大数据时代下的会计信息化具有极速化、规模性、智能性、多元化、和即时高效等特点,这使得会计从业人员可以更方便快捷的使用数
据信息,并在降低经济成本的同时有效实现资源共享,信息化效率逐渐增强。
但同时大数据时代下的会计信息化也面临着风险,应及时有效地提出防范对策,以确保会计信息化的长久发展。
一、大数据时代对会计信息化发展的影响
(一)提供了会计信息化的资源共享平台
进入大数据时代以来,我国的科学技术愈加发达,会计信息化也在持续地走发展和创新之路,网络信息资源平台的建立使数据与信息资源可以共同分享,平台使用者之间可以相互借鉴学习。
而最为突出的成就便是会计电算化系统的出现,它改变了传统会计手工做账的方式,实现了记账、算账和报账的自动化模式,
提高了会计数据处理的正确性和规范性,为信息化管理打下基础,推进了会计技术的创新和进一步发展。
但是“信息孤岛”的出现证明了会计电算化并没有给会计信息化的发展带来实质性的变化。
学术堂整理了十五个和大数据有关的毕业论文题目,供大家进行参考:1、大数据对商业模式影响2、大数据下地质项目资金内部控制风险3、医院统计工作模式在大数据时代背景下改进4、大数据时代下线上餐饮变革5、基于大数据小微金融6、大数据时代下对财务管理带来机遇和挑战7、大数据背景下银行外汇业务管理分析8、大数据在互联网金融领域应用9、大数据背景下企业财务管理面临问题解决措施10、大数据公司内部控制构建问题11、大数据征信机构运作模式监管12、基于大数据视角下我国医院财务管理分析13、大数据背景下宏观经济对微观企业行为影响14、大数据时代建筑企业绩效考核和评价体系15、大数据助力普惠金融
浅谈基于大数据时代的机遇与挑战论文推荐
在学习和工作中,大家总少不了接触论文吧,论文的类型很多,包括学年论文、毕业论文、学位论文、科技论文、成果论文等。为了让您在写论文时更加简单方便,以下是我精心整理的浅谈基于大数据时代的机遇与挑战论文,仅供参考,希望能够帮助到大家。
浅谈基于大数据时代的机遇与挑战论文
1、大数据的基本概况
大数据(Big Data)是指那些超过传统数据库系统处理能力的数据,其具有以下四个基本特性,即海量性、多样性、易变性、高速性。同时数据类型繁多、数据价值密度相对较低、处理速度快、时效性要求高等也是其主要特征。
2、大数据的时代影响
大数据,对经济、政治、文化等方面都具有较为深远的影响,其可帮助人们进行量化管理,更具科学性和针对性,得数据者得天下。大数据对于时代的影响主要包括以下几个方面:
(1)“大数据决策”更加科学有效。如果人们以大数据分析作为基础进行决策,可全面获取相关决策信息,让数据主导决策,这种方法必将促进决策方式的创新和改变,彻底改变传统的决策方式,提高决策的科学性,并推动信息管理准则的重新定位。2009 年爆发的甲型H1N1 流感就是利用大数据的一个成功范例,谷歌公司通过分析网上搜索的大量记录,判断流感的传播源地,公共卫生机构官员通过这些有价值的数据信息采取了有针对性的行动决策。
(2)“大数据应用”促进行业融合。虽然大数据源于通信产业,但其影响绝不局限于通信产业,势必也将对其他产生较为深远的影响。目前,大数据正逐渐广泛应用于各个行业和领域,越来越多的企业开始以数据分析为辅助手段加强公司的日常管理和运营管理,如麦当劳、肯德基、苹果公司等旗舰专卖店的位置都是基于大数据分析完成选址的,另外数据分析技术在零售业也应用越来越广泛。
(3)“大数据开发”推动技术变革。大数据的应用需求,是大数据新技术开发的源泉。相信随着时代的不断发展,计算机系统的数据分析和数据挖掘功能将逐渐取代以往单纯依靠人们自身判断力的领域应用。借助这些创新型的大数据应用,数据的能量将会层层被放大。
另外,需要注意的是,大数据在个人隐私的方面,容易造成一些隐私泄漏。我们需要认真严肃的对待这个问题,综合运用法律、宣传、道德等手段,为保护个人隐私,做出更积极的努力。
3、大数据的应对策略
布局关键技术研发创新。
目前而言,大数据的技术门槛较高,在这一领域有竞争力的多为一些在数据存储和分析等方面有优势的信息技术企业。为促进产业升级,我们必须加强研究,重视研发和应用数据分析关键技术和新兴技术,具体可从以下几个方面入手:第一,夯实发展基础,以大数据核心技术为着手点,加强人工智能、机器学习、商业智能等领域的理论研究和技术研发,为大数据的应用奠定理论基础。二是加快基础技术(非结构化数据处理技术、可视化技术、非关系型数据库管理技术等)的研发,并使其与物联网、移动互联网、云计算等技术有机融合,为解决方案的制定打下坚实基础。三是基于大数据应用,着重对知识计算( 搜索) 技术、知识库技术、网页搜索技术等核心技术进行研发,加强单项技术产品研发,并保证质量的提升,同时促使其与数据处理技术的有机结合,建立科学技术体系。
提高软件产品发展水平。
一是促进以企业为主导的产学研合作,提高软件发展水平。二是运用云计算技术促进信息技术服务业的转型和发展,促进中文知识库、数据库与规则库的建设。三是采取鼓励政策引导软硬件企业和服务企业应用新型技术开展数据信息服务,提供具有行业特色的系统集成解决方案。四是以大型互联网公司牵头,并聚集中小互联网信息服务提供商,对优势资源进行系统整合,开拓与整合本土化信息服务。五是以数据处理软件商牵头,这些软件商必须具备一定的基础优势,其可充分发挥各自的数据优势和技术优势,优势互补,提高数据软件开发水平,提高服务内容的精确性和科学性。同时提高大数据解决方案提供商的市场能力和集成水平,以保障其大数据为各行业领域提供较为成熟的解决方案。
加速推进大数据示范应用。
大数据时代,我们应积极推进大数据的示范应用,可从以下几个方面进行实践:第一,对于一些数据量大的领域(如金融、能源、流通、电信、医疗等领域),应引导行业厂商积极参与,大力发展数据监测和分析、横向扩展存储、商业决策等软硬件一体化的行业应用解决方案。第二,将大数据逐渐应用于智慧城市建设及个人生活和服务领域,促进数字内容加工处理软件等服务发展水平的提高。第三,促进行业数据库(特别是高科技领域)的深度开发,建议针对不同的行业领域建立不同的专题数据库,以提供相应的内容增值服务,形成有特色化的服务。第四,以重点领域或重点企业为突破口,对企业数据进行相应分析、整理和清洗,逐渐减少和去除重复数据和噪音数据。
优化完善大数据发展环境。
信息安全问题是大数据应用面临的主要问题,因此,我们应加强对基于大数据的情报收集分析工作信息保密问题的研究,制定有效的防范对策,加强信息安全管理。同时,为优化完善大数据发展环境,应采取各种鼓励政策(如将具备一定能力企业的数据加工处理业务列入营业税优惠政策享受范围)支持数据加工处理企业的发展,促使其提高数据分析处理服务的水平和质量。三是夯实大数据的应用基础,完善相关体制机制,以政府为切入点,推动信息资源的集中共享。
做到上面的几点,当大数据时代来临的时候,面临大量数据将不是束手无策,而是成竹在胸,而从数据中得到的好处也将促进国家和企业的快速发展。
大数据为经营的横向跨界、产业的越界混融、生产与消费的合一提供了有利条件,大数据必将在社会经济、政治、文化等方面对人们生活产生巨大的影响,同时大数据时代对人类的数据驾驭能力也提出了新的挑战与机遇。面对新的挑战与发展机遇,我们应积极应对,以掌握未来大数据发展主动权。
结构
论文一般由名称、作者、摘要、关键词、正文、参考文献和附录等部分组成,其中部分组成(例如附录)可有可无。
1、论文题目
要求准确、简练、醒目、新颖。
2、目录
目录是论文中主要段落的'简表。(短篇论文不必列目录)
3、内容提要
是文章主要内容的摘录,要求短、精、完整。
4、关键词定义
关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作计算机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。
主题词是经过规范化的词,在确定主题词时,要对论文进行主题分析,依照标引和组配规则转换成主题词表中的规范词语。(参见《汉语主题词表》和《世界汉语主题词表》)。
5、论文正文
(1)引言:引言又称前言、序言和导言,用在论文的开头。引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。
(2)论文正文:正文是论文的主体,正文应包括论点、论据、论证过程和结论。主体部分包括以下内容:
a.提出问题-论点;
b.分析问题-论据和论证;
c.解决问题-论证方法与步骤;
d.结论。
6、参考文献
一篇论文的参考文献是将论文在研究和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方式按进行。
7、论文装订
论文的有关部分全部抄清完了,经过检查,再没有什么问题,把它装成册,再加上封面。论文的封面要朴素大方,要写出论文的题目、学校、科系、指导教师姓名、作者姓名、完成年月日。论文的题目的作者姓名一定要写在表皮上,不要写里面的补页上。
大数据背景下的信息安全问题探讨大数据具有体量巨大、类型繁杂、处理速度快、价值密度低四大特点,因此,对于个人来说,难以处理极其庞大的数据,只有国家和大型企业等组织或集团才有可能获取到各种敏感信息;大数据所搜集提取的个人信息可能连本人都不完全知晓,比如个人的行为特征、语言风格、爱好兴趣等。在大数据时代如何保护个人敏感信息或隐私,必将成为高难度的世界课题。2013年6月,美国前中情局雇员斯诺登曝光了始于2007年小布什时期美国国家安全局和联邦调查局启动的代号为“棱镜”的秘密项目。美国国家安全局通过接入雅虎、谷歌、微软、苹果等9家美国互联网公司中心服务器,对邮件、图片、视频、电话等10类数据进行监控,以搜集情报,监视民众的网络活动。“棱镜”项目缘于2004年美国政府的“星风”监视计划。但是,当时小布什政府由于法律程序等敏感问题而做出让步,美国本土的监听项目有所缩减。为了“星风”计划的继续进行,小布什政府通过司法程序将“星风”监视计划分拆成由国家安全局执行的4个监视计划,包括“棱镜”、“主干道”、“码头”和“核子”,均交由美国家安全局执掌。“棱镜”项目用于监视互联网个人信息。“主干道”和“码头”项目负责存储和分析通信和互联网上数以亿兆计的“元数据”。元数据主要指通话或通信的时间、地点、使用设备、参与者等,不包括电话或邮件等的内容。“核子”项目负责内容信息的获取,截获电话通话者对话内容及关键词,通过拦截通话以及通话者所提及的地点,来实现日常的监控。由此可见,斯诺登不仅揭露了美国的大规模窃听计划,更揭示了大数据时代国家信息安全保护问题。大数据的分析与使用,无论对个人(如跟踪健康状况防范疾病)、对企业(如了解市场偏好以有效安排产品设计生产营销)乃至对国家(如防范疫情或恐怖主义)显然都有巨大的好处,从商业用途来说,谷歌、微软、雅虎等互联网公司,完全可以通过它们掌握到的数以百万计、千万计甚至亿万计的数据,经由“超级计算”,准确推断消费者的爱好及习惯、商品的销售额、疾病疫情的发展趋势。商业如此,在政治、经济、军事等方面亦存在诸多的用途和潜在利益。像“棱镜”计划里涉及的谷歌、雅虎、苹果、微软等大网站,人们每天由于各种业务需要,会把大量个人信息输入其中,但常常并不被事先告知数据的用途。而这些数据会被企业或政府用来进行一些特殊的计算或分析,如通过对大数据的分析预测来对人们尚未实施的行为进行惩罚。比如“大数据之父”舍恩伯格曾披露过一个例子:在美国有一个计划名为“预测式配警”,通过对大数据分析来预测美国某个城市的某条街道的某个时段是犯罪高峰时段,然后在那个位置部署更多的警力。从此该地区居民将长时间被监控,这是一种变相的侵犯或惩罚。他们不是因为做错事,而是因为某个计算机的算法预测他们可能做错事而被惩罚了,显然这是不公平的。美国国安局拥有的正是类似的一套基于“大数据”的新型情报收集系统,这套名为“无界爆料”的系统,以30天为周期,从全球网络系统中接收到970亿条讯息,再通过比对信用卡或者通讯记录等方式,能几近真实地还原个人的实时状况。当然,像谷歌这样的商业组织也有可能掌握同样量级的信息而进行商业预测分析。因此,必须建立一套规则予以规范和约束对大数据的收集和使用。第一,虽然这些信息储存在不同的服务器上,但这些数据是用户的资产,拥有权属于用户自己而不是这些公司,这是必须明确的,就像财产所有权一样,个人隐私数据也应该有所有权。第二,利用大数据、云计算技术给用户提供信息服务的公司或企业,需要把收集到的用户数据进行安全存储和传输,这是企业的责任和义务。第三,如果企业或政府要使用用户的信息,一定要让用户有知情权和选择权,泄露用户数据甚至牟利,不仅要被视作不道德的行为,而且是非法行为。大数据时代的数据存储和应用方式是跨地域甚至是跨国界的。作为国家层面要将大数据上升为国家战略,奥巴马政府在2012年3月将“大数据战略”上升为最高国策,像陆权、海权、空权一样,将对数据的占有和控制作为重要的国家核心能力。我国也应从国家高度重视大数据,在对其进行安全保护、政策制定需要重视三个方面:一是要正视数据霸权,要清醒认识到我国在网络控制权、关键技术和高端设备等方面,还受制于西方。二是要明确主权,数据作为一种重要的战略资源,无论是个人拥有还是国家拥有,都要纳入到主权范围里面来考虑。三是要有治权,因为有主权不一定能够管治。比如:数据存到国外,云计算跨越国境,可能不在你的主权范围之内。要区别对待不同的数据,对确需保护的数据,必须有切实可靠的手段进行有效管理。如果做不到对数据的有效管理,大数据就必然面临失控的危险。政策界定安全责任问题。大数据的安全问题涉及政府、相关企业、网络运营商、服务提供者,以及数据产生者、使用者等方方面面,必须对各自的安全责任有明晰的政策界定。信息安全风险存在于数据的全生命周期之中,从技术思路、产品开发、用户使用、服务管理,各个环节均要分担相应的安全责任。监管保障基础设施安全问题。大数据的发展离不开电信网络甚至工控系统等关键基础设施,其安全可靠同样依赖于这些基础设施,受供应链全球化、产业私有化的影响,网络与关键基础设施间的安全日趋复杂,一国的大数据可能存放在别国的网络中,一国的基础设施可能同时服务于多个国家,高度的全球相互依赖性,挑战着原有的国家主权观念。所以,关键基础设施的安全监管体系十分重要,我国需要尽快确立对供应链的实质性国家安全审查和对基础网络的常态化安全监管。网络空间冲突管理问题。大数据的资源价值越来越高,围绕大数据的争夺和冲突就越来越激烈。大数据的生成、处理和利用方式,将极大改变各种冲突的表现方式和破坏烈度。通过立法与国际合作应对包括知识产权的保护、网络犯罪的处置、网络破坏活动特别是网络恐怖主义的打击以及网络战争的威胁。
大数据下的计算机信息处理技术研究论文
摘要: 现如今,随着科学技术的快速发展,计算机技术已经融入到人们的生活之中,想想10年前的计算机技术和现如今的计算机技术,真的是天壤之别,发生了翻天覆地的变化。同时,大数据的应用也越来越广泛,带来了丰厚的利润,各种“云”层出不断,对大数据的背景下,计算机信息处理的技术提出更高的竞争和要求。本文首先介绍大数据的概念,阐述基于大数据背景下的各种计算机信息处理技术,并对技术进行分析研究,最后对大数据未来的发展的机会做出分析。
关键词: 大数据;计算机信息;技术研究
随着科技的迅猛发展,大数据的应用愈来愈广,随之产生的数据系统总量大,十分庞大,这就对大数据时代下的计算机信息处理技术提出了更高的要求,如何将大数据处理的井然有序,有条不紊,值得每一位考研人员进行探讨。
一、大数据的概念
什么是大数据?大数据,另一种叫法称之为巨型资料,是一个十分复杂密集的数据集,这样的数据集在一定的时间内,依靠于传统普通的数据加工软件无法最终实现管理、抓取及处理的功能,需要进行创新,用新的处理模式才能够实现。大数据具有虚拟化、按需服务、低成本等等特点。在每一个消费者的角度来看,大数据中的计算技术资源服务可以帮助每一个大数据用户完成想要的资源信息,用户只需进行付费就可以直接使用,根本不需要到处搜寻资料,跑来派去的打听。这从根本上改变了人们对信息资源的需求方式,为用户提供一种超大规模的网络资源共享。同时,面对海量的大数据库资源,如何对大数据资源进行处理,得到用户们想要的信息资源,需要计算机信息技术不断的进行挖掘。
二、大数据下的计算机信息处理技术
总体的来说,基于大数据背景下的计算机信息处理技术总共可以分成以下3个方面:信息的获取及加工技术、信息的存储技术和信息安全方面的技术。下面就针对这三种技术,进行研究分析。1)信息的获取及加工技术。信息的获取及加工技术是实现信息化的第一步,是最基础的工作内容,只有完成了信息数据的搜集工作,才能进行下面的计算机信息技术的处理。因此,如若进行信息的采集工作,需要首先明确信息的目标源,对信息数据进行监控,时刻把握信息的流向及动态,然后将采集的信息数据输入至计算机数据库中,实现了信息的获取采集工作。接下来是第二步,信息的加工及处理工作,所有的加工和处理技术的核心在于用户的指引,完全由用户导向,设定信息的筛选范围,确定信息的丰富度等等。最后是依照于用户的要求,将信息资源传输到用户手中。这样就实现了整个信息从采集到处理,再从处理到传送工作的整个流程。2)信息的存储技术。在大数据的背景下,对于整个计算机信息的处理,信息技术的存储是十分关键的环节,可以将处理加工的数据得以保存,更方便用户对于数据的调取和应用。而且,现如今的信息数据总量大、更新速度快,合理的运用存储方面的技术,可以快速的实现信息的存储工作,提高工效效率,将复杂变简单。在目前的时代下,应用最广泛的是分布式数据存储技术,应用十分方便,能够实现快速大量的数据存储。3)信息安全方面的技术。大数据在方便用户使用和享受的同时,信息数据资源的安全性也是不容忽略的,而且随着社会的发展,数据资源的安全性和隐私性逐渐受到关注,如何实现数据库的安全是个十分值得研究的课题。首先最主要的是建立计算机安全体系,充分引进更多的人才。其次需要加强安全技术的研发速度,由于大数据发展及更新速度快,需要快速的更新原有的安全体系,尽快的适应大数据时代的更新速度。除此之外,加强对信息的监测是十分必要的,避免不法之人进行数据的盗取,在信息数据庞大的体量下,依然能够提供稳定有效的安全体系。
三、大数据下的计算机信息技术的发展前景
1)云技术的发展是必然趋势。云计算网络技术是越来越得到大的发展,一方面由于计算机硬件系统的数据处理技术有限,云技术可以完全的将弊端破除,同时,它能够利用最新的数据资源和处理技术,不依赖于计算机硬件系统。因此,随着庞大的数据越来越复杂,传统的数据处理方式已经不能够适应,未来将计算机信息处理必将朝着云计算发展。2)计算机网络不再受限于计算机硬件。未来,计算机网络技术将会不再受制于计算机硬件的限制,网络的传输技术更加趋向于开放化,计算机网络和计算机硬件将会分隔开,重新定义新的网络架构。3)计算机技术和网络相互融合。传统的计算机技术需要运用计算机的硬件系统才能够实现信息的处理、加工及存储工作,未来新的.计算技术将脱离于计算机硬件配备,可以仅仅用计算机网络就可以实现数据的加工和处理。同时,二者也将会相互融合、相互发展真正的满足由于大数据时代的更新所带来的困扰,这是未来大数据背景下计算机技术发展的又一个方向。
四、大数据下的计算机信息技术面临的机遇和挑战
在大数据背景下,计算机信息技术的机遇和挑战并存,首先,病毒及网站的恶意攻击是少不了的,这些问题是站在计算机信息技术面前的巨大挑战,同时,近些年,网络不断,社会关注度逐渐提高,网络的安全问题也是不同忽视,再者,信息之间的传送速度也有限,需要对传送技术进行创新,以适应更高的用户需求。最后,随着大数据库的不断丰富,越来越庞大的数据资源进行加工和处理,对数据的存储又有了新的要求,如何适应不断庞大的数据信息量,实现更加便捷的、满足用户需求的调取也是一个巨大的挑战。与此同时,也存在着许多的机遇。首先,大数据对信息安全的要求越来越大,一定程度上带动了信息安全的发展,其次,大数据在应用方面,对企业及用户带来了巨大的便利,同时也丰富了产业资源,未来用户及企业面前的竞争可能会转化为大数据信息资源的竞争。最后,大数据时代的来临,构造了以信息安全、云计算和物联网为主要核心的新形势。
五、结论
通过一番研究,目前在大数据时代下,计算机信息技术确实存在着一定的弊端,需要不断的进行创新和发展,相信未来的云计算会越来越先进,越来越融入到人们的生活及工作当中,计算机信息技术面临的巨大的挑战和机遇,面对挑战,抓住机遇,相信未来我国的计算机技术会越来越好,必将超过世界领先水平!
参考文献:
[1]王秀苏.计算机信息处理技术在办公自动化上的应用[J].科技经济市场,2010(03).
[2]张连杰.企业管理中计算机技术的应用[J].电脑知识与技术,2011(26).
[3]陈静.浅谈计算机处理技术[J].科技与企业,2012(11).
[4]赵春雷,乔治纳汉."大数据"时代的计算机信息处理技术[J].世界科学,2012.
[5]庄晏冬.智能信息处理技术应用与发展[J].黑龙江科技信息,2011.
[6]艾伯特拉斯洛,巴拉巴西,著.马慧,译.爆发:大数据时代预见未来的新思维[M].北京:中国人民大学出版社,2012.河南省高等学校重点科研项目计划(16A520008)
"大数据"是一个体量特别大,数据类别特别大的数据集,并且这样的数据集无法用传统数据库工具对其内容进行抓取、管理和处理。 "大数据"首先是指数据体量(volumes)?大,指代大型数据集,一般在10TB?规模左右,但在实际应用中,很多企业用户把多个数据集放在一起,已经形成了PB级的数据量;其次是指数据类别(variety)大,数据来自多种数据源,数据种类和格式日渐丰富,已冲破了以前所限定的结构化数据范畴,囊括了半结构化和非结构化数据。接着是数据处理速度(Velocity)快,在数据量非常庞大的情况下,也能够做到数据的实时处理。最后一个特点是指数据真实性(Veracity)高,随着社交数据、企业内容、交易与应用数据等新数据源的兴趣,传统数据源的局限被打破,企业愈发需要有效的信息之力以确保其真实性及安全性。从所周知,大数据已经不简简单单是数据大的事实了,而最重要的现实是对大数据进行分析,只有通过分析才能获取很多智能的,深入的,有价值的信息。那么越来越多的应用涉及到大数据,而这些大数据的属性,包括数量,速度,多样性等等都是呈现了大数据不断增长的复杂性,所以大数据的分析方法在大数据领域就显得尤为重要,可以说是决定最终信息是否有价值的决定性因素。基于如此的认识,大数据分析普遍存在的方法理论有哪些呢?大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。大数据分析广泛应用于网络数据挖掘,可从用户的搜索关键词、标签关键词、或其他输入语义,分析,判断用户需求,从而实现更好的用户体验和广告匹配。大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。 大数据分析的基础就是以上五个方面,当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。当下我国大数据研发建设应在以下四个方面着力一是建立一套运行机制。大数据建设是一项有序的、动态的、可持续发展的系统工程,必须建立良好的运行机制,以促进建设过程中各个环节的正规有序,实现统合,搞好顶层设计。二是规范一套建设标准。没有标准就没有系统。应建立面向不同主题、覆盖各个领域、不断动态更新的大数据建设标准,为实现各级各类信息系统的网络互连、信息互通、资源共享奠定基础。三是搭建一个共享平台。数据只有不断流动和充分共享,才有生命力。应在各专用数据库建设的基础上,通过数据集成,实现各级各类指挥信息系统的数据交换和数据共享。四是培养一支专业队伍。大数据建设的每个环节都需要依靠专业人员完成,因此,必须培养和造就一支懂指挥、懂技术、懂管理的大数据建设专业队伍。
事实上,所谓“大数据时代”的说法并不新鲜,早在2010年,“大数据”的概念就已由美国数据科学家维克托·迈尔·舍恩伯格系统地提出。他在 大数据时代一书中说,以前,一旦完成了收集数据的目的之后,数据就会被认为已经没有用处了。比如,在飞机降落之后,票价数据就没有用了;一个网络检索命令完成之后,这项指令也已进入过去时。但如今,数据已经成为一种商业资本,可以创造新的经济利益。数据能够成为一种资本,与移动互联网有密切关系。随着智能手机、平板电脑等移动数码产品的“白菜化”,Wi-Fi信号覆盖的无孔不入,越来越多的人不再有“在线时间”和“不在线时间”之分,只要他们愿意,便可几乎24小时一刻不停地挂在线上;在线交易、在线支付、在线注册等网络服务的普及固然方便了用户,却也让人们更加依赖网络,依赖五花八门的网上平台。而随着科技的进步,以往需要几盒软盘或一张光盘保存的信息,如今只需一片指甲盖大小的芯片,即可全部储存而且绰绰有余;以往需要电脑、显示器、读卡器等专门设备才能读取的数码信息载体,如今或许只需一部智能手机和一个免费下载的APP第三方应用程序,便可将数据一览无余。大数据时代的科技进步,让人们身上更多看似平常的东西成为“移动数据库”,如带有存储芯片的第二代银行卡、信用卡,带有芯片读取功能的新型护照、驾驶证、社保卡、图书证,等等。在一些发达国家,官方为了信息录入方便,还不断将多种“移动数据库”的功能组合成一体。数字化时代使得信息搜集、归纳和分析变得越来越方便,传统的随机抽样被“所有数据的汇拢”所取代,基于随机抽样而变得重要的一些属性,如抽样的精确性、逻辑思辨和推理判断能力,就变得不那么重要,尽可能汇集所有数据,并根据这些数据得出趋势和结论才至为关键。简单说,以往的思维决断模式是基于“为什么”,而在“大数据时代”,则已可直接根据“是什么”来下结论,由于这样的结论剔除了个人情绪、心理动机、抽样精确性等因素的干扰,因此,将更精确,更有预见性。不过,一些学者指出,由于“大数据”理论过于依靠数据的汇集,那么一旦数据本身有问题,在“只问有什么,不问为什么”的模式下,就很可能出现“灾难性大数据”,即因为数据本身的问题,而做出错误的预测和决策。
《大数据技术对财务管理的影响》
摘 要:大数据可以快速帮助财务部门建立财务分析工具,而不是单纯做账。大数据应该不仅仅局限于本单位的微观数据,更为重要的关注其他单位的宏观数据。大数据技术不仅带来了企事业单位财务数据搜集的便利和挑战,而且也衍生出了诸多关于单位人员个人信息保密等问题的积极探索。本文主要研究大数据技术(meta-data或big data)对企业或事业单位财务管理的影响,以期为财务数据管理的安全性提供一种分析的依据和保障。
关键词:大数据;财务管理;科学技术;知识进步
数据是一个中性概念。人类自古以来几千年的辉煌变迁,无外乎就是数据的搜集和使用过程而已。纵观古今中外的人际交流与合作,充满着尔虞我诈和勾心斗角,那么他们在争什么呢?实际上是在争夺信息资源;历史上品相繁多的战争,实际上不是在维持什么所谓的正义和和平,抑或为了人间的正道,而是在争夺数据的使用权;“熙熙攘攘皆为利往、攘攘熙熙皆为利来”的世俗变迁逻辑已经让位于数据游戏的哲学法则。人类自英国产业革命以来所陆续发明的技术,尽管被人们美其名曰“第四次科技革命的前沿技术”,实际上不过就是“0”和“1”两个数字的嬉戏而已。正如有学者指出的,汽车技术、生命科学技术、基因技术、原子能技术、宇宙航天技术、纳米技术、电子计算机技术,看起来美轮美奂,实则隐含着杀机,那就是由于人们把技术当成了目的后,导致了“技术专制”后的“技术腐败”和“技术灾难”。人类一方面在懒惰基因的诱惑下,发明了诸多所谓的机械装置,中国叫“机巧”;另一方面又在勤奋的文化下,发明了诸多抑制懒惰的制度和机制。本来想寻求节俭,结果却越来越奢侈;本来想节约,结果却越来越浪费;本来想善良,结果却越来越邪恶;本来想美好,结果却越来越丑陋。正如拉美特里所说:“人是什么?一半是天使,一半是野兽。当人拼命想成为天使的时候,其实他会逐渐变成野兽;当人想极力崇拜野兽的时候,结果会逐渐接近天使。”我们不是在宣讲宿命的技术,我们只是在预测技术的宿命。本文主要研究大数据技术(meta-data或big data)对企业或事业单位财务管理的影响,以期为财务数据管理的安全性提供一种分析的依据和保障。
一、大数据技术加大了财务数据收集的难度
财务数据的收集是一个复杂的系统工程,国际上一般采用相对性原则,即首先利用不完全统计学的知识对数据进行初步的计算,接着对粗糙的数据进行系统的罗列,最后对类型化的数据进行明分梳理。使用者如果想进入该数据库,就必须拥有注册的用户名和密码。由于国际上对于网络数据的监督均采取了实名注册的模式,所以一旦该用户进入到核心数据库之后想窃取数据,一般都会暴露自己的bug地址源,网管可以循着这一唯一性存留,通过云计算迅速找到该网络终端的IP地址,于是根据人机互动原理,再加上各种网吧所安装的监控平台,可以迅速找到数据库的剽窃者。如果按照上述数据变迁逻辑,那么财务数据的收集似乎变得易如反掌,而事实并非如此。因为:①数据的量化指标受制于云计算服务器的安全性。当云服务器受到不可抗力的打击,如地震、水患、瘟疫、鼠疫、火灾、原子能泄露或各种人为破坏的作用,数据会呈现离散型散落。这时的数据丢失会演变成数字灾难;②各种数据版权的拥有者之间很难实现无缝隙对接。比如在经过不同服务器的不同数据流之间,很难实现现实意义上的自由流通。正如专家所指出的,教育服务器的事业单位的人员数据、行政部门人事管理部门的保密性数据、军事单位的军事数据、医疗卫生事业的数据、工商注册数据、外事数据等在无法克服实际权力的分割陷阱之前,很难实现资源的共享,这时对数据的所谓搜集都会演化为“不完全抽样”的数字假象。由此而衍生的数据库充其量只是一部分无用的质料而已。
二、大数据技术影响了财务数据分析的准确性
对于搞财务管理的人来说,财务数据的收集只是有效实现资源配置的先决条件,真正有价值的或者说最为关键的环节是对财务数据的分析。所谓“财务数据分析”是指专业的会计人员或审计人员对纷繁复杂的单位人力资源信息进行“去魅”的过程。所谓“去魅”就是指去粗取精、去伪存真、由此及彼、由表及里、内外互联,彼此沟通、跨级交流、跨界合作。在较为严格的学术意义上,分析的难度广泛存在与财务工作人员的日常生活中。大数据技术尽管为数据的搜集提供了方便法门,但同时加大了财务人员的工作量和工作难度。原先只是在算盘或者草稿纸上就可以轻松解决的数据计算,现在只能借助于计算机和云图建模。对于一些借助于政治权力因素或者经济利益因素,抑或是借助于自身的人际关系因素上升到财务管理部门的职工来说,更大的挑战开始了。他们不知道如何进行数据流的图谱分析,不知道基于计算机软件技术的集成线路技术的跌级分类,不知道基于非线性配置的液压传动技术的模板冲压技术,不知道逆向网络模型来解决外部常态财务变量的可篡改问题。由于技术不过硬,导致了领导安排的任务不能在规定的时间内完成,即时仓促做完的案例,也会因为数据分析技术的落后而授人以柄,有的脾气不好的领导可能会大发雷霆;脾气好的领导只是强压着内心的怒火,那种以静制动的魄力和安静更是摄魂夺魄。所以说数据分析难度的增加不是由于财务人员的良心或善根缺失,在很大程度上是由于技术的进步和大数据理念给我们带来的尖锐挑战。对于普通的没有家庭和社会背景的财务管理人员来说,能做的或者说唯一可做的就是尊重历史发展的周期律,敬畏生生不息的科学革命,认真领会行政首长的战略意图,提升自己的数据分析技术,升华在自身的“硬实力”。否则觊觎于领导的良心发现和疏忽大意,期望技术的静止或者倒退,抑或是在违法犯罪之后天真的认为可以相安无事,可能都只会落得“恢恢乎如丧家之犬”的境遇。
三、大数据技术给财务人事管理带来了挑战
一个单位的财务人事管理牵扯到方方面面的问题,其意义不可小视。一般来讲,单位在遴选财务管理部门管理人员的时候,大多从德才绩行四个方面全面权衡。然而这种“四有标准”却隐含着潜在的危机和不可避免的长远威胁,这其中的缘由就在于人性的复杂性和不可猜度性。历史和现实一再告诉人们,单纯看眼前的表现和话语的华丽,不仅不能对人才的素质进行准确的评价,而且还会导致官员的远期腐败和隐性腐败。对于中国的腐败,国人大多重视了制度和道德的缘起,却往往忽视了财务管理的因素。试想如果财务管理人员牢牢践行“焦裕禄精神”,不对任何政治权力开绿灯,国有资产又如何流出国库而了无人知晓呢?事实上,中国的所有腐败,不论是国有资产的国外流失抑或是国内流失,都在很大程度上与财务人员有关,可能有些管理人员会强调那不是自己的责任,出纳签字是领导的授意,会计支出费用那是长官的意思清晰表示。实际上,处于权力非法授予的签字、盖章、取现、流转和变相洗钱都是违法的,甚至是犯罪的。间接故意也是应当追究责任的。值得高兴的是,伴随着数字模拟技术的演进,财务管理中的腐败现象和人事管理科学化问题得到了极大的改善,相关领导伸手向财务要钱的行为,不仅会受到数据进入权限的限制,而且还会受到跟数据存留的监控,只要给予单位科技人员以足够的权限,想查找任何一笔资金的走向就变得非常简单,而且对于每一笔资金的经手者的信息也会了如指掌。这在一定程度上减少了只会指挥、不懂电脑的首长的孵化几率。
四、大数据技术加大了单位信息保密的难度
IMA(美国注册会计师协会)研发副总裁Raef・Lawson博士曾经指出:“客观上讲,大数据技术的正面效用是非常明显的,但一个不容回避的事实是大数据技术为财务信息的安全性提出了越来越严峻的挑战。我们已经注意到,在欧洲大陆、美洲大陆已经存在基于数据泄露而产生的各种抗议活动,这些活动牵扯到美国的数据窃听丑闻、俄罗斯对军事数据的强制性战友举动、以色列数据专家出卖阿拉伯世界经济数据的案件、在东方的中国香港一部分利用数据的窃取而发家致富的顶尖级黑客专家。”在数据集成的拓扑领域,大数据技术的保密性挑战肇始于蚁群算法的先天性缺陷。本来数据流的控制是依靠各种所谓的交易密码,实际上这些安全密码只是数据的另一种分类和组合而已。在数据的非线性组合和线路的真空组装模式下,任何密码都只是阻挡了技术侏儒的暂时性举动,而没有超出技术本身的惰性存在。当一个hacker掌握了源代码的介质性接洽技术之后,所剩下的就是信息和数据的搜集了,只要有足够的数据源,信息的户的几乎是轻而易举的。
2003年,北京的一家名为飞塔公司的防火墙安全软件在中关村科技城闪亮上市。该安全控制软件的开发者随机开发了一款名曰MAZE天网的软件,并且采用了“以其之矛攻其之盾”的攻防策略。测试的结果是尽管maze的源代码采用了24进制蝶形加密技术,但 FortiGate防火墙技术仍然能够阻挡住善意木马对电脑终端用户信息的剽窃和非法利用。FortiWeb已经通过全球权威的ICSA认证,可以阻断如跨站脚本、SQL注入、缓冲区溢出、远程文件包含、拒绝服务,同时防止敏感数据库外泄,为企事业单位Web应用提供了专业级的应用安全防护。飞塔公司之所以耗费人力和物力去开发这一新型的换代产品,就在于大数据时代对单位信息保密性的冲击。试想,如果一个单位连职工最起码的个人信息都不能安全存储的话,那么财务管理的科学性和人本性将从何谈起?只能说,即使在人权保护意识相对薄弱的法治环境里,我们也应该尽量提升自己的保密意识,加强对个人信息的保护和合理运用。
作者简介:田惠东(1967- ),女,汉族,河北定兴人,副高级会计师,本科学历,研究方向:财务管理,单位:保定市第一医院
事实上,所谓“大数据时代”的说法并不新鲜,早在2010年,“大数据”的概念就已由美国数据科学家维克托·迈尔·舍恩伯格系统地提出。他在 大数据时代一书中说,以前,一旦完成了收集数据的目的之后,数据就会被认为已经没有用处了。比如,在飞机降落之后,票价数据就没有用了;一个网络检索命令完成之后,这项指令也已进入过去时。但如今,数据已经成为一种商业资本,可以创造新的经济利益。数据能够成为一种资本,与移动互联网有密切关系。随着智能手机、平板电脑等移动数码产品的“白菜化”,Wi-Fi信号覆盖的无孔不入,越来越多的人不再有“在线时间”和“不在线时间”之分,只要他们愿意,便可几乎24小时一刻不停地挂在线上;在线交易、在线支付、在线注册等网络服务的普及固然方便了用户,却也让人们更加依赖网络,依赖五花八门的网上平台。而随着科技的进步,以往需要几盒软盘或一张光盘保存的信息,如今只需一片指甲盖大小的芯片,即可全部储存而且绰绰有余;以往需要电脑、显示器、读卡器等专门设备才能读取的数码信息载体,如今或许只需一部智能手机和一个免费下载的APP第三方应用程序,便可将数据一览无余。大数据时代的科技进步,让人们身上更多看似平常的东西成为“移动数据库”,如带有存储芯片的第二代银行卡、信用卡,带有芯片读取功能的新型护照、驾驶证、社保卡、图书证,等等。在一些发达国家,官方为了信息录入方便,还不断将多种“移动数据库”的功能组合成一体。数字化时代使得信息搜集、归纳和分析变得越来越方便,传统的随机抽样被“所有数据的汇拢”所取代,基于随机抽样而变得重要的一些属性,如抽样的精确性、逻辑思辨和推理判断能力,就变得不那么重要,尽可能汇集所有数据,并根据这些数据得出趋势和结论才至为关键。简单说,以往的思维决断模式是基于“为什么”,而在“大数据时代”,则已可直接根据“是什么”来下结论,由于这样的结论剔除了个人情绪、心理动机、抽样精确性等因素的干扰,因此,将更精确,更有预见性。不过,一些学者指出,由于“大数据”理论过于依靠数据的汇集,那么一旦数据本身有问题,在“只问有什么,不问为什么”的模式下,就很可能出现“灾难性大数据”,即因为数据本身的问题,而做出错误的预测和决策。(如能帮到你,望您采纳!!谢谢!!)