首页 > 论文发表知识库 > 三年级简单的组合论文

三年级简单的组合论文

发布时间:

三年级简单的组合论文

怎样提高小学生的计算能力一个孩子如果计算能力不强,对这个孩子的整体数学成绩都非常有影响。如何培养孩子的计算能力呢,我认为重点从以下方面进行训练。一、要熟练的掌握“10以内的加减法”、“20以内的加减法”“九九乘法口诀”。低年级作为关键的起始阶段,加、减、乘、除的入门学习对学生今后的继续学习将会产生深远的影响。教学实践告诉我们,任何复杂的题都是由一个简单的问题组合而成的。无论是两位数乘除两位还是两位数乘除三位数,或其他更复杂的计算题,它们的基础都是“10以内的加减法”、“20以内的加减法”“九九乘法口诀”这些基础的知识不过关,达不到不假思索、脱口而出的程度造成的。如果“10以内的加减法”、“20以内的加减法”“九九乘法口诀”没有熟练撑握,到了中高年级必然算不快、算不准。二、加强口算能力的训练。 口算能力强,才能加快笔算速度,提高计算的正确率。我们学校每学期都会发一本口算册,老师要把这本口算册充分的利用起来,低年级的教学内容相对来说少一些,老师可在课堂上给孩子计时让孩子们做,这个时候学生的注意力很集中,也会很有效的提高学生的计算速度。口算不仅要计时,更重要的是要给孩子看出对、错,对那些能在规定时间内考满分的要及时给予一定的奖励,引起学生对口算的重视,另外要注意口算是家庭作业中必做的一项,平时把这样一项工作坚持下来。这样才把口算这项能力提高起来。三、重视错题的分析学生的学习是一个反复认识和实践的过程,出错总是难免的。特别是低年级学生由于年龄特征刚刚学习的知识比较容易遗忘。例如,退位减,前一位退了1,可计算时忘了减1。同样,做进位加时,又忘了进位。特别是连续进位的加法,连续退位的减法,忘加或漏写的错误较多,这些都与儿童记忆不完整有关系。因此,教师要及时了解学生计算中存在的问题,深入分析其计算错误的原因,有针对性地进行教学。 为了更好地了解学生学习的情况,在学生出错处加上评语导出错因,让学生知道错的原因,是由于自己马虎大意,还是哪方面的知识掌握得不够好,知错的基础一把错题重做一遍,对正确的知识再次加深认识巩固。教师要因人、因题地重点分析错题原因,大部分学生都做错了的题,教师就要集中进行了讲解,分析错误的原因;对基础较差、常做错题的学生,教师要多花时间在课后进行辅导。学生对自己作业中出现的错误要进行了自我反思,每个学生准备一个错题本子,把每天作业中出现的错误记在本子上,并写出错误和改正方法。 另外,要有针对性地把学生经常错的题目类似的题目作为学生的课堂作业,再次反馈了解学生改错后的作业效果。改错题型的练习对学生是有要求:判断对错→找出错误处→分析错误原因→改正。课堂采取小医生找病因比赛的形式,让学生在比赛中获取知识。“改错”不能仅满足于学生分清了错误原因,改正了错误,而且达到预防效果,教育学生对这些错误有则改之,无则加勉。四、帮助学生弄清算理,揭示规律在计算教学时,要让学生弄清算理,不但知其然还知其所以然,这样,计算教学就会变得生动活泼、多姿多彩。低年级学生直观思维占主导,逐渐向抽象思维过渡,心理学家认为:思维是从动作开始的。要使学生掌握数学知识,促进思维发展,就需要在形象思维和数学抽象之间架一座桥梁,充分发挥学具操作的作用。在进行9加几教学时就可以让学生请出小棒一起来学习,在学生自主动手操作中优化得出凑十法,为后面继续学习进位加、退位减打下基础。还可以利用学生已有的知识经验去理解新知识,构建教学知识结构的主要方式,教学中恰当地运用旧知识,通过类比同化新知,实现知识的正迁移,有利于学生对新知的理解和对新的认识结构的认同。比如,想加算减、口诀求商等都是学生通过知识间的联系来进行继续学习的。再如进位加和退位减的方法要讲清楚,让学生理解透彻,他们才能正确熟练地运用方法计算。五、培养低年级学生养成良好的计算习惯良好的计算习惯,直接影响学生计算能力的形成和提高。许多学生计算法则都能理解和掌握,但常常会发生错误,主要是缺乏严格的训练,没有养成良好的学习习惯。要提高学生的计算能力,必须重视良好计算习惯的培养。 1、使学生养成认真校对的习惯。要求学生对所抄写下来的题目都进行认真校对,细到数字、符号,做到不错不漏。 2、使学生养成审题的习惯。要求学生看清题目中的每一个数据和运算符号,确定运算顺序,选择合理的运算方法。 3、使学生养成仔细计算、规范书写的习惯。要求学生书写工整,书写格式要规范。同时,能口算的要口算,不能口算的要认真笔算,强化学生规范打草稿的习惯。列竖式计算时,数位要对齐,数字间要有适当的间隔,进位的确数字要写在适当的位置上,退位点不能少。 4、使学生养成估算和自觉验算的习惯。教师要教给学生验算和估算的方法,并将验算作为计算过程的一个重要环节进行严格要求,提倡用估算进行检验答案的正确性。计算教学是一个长期复杂的教学过程,要提高学生的计算能力也不是一朝一夕的事。俗话说,要想练就一身过硬的本领,就必须得拳不离手,曲不离口,口算能力的培养也是如此。它是一个日积月累的过程,只有教师和学生的共同努力才有可能见到成效。

如何培养学生解决数学问题的能力 解决问题是数学的核心,解决数学问题能力的培养是小学数学的重要目标之一,学习数学离不开解题,解决问题的数学是贯穿全部小学数学的内容,要结合具体的生活情景,让学生用所学的数学知识发现数学问题,提出数学问题,解决数学问题,逐步培养学生解决数学问题的能力,解决问题能力的培养会促进各领域内容的理解和掌握。 “问题解决”是以问题为中心,以学生已有的知识和经验为基础,学生在教师创设最佳认知活动的条件下,引导学生自主的发现问题,分析问题,解决问题,学生通过自身情感体验去实现知识的再创造的数学活动,在教学中我的具体做法是:一.培养学生审题的习惯,提高解决问题的能力 1.要求学生认真读题,审题,找出相关的数据和关键字,关键词,从而培养学生的审题习惯。 2.要求学生分析题目,弄清题意,明确题目中的相关条件之间的数量关系,找出已知的信息和要解决的问题。 如教学:“一个三位数,数字和是2,这个三位数减去6后,还是一个三位数,新的三位数数字和是5,原来这个三位数是多少? ”教学时,我先让学生读题,审题,找出关键的词:三位数、数字、原来、新的,并加以理解,在这里“原来”同学们比较容易理解,对于“数字”是一个新词,不好理解,我就反复引导学生读“一个三位数数字和是2”,当连续读2遍后,还是不清楚,我又指着“数字和”问是什么意思?是谁的和?“数字”又指的什么?同时在黑板上写出个位、十位、百位,这时一位同学举手了,并且说:“我知道了,数字指的是个位、十位、百位上的数。”当我用赞称的眼神和拍手的动作告诉大家:他的回答是正确的。这时又有一位同学也说 :“ 我也知道了。”我紧追着问:谁能说说对数字的理解。另一位同学马上站起来说:“数字只能是0,1,2,3,4,5,6,7,8,9。” 我又反问:“为什么?可能是10,11,12吗?”这时又有好几位同学举手了说:“个位、十位、百位数字只能是一位数,不能是两位数。”同学们对“数字”理解后,我又反回来让学生一句一句理解题意:“一个三位数数字和是2,这个三位数是多少?”并让他们自己写出来,有好些同学能写出110、101、200,然后让他们去交流自己的想法,我又引导他们继续读:“这个三位数减去6后仍然是一个新的三位数”是什么意思?怎么求出新的三位数,这新的三位数到底哪个是我们所求的?怎么知道的,根据是什么? 当学生们做完后,我又让他们反思解决问题的思路,互相交流,探讨解决问题的方法及过程,给学生展示自己的机会,使学生对所学知识回味无穷,取长补短激发了学生的表现欲望,感受到学习数学的作用。 二.培养学生初步的应用意识,提高解决问题的能力。 引导学生把所学的数学知识应用到生活中去,解决身边的数学问题,了解数学在现实生活中的作用,体会学习数学的重要性。 例如:教学用乘法和除法两步计算解决实际问题时,教材中,呈现给学生的是一幅购物的情景图,货架上,摆有练习本、文具盒、熊猫、布娃娃......画面上有售货员阿姨和小朋友的对话,给出了要解决的问题,教学时,我给学生创设了购物情景,让学生主动进入“商店”了解信息,了解售货员和小朋友的对话,说说他们在议论什么?也就是想买什么?你是怎么知道的?这时学生们畅所欲言,相互交流了解到的相关信息和要解决的问题,问题如何解决呢?我首先让学生试做,然后相互交流,说出自己解决问题的思路,对问题解决失败的学生我也让他们重复问题解决的整个过程,让他们在反思的过程中掌握解决问题的方法,最后引导学生归纳解决问题的步骤,先求什么?再求什么?整个教学过程借助购物的生活经验,探讨解决问题的方法,使学生在主动探索的过程中长知识,长才干。了解数学的作用,体会了学习数学的重要性。 三.鼓励学生独立思考,引导学生自主探索,合作交流,提高解题能力。 数学教学过程充满观察,实验,模拟,推断等探索与挑战性的活动,要引导学生投入到探索与交流的学习活动中去。例如:教学“小红买了一篮苹果和桔子往回走,遇到了外婆,把苹果的一半20个给了外婆,回家后,弟弟数了数篮子里一共有58个水果,小红买了多少个桔子?”教学时,我先让学生读题,审题,找出相关信息和关键词:水果、一半,并让学生交流对“一半”的理解,然后组织几位学生分别扮演不同的角色,用课本练习本代替“苹果和桔子”模拟了买水果的全过程,然后让学生试做,这时仅有几位同学会做了,我只好让他们再次模拟,再做,直到大部分同学会做了。而后,我又给学生提供充分的时间,让学生相互交流,探索解决问题的方法,接着说出解决问题的思路,当同学们达到欲罢不止的地步时,我又鼓励学生到讲台上说说,给他们展示自己的机会,体验成功的喜悦,感觉到学习数学的乐趣. 四.指导学生运用各种策略,优化知识结构. 在教学时,我利用开放式的教学方法引导学生采用“一题多解”的方法,鼓励学生摆脱思维定势,从不同角度去思考数学问题,运用不同的方法全方位的思考,培养学生的思维能力,培养学生多元化解决问题的策略,当问题解决了,还要善于引导学生比较答案,找出最佳方案,这样有助于培养学生全面解决问题的习惯和灵活解决问题的能力,有助于培养学生与他人相互交流,合作的意识。 例如:在引导学生观察二年级下册课本第91页的画面时,教材中呈现的是一副二年级四个班的学生准备坐船去鸟岛玩的热闹场景,画面上给出各班人数和船的限乘人数。教学时,我让学生仔细观察画面,了解信息后,重点让学生们说出“限乘”是什么意思?根据学生了解到的信息,我问:你想说什么?开始学生们只能提出哪个班去的最多?哪个班去的最少?二年级一共有多少人?这些简单的问题,我追问:只能提出这些问题吗?在想想:当提出二年级学生一起去一次能坐下吗?这样的问题时,一位同学马上说:“很明显不能。” 那么怎么安排呢?我给了学生充分的时间,让他们讨论交流,做出合理的安排方案,通过这样的训练,学生学会了创造性地开展学习,对同一问题,能从不同的角度,用不同方法进行全方位的思考与揭示,学生的思维能力提高了,逐步培养了多元化解决问题的策略。总之,培养学生数学问题的解决能力是推行素质教育必不可少的重要观念,问题的解决会帮助学生学会用数学思想观察、思考和解决问题,掌握解决问题的策略,对开发学生潜能,引导学生开展探索式学习,提高学生学习的主动性,培养学生的创新能力有着不可低估的作用,因而我们要转变教育思想,提高教学意识和水平,深入研究问题解决的教学策略,构建数学素质教育的课堂教学模式,能够更好地培养学生解决问题的能力和创新能力。

你直接在百度里面搜索,数学方面的论文多嘛,比如在教学中如何恰当使用多媒体等。

人民币中的数学问题 有一天,我跟妈妈去逛商场。妈妈进了超市买东西,让我站在付钱的地方等她。我没什么事,就看着营业员阿姨收钱。看着看着,我忽然发现营业员阿姨收的钱都是1元、2元、5元、10元、20元、50元的,我感到很奇怪:人民币为什么就没有3元、4元、6元、7元、8元、9元或30元、40元、60元呢?我赶快跑去问妈妈,妈妈鼓励我说:“好好动脑筋想想算算,妈妈相信你能自己弄明白为什么的。”我定下心,仔细地想了起来。过了一会儿,我高兴地跳了起来:“我知道了,因为只要有1元、2元、5元就可以随意组成3元、4元、6元、7元、8元、9元,只要有10元、20元、50元同样可以组成30元、40元、60元……”妈妈听了直点头,又向我提了一个问题:“如果只是为了能随意组合的话,那只要1元不就够了吗?干吗还要2元、5元呢?”我说:“光用1元要组成大一点的数就不方便了呀。”这下妈妈露出了满意的笑容,夸奖我会观察,爱动脑筋,我听了真比吃了我最喜欢吃的冰激凌还要舒服。 在此,我也想告诉其他的小朋友:其实生活中到处都有数学问题,只要你多留心观察,多动脑思考,你就会有很多意外的发现,不信你就试一试!希望能解决您的问题。

三年级科技简单小论文范文

标题:科技改变生活从交通生活联系方式来论述

写科学小论文就是把自己在学科学、用科学的过程中看到、听到、想到的,经过整理、思考后将新的见解告诉大家。一篇科学小论文(以下简称小论文)应当包括论点、论据和论证三大要素。论点是小论文的灵魂,一般都以中心问题的形式出现,小作者围绕中心问题发表自己深刻而独特的见解。论据是为论点服务的,是为了使论点表述得更清楚明白而准备的事实材料。论证就是用论据证明论点的过程。科技小论文实际上是我们在课内外学科学活动中进行科学观察、实验或考察后一种成果的书面总结。它的表现形式是多种多样的:可以是对某一事物进行细致观察和深入思考后得出结论;可以是动手实验后分析得出的结论;也可以是对某地进行考察后的总结;还可以靠逻辑推理得出结论。那么,一篇高质量的科技小论文,要注意以下几点:一、选好课题撰写科技小论文,首先要考虑写什么,也就是课题的选择。选择课题是写好论文的关键。要注意以下原则:价值原则,即选题的理论价值和实用价值。要对其他的同学有启发、指导和参考的意义;可行原则,指主观和客观条件的可能性,即撰稿者个人的专业知识、理论修养、知识面、手头资料、实验条件、周围环境,不可贪大求深,应该量力而行;新颖原则,指课题应是他人未曾研究或研究过但未解决或完全解决,要注意“文贵创

科技小论文在烧纸船的实验中纸船里的水会怎样?纸船又会怎样?记得有一个星期的星期四下午第三节课,我们在上科学课,在科学课上,我们做了小实验,实验的方法就是:在三角架上放了一张白纸做的纸船,在纸船里倒上一定的水,最后把酒精灯轻轻地移到三角架下,纸船里的水会怎样?纸船又会怎样?同学们议论纷纷。老师说:“耳听为虚,眼见为实,我们开始做实验吧。”只见老师把三角架放在桌子上,又把事先准备好的纸船放在三角架上,接着,又从烧杯里倒进了半个纸船的水。最后一步了,老师用火柴的火把酒精灯点着了,在把酒精灯移到三角架下,等到水和纸船的变化。不一会儿,我们发现,纸船没有被烧掉,纸船里的水也都还在。我们的嘴张得可以放下一个鸡蛋,老师说:“纸船之所以没有被烧掉是因为物质在燃烧需要一定的温度,因为纸船在加温的同时,水分也不断蒸发。水蒸发,水蒸气带走了热量,所以在水烧干之前,纸船是不会燃烧的。”我知道了:在烧纸船的实验中,纸船里的水不会蒸发?纸船也不会被烧毁

【篇一:科技小论文作文 】我以后想发明一种东西叫微型的小空调,是因为我们小朋友特别爱玩,玩了之后,就会流很多汗,很难受脸也红红的,像一个红红的苹果,就会不停的喘气,不停地叫着:“热~热!”所以,我以后要发明出来的话,那就好多了,每天带在身上又不会累。它会想一块橡皮擦那么大,随便放在哪里都可以,放在袋子里,或者把绳子吊起来,挂在脖子上,那样的话就可以尽情的玩了,都不会流汗,想怎么玩就怎么玩,都可以。我要知道怎么做的话,我现在就可以做出来。【篇二:科技小论文】科学有一种奇特的魅力,有一种神奇的力量,它无处不在,他常常存在与我们的生活中。一天,妈妈要用一个饮料瓶并让我洗一洗,我用温水把瓶子洗净后把水倒掉了并且拧紧了盖。过了一会儿我忽然发现瓶子竟然瘪了!我十分惊奇,便去问妈妈这是为什么?妈妈笑着对我“说你自己寻找答案吧”。于是我就去书中找、去上网查,终于我找到了答案。原来是热水加热了瓶子里的空气,空气产生了膨胀又导致了瓶子产生了膨胀,而当瓶子里的空气在温度下降以后又产生了收缩,这时候形成了瓶子里面的气压比瓶子外的气压更低,所以瓶子外的气压把瓶子压瘪了。哈哈,我明白了,原来这就是空气的热胀冷缩的原理啊。生活中处处有科学,只要我们多多留意就会发现科学的足迹,让科学为我们服务。【篇三:科技小论文】前天,星期四下午第三节校本课程,蓝老师把屏幕放了下来,有一个老师在那节课教我们如何制造模型飞机。一开始那个老师首先给我介绍了今天我们制造模型飞机所需要的材料 。开始制造模型飞机了,老师先叫我们拿出模型飞机的机翼,然后又经过王沈涛的帮助给机翼装上了定形片,把装好的机翼先放在一边,找出一根木棒把安装机翼的东西穿进木棒,再把两个机翼粘上去,然后再装上主要的螺旋桨,最后在做飞机的尾巴,先拿出一块飞机的海绵块,用双面胶粘在它的零件上,最后我把模型飞机上的最主要的橡皮筋装在了两个小钩子的上面。做好了飞机的样子,我就给它装饰了,我帮它贴上了五颜六色的贴纸。我看着我制作的模型飞机心里美滋滋的,也像喝了蜜一样的。我带着飞机在操场上奔驰着,开心极了。

数学论文六年级简单

【容易忽略的答案】大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×=(千米),=(千米),×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×=(千米),=(千米),×2=189(千米)。所以正确答案应该是:45×=(千米),=(千米),×2=261(千米)和45×=(千米),=(千米),×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。

可以自己删减删减。 数学论文 一、数学技能的含义及作用 技能是顺利完成某种任务的一种动作或心智活动方式。它是一种接近自动化的、复杂而较为完善的动作系统,是通过有目的、有计划的练习而形成的。数学技能是顺利完成某种数学任务的动作或心智活动方式。它通常表现为完成某一数学任务时所必需的一系列动作的协调和活动方式的自动化。这种协调的动作和自动化的活动方式是在已有数学知识经验基础上经过反复练习而形成的。如学习有关乘数是两位数的乘法计算技能,就是在掌握其运算法则的基础上通过多次的实际计算而形成的。数学技能与数学知识和数学能力既有密切的联系,又有本质上的区别。它们的区别主要表现为:技能是对动作和动作方式的概括,它反映的是动作本身和活动方式的熟练程度;知识是对经验的概括,它反映的是人们对事物和事物之间相互联系的规律性的认识;能力是对保证活动顺利完成的某些稳定的心理特征的概括,它所体现的是学习者在数学学习活动中反映出来的个体特征。三者之间的联系,可以比较清楚地从数学技能的作用中反映出来。 数学技能在数学学习中的作用可概括为以下几个方面: 第一,数学技能的形成有助于数学知识的理解和掌握; 第二,数学技能的形成可以进一步巩固数学知识; 第三,数学技能的形成有助于数学问题的解决; 第四,数学技能的形成可以促进数学能力的发展; 第五,数学技能的形成有助于激发学生的学习兴趣; 第六,调动他们的学习积极性。 二、数学技能的分类 小学生的数学技能,按照其本身的性质和特点,可以分为操作技能(又叫做动作技能)和心智技能(也叫做智力技能)两种类型。 l.数学操作技能。操作技能是指实现数学任务活动方式的动作主要是通过外部机体运动或操作去完成的技能。它是一种由各个局部动作按照一定的程序连贯而成的外部操作活动方式。如学生在利用测量工具测量角的度数、测量物体的长度,用作图工具画几何图形等活动中所形成的技能就是这种外部操作技能。操作技能具有有别于心智技能的一些比较明显的特点:一是外显性,即操作技能是一种外显的活动方式;二是客观性,是指操作技能活动的对象是物质性的客体或肌肉;王是非简约性,就动作的结构而言,操作技能的每个动作都必须实施,不能省略和合并,是一种展开性的活动程序。如用圆规画圆,确定半径、确定圆心、圆规一脚绕圆心旋转一周等步骤,既不能省略也不能合并,必须详尽地展开才能完成的任务。 2.数学心智技能。数学心智技能是指顺利完成数学任务的心智活动方式。它是一种借助于内部言语进行的认知活动,包括感知、记忆、思维和想象等心理成分,并且以思维为其主要活动成分。如小学生在口算、笔算、解方程和解答应用题等活动中形成的技能更多地是一些数学心智技能。数学心智技能同样是经过后天的学习和训练而形成的,它不同于人的本能。另外,数学心智技能是一种合乎法则的心智活动方式,“所谓合乎法则的活动方式是指活动的动作构成要素及其次序应体现活动本身的客观法则的要求,而不是任意的”。这些特性,反映了数学心智技能和数学操作技能的共性。数学心智技能作为一种以思维为主要活动成分的认知活动方式,它也有着区别于数学操作技能的个性特征,这些特征主要反映在以下三个方面。 第一,动作对象的观念性。数学心智技能的直接对象不是具有物质形式的客体本身,而是这种客体在人们头脑里的主观映象。如20以内退位减法的口算,其心智活动的直接对象是“想加法算减法”或其他计算方法的观念,而非某种物质化的客体。 第二,动作实施过程的内隐性。数学心智技能的动作是借助内部言语完成的,其动作的执行是在头脑内部进行的,主体的变化具有很强的内隐性,很难从外部直接观测到。如口算,我们能够直接了解到的是通过学生的外部语言所反映出来的计算结果,学生计算时的内部心智活动动作是无法看到的。 第三,动作结构的简缩性。数学心智技能的动作不像操作活动那样必须把每一个动作都完整地做出来,也不像外部言语那样对每一个动作都完整地说出来,它的活动过程是一种高度压缩和简化的自动化过程。因此,数学心智技能中的动作成分是可以合并、省略和简化的。如20以内进位加法的口算,学生熟练以后计算时根本没有去意识“看大数”、“想凑数”、“分小数”、“凑十”等动作,整个计算过程被压缩成一种脱口而出的简略性过程。 三、数学技能的形成过程 1.数学操作技能的形成过程。 数学操作技能作为一种外显的操作活动方式,它的形成大致要经过以下四个基本阶段。 (1)动作的定向阶段。这是操作技能形成的起始阶段,主要是学习者在头脑里建立起完成某项数学任务的操作活动的定向映象。包括明确学习目标,激起学习动机,了解与数学技能有关的知识,知道技能的操作程序和动作要领以及活动的最后结果等内容。概括起来讲,这一阶段主要是了解“做什么”和“怎样做”两方面的内容。如画角,这一阶段主要是了解需画一个多少度的角(即知道做什么)和画角的步骤(即怎么做),以此给画角的操作活动作出具体的定向。动作定向的作用是在头脑里初步建立起操作的自我调节机制;通过对“做什么”和“怎么做”的了解而明确实施数学活动的程序与步骤,从而保证在操作中更好地掌握其动作的活动方式。 (2)动作的分解阶段。这是操作技能进入实际学习的最初阶段,其作法是把某项数学技能的全套动作分解成若干个单项动作,在老师的示范下学生依次模仿练习,从而掌握局部动作的活动方式。如用圆规按照给定的半径画圆,在这一阶段就可把整个操作程序分解成三个局部动作:①把圆规的两脚张开,按照给定的半径定好两脚间的距离;②把有针尖的一脚固定在一点上,确定出圆心;③将有铅笔尖的一脚绕圆心旋转一周,画出圆。通过对这三个具有连续性的局部动作的依次练习,即可掌握画圆的要领。学生在这一阶段学习的方式主要是模仿,一方面根据老师的示范进行模仿;另一方面也可以根据有关操作规则的文字描述进行模仿,如根据几何作图规则对各个动作活动方式的表述进行模仿。模仿不一定都是被动的和机械的,“模仿可以是有意的和无意的;可以是再造性的,也可以是创造性的。”②模仿是数学操作技能形成的一个不可缺少的条件。 (3)动作的整合阶段。在这一阶段,把前面所掌握的各个局部动作按照一定的顺序连接起来,使其形成一个连贯而协调的操作程序,并固定下来。如画圆,在这一阶段就可将三个步骤综合起来形成一体化的操作系统。这时由于局部动作之间尚处在衔接阶段,所以动作还难以维持稳定性和精确性,动作系统中的某些环节在衔接时甚至还会出现停顿现象。不过,总的来讲这一阶段动作之间的相互干扰逐步得到排除,操作过程中的多余动作也明显减少,已形成完整而有序的动作系统。 (4)动作的熟练阶段。这是操作技能形成的最后阶段,在这一阶段通过练习而形成的数学活动方式能适应各种变化情况,其操作表现出高度完善化的特点。动作之间相互干扰和不协调的现象完全消除,动作具有高度的正确性和稳定性,并且不管在什么条件下全套动作都能流畅地完成。如这时的画圆,不需要意志控制就能顺利地完成全套动作,并且能充分保证其正确性。上述分析表明,数学操作技能的形成要经过“定向→分解→整合→熟练”的发展过程。在这一过程中每一个发展阶段都有自己的任务:定向阶段的主要任务是掌握操作的结构系统和每一个步骤操作的要领;分解阶段的主要任务是对活动的操作系列进行分解,并逐一模仿练习;整合阶段的主要任务是在动作之间建立联系,使活动协调一体化;熟练阶段的任务则主要是使整个操作过程高度完善化和自动化。 2.数学心智技能的形成过程。 关于数学心智技能形成过程的研究,人们比较普遍地采用了原苏联心理学家加里培林的研究成果。加里培林认为,心智活动是一个从外部的物质活动到内部心智活动的转化过程,既内化的过程。据此,在这里我们把小学生数学心智技能的形成过程概括为以下四个阶段。 (1)活动的认知阶段。这是数学心智活动的认知准备阶段,主要是让学生了解并记住与活动任务有关的知识,明确活动的过程和结果,在头脑里形成活动本身及其结果的表象。如学习除数是小数的除法计算技能,在这一步就是让学生回忆并记住除法商不变性质和除数是整数的小数除法法则等知识,在此基础上明确计算的程序和每一步计算的具体方法,以此在头脑里形成除数是小数除法计算过程的表象。认知阶段实际上也是一种心智活动的定向阶段,通过这一阶段,学习者可以建立起进行数学心智活动的初步自我调节机制,为后面顺利进行认知活动提供内部控制条件。这一阶段的主要任务是在头脑里确定心智技能的活动程序,并让这种程序的动作结构在头脑里得到清晰的反映。 (2)示范模仿阶段。这是数学心智活动方式进入具体执行过程的开始,这一阶段学生把在头脑里已初步建立起来的活动程序计划以外显的操作方式付诸执行。不过,这种执行通常是在老师指导示范下进行的,老师的示范通常是采用语言指导和操作提示相结合的方式进行的,即在言语指导的同时呈现活动过程中的某些步骤。如计算乘数是两位数的乘法时,一方面根据运算法则指导运算步骤;另一方面在表述运算规定的同时重点示范用乘数十位上的数去乘被乘数所得的部分积的对位,以此让学生在老师的帮助、指导下顺利地掌握两位数乘多位数计算的活动方式。在这一阶段,学生活动的执行水平还比较低,通常停留在物质活动和物质化活动的水平上。“所谓物质活动是指动作的客体是实际事物,所谓物质化活动是指活动不是借助于实际事物本身,而是以它的代替物如模拟的教具、学具,乃至图画、图解、言语等进行的”。③如解答复合应用题,在这一步学生通常就是借助线段图进行分析题中数量关系的智力活动的。 (3)有意识的言语阶段。这一阶段的智力活动离开了活动的物质和物质化的客体而逐步转向头脑内部,学生通过自己的言语指导而进行智力活动,通常表现为一边操作一边口中念念有词。如两位数加两位数的笔算,在这一步学生往往是一边计算,口中一边念:相同数位对位,从个位加起,个位满十向十位进1。很明显,这时的计算过程是伴随着对法则运算规定的复述进行的。在这一阶段,学生出声的外部言语活动还会逐步向不出声的外部言语活动过渡,如两位数加两位数的笔算,在本阶段的后期学生往往是通过默想法则规定的运算步骤进行计算的。这一活动水平的出现,标志着学生的活动已开始向智力活动水平转化。 (4)无意识的内部言语阶段。这是数学心智技能形成的最后的一个阶段,在这一阶段学生的智力活动过程有了高度的压缩和简化,整个活动过程达到了完全自动化的水平,无需去注意活动的操作规则就能比较流畅地完成其操作程序。如用简便方法计算45+99×99+54,在这一阶段学生无需去回忆加法交换律和结合律、乘法分配律等运算定律,就能直接先合并45和54两个加数,然后利用乘法分配律进行计算,即原式=(45+54)+99×99=99×(1+99)=99×100=9900,整个计算过程完全是一种流畅的自动化演算过程。在这一阶段,学生的活动完全是根据自己的内部言语进行思考的,并且总是用非常简缩的形式进行思考的,活动的中间过程往往简约得连自己也察觉不到了,整个活动过程基本上是一种自动化的过程。 四、数学技能的学习方法 1.数学操作技能的学习方法。学习数学操作技能的基本方法是模仿练习法和程序练习法。前者是指学生在学习中根据老师的示范动作或教材中的示意图进行模仿练习,以掌握操作的基本要领,在头脑里形成操作过程的动作表象的一种学习方法。用工具度量角的大小、测量物体的长短、几何图形的作图、几何图形面积和体积计算公式推导过程中的图形转化等技能一般都可以通过模仿练习法去掌握。如推导平行四边形面积计算公式时,把平行四边形转化成长方形的操作技能就可模仿(人教版)教材插图(如图所示)的操作过程去练习和掌握。小学生的学习更多的是模仿老师的示范动作,所以老师的示范对小学生数学动作技能的形成尤为重要。教师要充分运用示范与讲解相结合、整体示范与分步示范相结合等措施,让学生准确无误地掌握操作要领,形成正确的动作表象。所谓程序练习法,就是运用程序教学的原理将所要学习的数学动作技能按活动程序分解成若干局部的动作先逐一练习,最后将这些局部的动作综合成整体形成程序化的活动过程。如用量角器量角的度数、用三角板画垂线和平行线、画长方形等技能的学习都可以采用这种方法。用这种方法学习数学动作技能,分解动作时注意突出重点,重点解决那些难以掌握的局部动作,这样可以有效地提高学习效率。 2.数学心智技能的学习方法。学生的心智技能主要是通过范例学习法和尝试学习法去获得的。范例学习法是指学习时按照课本提供的范例,将数学技能的思维操作程序一步一步地展现出来,然后根据这种程序逐步掌握技能的心智活动方式。整数、小数、分数的四则计算,课本几乎都提供了计算的范例,学习时只需要根据范例有序地进行计算即可掌握计算方法。如被除数和除数末尾都有0的除法的简便算法,课本安排了如下范例,学习时只需要明确范例所反映的计算程序和方法,并按照这种程序和方法进行计算即可掌握被除数和除数末尾都有0的除法简便计算的技能。尝试学习法是指在学习中主要由学生自己去尝试探索问题解决的方法和途径,并在不断修正错误的过程中找出解决问题的操作程序,进而获得数学技能。这是一种探究式的发现学习法,总结运算规律和性质并运用它们进行简便计算、解答复合应用题、求某些比较复杂的组合图形的面积或体积等技能都可以运用这种学习方法去掌握。这种方法较多地运用于题目本身具有较强探究性的变式问题解决的学习,如用简便方法计算1001÷,由于学生在前面已经掌握除法商不变性质,练习时就可通过将除数和被除数部乘以8使除数变成100的途径去实现计算的简便。尝试学习法虽然有利于培养学生的探索精神和解决问题的能力,但耗时太多,学习时最好是将它和范例学习法结合起来,两种学习方法互为补充,这样数学技能的学习就会更加富有成效

数学离不开生活,生活中处处有数学,它来源于生活又应用于生活。把数学教学与生活联系起来,使学生在不知不觉中感悟数学的真谛。下面是我为大家整理的小学 六年级数学 教学论文,希望对大家有所帮助! 小学六年级数学教学论文篇1:培养数学应用意识及实践 培养学生的数学应用意识和实践能力 《数学课程标准》指出:“数学教学,应从学生已有的知识 经验 出发,让学生亲身经历参与特定的教学活动,获得一些体验,并且通过自主探索,合作交流,将实际问题抽象成数学模型,并对此进行解释和应用。”基于此认识,我认为在新教材的教学中,应体现以下几点: 一、 源于生活,创设轻松愉快的学习情境 苏霍姆林斯基指出,教师在教学中如果不想方设法使学生产生情绪高昂和智力振奋的内心状态,而只是不动情感的脑力劳动,就会带来疲倦。因此,我们的教学应营造一种轻松愉快的情境,使学生乐此不疲地致力于学习内容。 数学离不开生活,生活中处处有数学。在教学中,以教材为蓝本,注重密切数学与现实生活的联系,创设轻松愉快的数学情境。 现实的学习情境,可以激发学生学习数学的兴趣,充分调动学生学习的积极性和主动性,诱导学生积极思维,使其产生内在学习动机,并主动参与教学活动。如教学“认位置”,以学生眼前的教室为情境,为学生提供了一个观察生活中人与人、人与物、物与物之间位置关系的场景,让学生在从指定观察到自由观察、换位观察的过程中不断加深对知识的认识和理解,使他们不光会表述物体间的位置关系,还能感受到物体间位置关系的相对性,从而使学习变成一种主动探索的过程。 心理学研究表明:比起现实情境来,幻想的情境更能激发学生丰富的情感,给他们带来深刻的内心体验。 儿童 最富于想象和幻想,儿童的世界最是千奇百怪、色彩斑澜。儿童感兴趣的“现实生活”,成人常常不可理喻,就像教材中的“小兔采蘑菇”、“青蛙跳伞”、“小蜜蜂采蜜”等,我们认为不合逻辑常理,孩子们却兴趣盎然。因此,我们需要保有一颗纯真的童心,善于从儿童的生活经验和心理特点出发,努力避免成人化的说教,这样,才能捕捉到一幅幅令他们心动的画面,设计出一个个可亲可近的情境。 例如教学“比一比”通过学生喜爱的卡通形象――蓝猫邀请大家参观客厅来导入新课,学生兴趣盎然;引导学生发现猫大哥客厅里的数学秘密,学生兴趣高涨。又如教学“统计”,借助媒体创设大象过生日的情境,并以此为线索展开学习活动,提高学生的学习兴趣。 二、 用于生活,培养学生的应用意识和实践能力 新课程强调人人学有价值的数学,人人学有用的数学。因此,数学学习必须加强与生活实际的联系,让学生感受到生活中处处有数学。 数学只有回到生活中,才会显示其价值和魅力,学生只有回到生活中运用数学,才能真实地显现其数学学习水平。 如在教学“比一比”时,通过找教室周围的物体的长短高矮的比较,使学生学会用数学的眼光观察周围事物。 如在学习“认位置”后,回家观察一下自己的卧室,并用上下、前后、左右描述一下卧室内物体的相对位置关系,然后说给爸爸妈妈听。观察一下自家房屋周围、村庄周围都有些什么,到学校后,和小伙伴交流。 又如在学习了“统计”后,问学生你准备统计什么?这一环节充分利用学生已有的生活经验,把所学的知识应用到生活中去,解决身边的数学问题,了解数学在现实生活中的作用,从而使学生体会到学习数学的重要性,学而有用的喜悦感,数学与生活的联系得到了最好的体现。 使学生感受数学与生活的密切联系,能运用生活经验对有关的数字信息作出解释并初步学会用具体的数描述现实世界中的简单现象,是课程标准中规定的第一学段的教学目标之一。一年级的小孩子正如他们在课堂上所说的那样,“我把我的书包分类清理好了”、“我学会了数数,上次家里来了好多客人,我就知道摆多少双筷子了”、“我学了加减法,就可以帮助妈妈上街买菜,不会算错钱了”,也就像家长说的那样,“我的孩子回家把他的玩具和他书包里的书都分类收拾好了,真不错!”“我的孩子现在都会自己看钟去上学了”。可见,新教材在培养学生数感和应用意识,培养学生的自理能力和劳动意识,体现学习有价值的数学等方面取得了初步的成效。 总之,数学离不开生活,生活中处处有数学,它来源于生活又应用于生活。来于生活、归于生活的知识才是有价值的知识。把数学与生活联系起来,使学生在不知不觉中感悟数学的真谛。 小学六年级数学教学论文篇2:浅谈数学的创造性学习 什么是数? 开天辟地之初,人类就开始与数打交道。数即是数目的意思。正如《汉书·律历志上》云:“数者,一十百千万也。” 数进入数学体系就成为它的最基本概念之一,数的概念是随着人类的生产和生活实践的不断发展而逐渐形成的,并且永无止境地发展着。从古至今,以自然数为开端,接着是有理数与无理数、正数与负数、实数与虚数,直至复数,共同构成数的概念不断拓展的系列。每一次拓展都是一次创造思维的跃升。 什么是数学? 数学是研究现实世界的空间形式和数量关系的科学。古时候,人类在生产和生活实践中便获得了数的概念和一些简单几何形体的概念。自此开始,到16世纪,创立了包括算术、初等代数、初等几何和三角的初等数学。17世纪引入变量概念是数学发展史中的转折点,这使得运动和辩证法进入数学,开始研究变化中的量与量之间相互制约关系和图形间的相互变换。近年来,由于数学在自然科学和技术领域的广泛应用,又由于计算技术的迅猛发展,数学对人类认识自然和改造自然的重要作用也显示得更加清楚了。至今,现代数学已经形成了包括数理逻辑、数论、代数学、几何学、拓扑学、函数论、泛函分析、微分方程、概率论、数理统计、计算数学及边缘学科运筹学、控制论等在内的庞大体系。 与数的发展一样,数学发展史也是创造思维不断发展的历史。 数学是中小学生的主科。数学学习是中小学生增长学习能力和创造能力的广阔天地。 一.驴唇怎能对得上马嘴呢 阴错阳差的巧事,张冠李戴的误会,在大千世界,这等笑话,时有发生。可是,在数学课上,难道也会发生驴唇不对马嘴的事情吗? (一)平地起风雪 话题是从一道浅显的代数题引发的。这是一个发生在某中学初一新生的一节数学课上的小 故事 。快下课时,老师出了一道题:“若a为自然数,说出a以后的7个连续自然数。”一个小女孩举手抢答:“a,b,c,d,e,f,g。”话音刚落,便引起哄堂大笑,老师也愕然了。女孩觉察到,自己的答案,驴唇不对马嘴。出了笑话,落个满脸通红。 接着,一个男孩起来补正:“a+1,a+2,a+3,a+4,a+5,a+6,a+7。”尔后,下课铃响了。 事情平平常常。一个女孩答错了题,一个男孩纠正过来,全班同学都明白了正确答案。下课,大家就都散了。 那么,这件事是否到此就算了结了呢? 请思考10分钟,然后,发表你的见解。 单兵——我看是了结了。老师完成了教学任务,学生也完成了学习任务。 焦小敏——如果说没有了结,那就是老师还得 教育 同学们,不要把这事当成奚落那位小姑娘的笑柄。 张娟——还有,班上的同学也有义务鼓励那位小姑娘。 赵老师——直截了当地说,我认为没有了结。因为任何结果都有原因。小姑娘答成“a,b,c,d,e,f,g”这是她思维的结果。那么,她一定有个由此及彼的思维过程,其中深藏着错误的原因。老师与那个小姑娘的任务是找出原因,避免再错。如若不然,再遇类似问题,也许她又答成“甲、乙、丙、丁、戊、己、庚” 呢。 肖冬春——我同意这种看法。换句话说,知道男孩答案正确,并不等于找到自己的错误原因。 韩小彧——前面几位同学的发言,从不同的角度,各有各的道理。但是,又都有一个绝对化的框框束缚着。这就是姑娘的答案一无是处;小男孩的答案绝对正确,天衣无缝。这个框框正是上面5个发言的潜在的共同前提。当然,错误答案之正确部分及正确答案之不足部分,如果真有,我现在还未想出。 赫峰——她提出的问题,是一条崭新的思路,很有启发。我发现小姑娘的答案中有一个合理的因素,7个字母与题目要求的7个自然数合得上。 曹博——这么说来,错误答案中的合理因素,可不止这一个。题目要求“a以后”,按照英语字母表由b到g都在a以后。 姚树——题目要求“连续”,按英语字母表,从a到g是连续的,并没断开,也没跳跃。 祝越——7个符号都可以表示自然数。这一点。也是符合题目要求的。 李河——这么说来,“a以后”、“7个”、 “连续”、“自然数”4大要素都合乎题目要求,错在哪里呢? 讨论至此,真是平地起风云。看来已经结束的问题,却又引出一片新话题。况且本来被公认为绝对错误的答案,现在却找不到一点破绽了。 (二)罕见的对话 正像大家的看法一样,当堂听课的主任觉察到:这件事并未结束。 下课后主任与老师讨论,老师认为“a+1”到“a+7”是唯一正确的答案,全班已懂,教学任务已告完成。主任又去问学生。大家说那个小女孩在小学时,特别喜欢英语。主任领悟了:小学时只是在 英语学习 中才见到过a,题目似乎要求写出“a以后的7个”来,自然,a,b,c,d,e,f,g”在头脑中出现了,又在口中说出了。这正是心理学上所说的副定势起了作用。 尔后,主任将女孩找到办公室。先肯定她喜欢英语,大胆举手的优点,接着是双方一连串的对话。 “那题明白了吗?” “明白了。” “你的答案呢?” “全错了。” “一点对的地方也没有?” “没有。” “一丁点儿都没有?” “没有。” “真的吗?” “我没想过。”(唉!没有想过就坚定地认为自已全错了!) “现在想想看。” “想不出。” “b,c,d,e,f,g,不是在a以后吗?” “是”。 “字母不是说了7个吗?” “是”。 “7个字母,排列有序,为什么不跳着说呢。” “题目上说……” “你看,‘a以后’、‘7个’、‘连续’,都有了。这些字母又都能表示自然数。那么,哪有错的地方呢?” “咦,怎么没有错的地方了呢?” 最后,在主任启发下,发现了错误:对于这些字母,没有给出符合题意的数学含义。一句话,把英语字母转化为数学符号的任务,没有完成。 找出错误原因,就能纠正错误。简单说,将7个英语字母赋予符合题意的数学含意就是了。这样,找到了与众不同的答案:若a为自然数,令a'=a+1,b=a+2,c=a+3,d=a+4,e=a+5,f=a+6,g=a+7,则a',b,c,d,e,f,g”便是正确答案。 就是这样,正确与错误之间,只有一小撇之差。 还应指出,运用这种灵活变通的 思维方式 ,求解此题,正确答案是无穷尽的。即使是“甲、乙、丙、丁、戊、己、庚”,只要将其赋予符合题意的数学含义,也能成为正确答案。这么看来,把“a+1,a+2,a+3,a+4,a+5,a+6,a+7”看成唯一正确答案,失之于思维呆板,并且导致片面性和绝对化。 (三)深刻的启示 中小学生在数学学习中,错误常见,改错也常见。但是,这样的改错方式从未见过。 这样的改错方式给我们的启示是深刻的,是多方面的。 1.在变通性的动态思考中更深刻地掌握数学新原理 掌握数学概念和原理,运用相关概念、原理解答数学问题,从而获得系统的数学知识,提高思维能力,这是数学学习的基本任务。 用符号表示数是代数学的根本特点。在小学算术中只用阿拉伯数字表示固定的具体数目。而在中学代数中,就要用抽象符号表示多种多样的数学含义。用符号表示数的课题,是代数起始课的重点和难点。上面的题,正是为了使学生掌握这个代数原理而设计的。 两种改错方式对理解原理的作用是不同的。先看一般方式: a,b,c,d,e,f,g→a+1,a+2,a+3,a+4,a+5,a+6,a+7 再看变通方式: a,b,c,d,e,f,g→令a'=a+1,b=a+2,c=a+3,d=c+4,e=a+5,f=a+6,g=a+7→a',b,c,d,e,f,g 后者增加“令a'=a+1,……,g=a+7”的一步,同时也就增加了“a'~g”的新的答案形式,最后回到“a+1,……,a+7”的答案。中间增加两步推导,都运用了“符号表示数”的原理。这样,也就加深了对这一原理的理解。 总之,对比两种处理方式,后者更有利于数学知识的掌握和学习能力的提高。 2.创造思维能力在运用中得到增长 运用变通性方式改错,不仅有利于学习能力的提高,也有利于创造思维能力的增长。 变通性改错方式,加大了思维难度,是进行 发散思维 而获得的结果。当然,这也不是唯一的结果。更为重要的是:原来被认为解法唯一,现在变成无穷了。这就启发我们提出问题: (1)数学概念和数学原理统统都是永恒不变的吗?其表述方式是唯一的吗? (2)被认为只有一种解答 方法 的数学题是统统都不会有第2、第3种解决方法吗? 当我们对这两个问题得出“不见得”的结论时,那么对今后的数学学习产生的影响,也就在其中了。即不以固定方式掌握数学概念、原理和题目解法为满足,而还要运用创造思维的发散性、灵活性,对每一个数学课题予以审视,积极发掘可能蕴含着的新内容、新方法、新的推理和新的表达方式。 这样坚持下去,就会收到数学学习能力与创造思维能力同步超常增长的效果。 小学六年级数学教学论文篇3:小学数学活动课的开设原则 原则之一 小学数学活动课,必须以小学生的个性要素得到发展为宗旨,设计教学目标、教学内容与教学 方法。《课程方案》对小学阶段的教育提出了明确的培养目标,这个培养目标包括两方面内容:一方面是为体 现小学阶段性质和任务而设计的国家要求,也就是国家关于知识和能力的质量标准;另一方面是为体现小学生 身心发展规律的个性发展要求。落实到小学数学课,国家质量标准就是要求小学生具有初步的运算技能、逻辑 思维能力和空间观念,以及运用所学数学知识解决一些简单的实际问题的能力这四项,这个任务主要由小学数 学的学科课(或者叫必修课)来担当。至于发展小学生个性的要求,《课程方案》明确提出主要由活动课来担 当,其教学目标就是“增强兴趣,拓宽知识,增长才干,发展特长”。有人会提出,这个要求在学科课所包含 的实际活动中就能做到,或者开展课外活动就可以实现。我认为这是误解。诚然,小学数学学科课所包含的实 际活动,诸如观察、实验、练习等,也能培养学生某些个性要素,但它服务的目的不同,它只是为学科课的教 学目标而服务的一种教学手段,是学科课教学活动的一部分,没有具体教学时间的界限;而小学数学活动课应 是以发展学生个性要素为首要目标的课型,每节课教学时间与学科课的教学时间相配合。还有,活动课也不同 于课外活动:①活动课属于课程的范畴,课外活动则是“在教学大纲范围之外由学生自愿参加的各种教育活动 的总称”,它不属于课程的范畴;②活动课有一定的结构性,它有特定的教学目标、内容和活动方式,而且教 学内容的广度和深度随着年级的上升而具有层次性,而课外活动则没有这种有序的要求;③活动课的设计和实 施要具有一定的规范,那就是活动课必须有教学纲要和活动课指导书,并严格按此规范实施教学进程,而课外 活动则不具备这个要求。 原则之二 小学数学活动课,必须淡化选拔教育,做到“人人受益”。小学阶段的教育是义务教育的初级 阶段的教育,国家教委副主任柳斌同志指出:“义务教育是国民教育,普及教育,平等教育,应当强调其普及 性,淡化其选拔性。”这个要求不仅在小学阶段的教育活动中要落实,更要在各科的教学活动中落实。学科类 课程的教学活动做到人人受益,比较好操作,因为学科类课程所担负的国家关于知识和能力的各项规定,由统 一的大纲和教材所列举,由国家规范的教学、考查等计划予以落实和检查。而活动课是以培养个性特征为标志 的新课型,系统的操作硬件尚在建立之中,有一定的难处。但是,我们应当这样理解:小学数学活动课所说的 “人人受益”,不应当以分数、成绩的提高来理解,应当从学生的个性要素得到发展予以解释。从活动课参予 程度讲,不要像组织数学课外活动小组那样,只允许少数数学 爱好 者参加,而应要求每个学生都参加。从活动 课的课程设计讲,在学科课为每个学生打好共同基础的条件下,为发展学生的个性特长、 兴趣爱好 提供发展空 间;从活动课的教学效果讲,通过小学数学活动课,有的学生数学知识、能力和爱好都得到提高,这是受益。 通过小学数学活动课,有的学生数学知识和能力提高不甚明显,但是通过数学的橱窗对观察课外天地,观察实 际生活的兴趣产生了,这也是受益。更有甚者,通过小学数学活动课,虽然没有引起学习数学的兴趣,但这种 活动课教学尝试在学生记忆中留下思维印象,能成为今后处理问题的一种思维参考,这也应该说是受益。纵或 阻塞了他们对数学的爱好,但通过小学数学活动课促使他们去爱好 其它 学科,也同样属于受益之列。一言以蔽 之,小学数学活动课的受益,就是指小学生的个性要素,主要指兴趣和情感,通过数学的载体而得到发展。 原则之三 小学数学活动课,必须注意小学生身心发展的特点,充分保护“童心”。小学生的年龄阶段( 6~11、12岁), 在心理学上称为儿童期(或称学龄早期)。这一阶段,小学生不但身体发育进入了一个相对 平稳阶段,而且由于从一个备受家庭保护的幼儿变成必须独立完成学习任务、承担一定社会义务的小学生,这 就促使儿童心理特征产生质的飞跃,概括起来,就是产生了在幼儿期没有的“好奇、好动、好胜”的“童心” 。这三个“好”只有“好奇”“好动”充分得到发展,“好胜”的儿童价值特征才能得以建立。但是要注意, 要使“好奇”“好动”的心理状态健康成长,就必须从以下两个方面予以控制:①调控环境,促使小学生总是 保持向上振奋的心理状态。小学生向上振奋的心理状态的形成是立足于好奇感,而好奇感的永恒程度又依赖于 环境(包含教学环境)对小学生接受知识是否有一种愉快感。因此建立一种愉快接受教育的氛围是调控环境的 关键。小学数学活动课基于数学学科的抽象特点,愉快教育氛围的建立,特别要注意杜绝成人期望值的强加与 过量过高数学材料的灌输。就是说,不要设想通过小学数学活动课的教学,个个都成为数学神童;也不要认为 ,实施小学数学活动课教学,就是灌输小学数学之外使小学生难以接受的成人处理数学的材料。②树立模仿典 型,促使小学生形成稳固的知识、能力体系和健康的行为与习惯。小学生的“好动”,是建立在模仿基础上的 好动,通过模仿,一旦成为小学生稳定的心理成分,就左右小学生健康心理的形成。因此为了促使小学生形成 稳固的知识、能力体系和健康的行为习惯,我们的教学活动就应当提供学生认为有趣的、益于拓广知识的模仿 典型。小学数学活动课所提供的模仿典型,就是根据数学的特征以及小学生的知识、能力条件,通过游戏、观 察、拼图、制作、不完全归纳等思维及操作办法,让学生得到学科课内所没有的、又能激发学生求知兴趣的数 和形的一些结论(但是不要证明)。这些结论,要求学生都记住它是次要的,掌握得到的过程则是教会模仿的 本意。只有这样,“好动”的心理特点才可以说在数学活动课里得到健康地培育。 原则之四

“数学小论文”是让学生以 日记 的形式描述他们发现的数学问题及其解决,是学生数学学习经历的一种书面写作记录。下面是我整理的关于小学六年级的数学小论文,供大家参阅,希望对你的学习有帮助!

小学 六年级数学 小论文

“数学来源于生活,也服务于生活。”数学,经常从人们身边走过,生活中人们都离不开它,它为人们的生活作出了巨大的贡献。在我们的班级中经常要使用到数学,例如算单元平均分、统计校园电费……等等数不胜数,和我们的生活息息相关。

有一次,我和爸爸妈妈去购物,买过年吃的糖。超市里糖的花样可多了,有脆皮糖元一斤,牛皮糖元一斤,牛奶糖元一斤,酥酥糖元一斤,巧克力糖元一斤……但主要分为散称和包装。爸爸妈妈问我:“儿子,你希望买什么糖呢?”我望着玲琅满目的“糖果世界”,不知如何抉择是好,但我自幼喜好巧克力,所以我就选了巧克力糖。这时妈妈又给我出题了,他说:“那儿子,你说我们是买散称的呢,还是买包装的呢?”这我就摸不着头脑了,立即心算起来:散称的巧克力糖元一斤,包装的则一盒。散称的巧克力糖一包才10克,包装的巧克力糖一盒就有1000克呢!不过,单单看重量还不能决出胜负,就让我仔细算算——其实算这个并不难,直接用1000克=1千克 1千克=2斤 ÷2=(元) 元>元 所以散称比包装更划算!我高兴的把我得出的结果告诉妈妈,妈妈高兴的点了点头,夸我爱动脑筋,因此我也就成为了妈妈的"小会计"。

在生活中,各式各样的事情都能从一个普普通通毫不起眼的小事变成一个个生动的数学题。我们常做的应用题,就是在生活中取材,再稍加改编而成的题目。这不,我又在做数学题时发现了一道趣题:

大河上有一座东西向横跨江面的桥,人通过需要五分钟。桥中间有一个 亭子。亭子里有一个看守者,他每隔三分钟出来一次。看到有人通过,就叫 他回去,不准通过。有一个从东向西过桥的聪明人,想了一个巧妙的办法, 终于通过了大桥。

我初看这道题,一点头绪也没有,难不成坐船过去?这是不可能的。难道走了一会往回走?唉,这好像行得通……

我经过反复的计算,先想到了走到2分59秒的时候把头转回去,看守的人就会让我往回走,这样不就过去了吗?后来又想了一会,得出只要在走了2分30秒至2分59秒的时候往回走(最好不要到2分59秒的时候走,因为可能你还没转过头来,看守的人就发现了。),就可以成功过桥。

大家肯定都会说这么容易的题谁都会做,我拿出来吹嘘什么?不,这样子你就错了,我并没有在炫耀自己,我是在告诉大家数学在于联系生活思考,在于全心全意去领悟,而不是拿着别人的成果炫耀。

小学数学论文可以怎么写

数学小论文通过学生对生活中数学问题的观察和发现,引起学生的好奇心和求知欲,使学生体会到数学贴近他们的生活,从而对数学产生亲切感,激发起他们学习数学的热情和兴趣;通过引导学生对课堂中学习的数学知识进行实践运用,让学生感受到数学的实用性,提高数学学习的实效;通过探究趣味题和智慧题,开拓学生的视野,培养学生思维的灵活性和深刻性。现结合笔者的教学实际谈谈数学小论文的几种具体写法。

1.一道数学题的解答。主要是学生对某一道有挑战性的题目简便的或与众不同的解法(包括一题多解)。例如,书后的思考题,奥数题,教师或家长布置的智慧题,数学刊物上的挑战题,平时自己在做题时遇到的有一定难度的题目等。学生通过对这些问题的解决,不但发展了思维,而且体验到一种强烈的成就感,这对他以后数学的学习将是一个巨大的动力。

2.用数学的眼光去分析现实问题。主要指学生用数学的眼光去观察、计算、分析现实问题,获得一种理性的思考。比如,有学生写道:如果每人每天节约1克水,那全国13亿人口每天可以节约1300吨水,发出了“人人节约一滴水,沙漠也能变绿洲”的感慨!还有学生写道:如果每个去银行储蓄的人每次都能为“希望工程”捐1角钱的话,全国那么多储蓄点捐到的钱可以资助多少贫困学生实现上学的梦想呀!学生能从这些角度通过数学的计算去思考社会意义,它的价值就能远远超过数学研究本身。

3.生活中的数学问题。主要用来记录学生在生活中遇到的感兴趣并有亲身体验的有关数学的情境记录。写这种数学小论文的题材特别多,比如,有学生写到了人民币为什么只有1元、2元、5元而没有3元、4元、6元、7元、8元、9元的;再如,有学生写到了他家住的楼房每层有24级楼梯,那么他从1楼到5楼要爬多少级楼梯。这些都是生活中每天要经历的很平常的事,但学生一旦用数学的眼光来观察和思考这些看似平常的生活问题,就在数学和生活之间架起了一座桥梁,能够感受到生活中处处有数学。

4.课堂上的数学问题。主要指学生在课堂数学学习过程中自己的一些思考和发现。这对学生数学学习非常有帮助,比如,有个学生在学习画三角形的高时,发现书上介绍了锐角三角形和直角三角形的三条高,而钝角三角形只介绍了一条高。她在课后通过自己的思考和尝试,画出了钝角三角形的另外两条高,在得到老师的肯定后,欣喜万分,连忙写下了《我发现了钝角三角形的另外两条高》这篇数学小论文。

5.数学实践活动中遇到的问题。主要指学生通过自己亲自动手实践,在实践活动的过程中产生的疑惑、获得的启示和得到的结论等。比如,有个学生在教师还没有上实践活动课“可能性”之前,自己看书并根据书上的内容用红、蓝铅笔去摸,自己动手去探索并验证规律,事后写了一篇 心得体会 ,写出了她在动手实践过程中的想法和体会,让她觉得其乐无穷。

6.数学童话。主要指学生发挥丰富的 想象力 ,用童话的形式(其中包含着数学论述)来记录看到的数学世界。这是语文学科和数学学科一种很好的整合,那种独特的视角,生动的语言描述,让教师耳目一新。

二年级数学论文简单

二年级数学小论文怎么写如下:

小学数学自学习惯培养的重要意义

有利于学生数学学习能力的提高:自学习惯的培养能够充分调动学生在数学学习过程中的非智力因素,增加学生对数学学习的兴趣。良好的自学习惯能够促使学生自觉做好课前预习、课上认真听讲以及课后自觉复习等学习环节;能够促使学生在日常生活中注重数学知识与实际生活应用之间的联系,有助于学生数学应用能力的提升。

有利于学生学习能力的提升:自学习惯的形成能够有效提升学生的全面学习能力,这种学习能力不仅能够在数学学习过程中发挥重要作用,而且还能够在其他科目学习和相关技能学习方面发挥重要作用。自学习惯对学生产生最深刻的影响是能够促使学生自主开展探究学习,能够自觉的根据自身的知识需要和技能提升对需求的相关知识展开探究。

有利于学生的全面发展:自学习惯的培养不仅能够促使学生在日常生活、学习过程中养成良好的学习习惯,而且还能够为学生未来发展奠定良好的基础。良好的自学习惯不仅能够促使学生在学习上能够取得良好成绩,而且还能够为学生未来的工作产生重大影响。

在课堂中,由我们去担任学习的主角,让我们真正成为学习的主人,是我们每个小学生的共同心愿。

数学活动课是我们都爱上的课,在老师的指导下,我们分成小组,通过自己动手去测量、拼凑、剪切、计算,去探索发现的规律、掌握数学知识。这样,即培养了我们的动手能力,又提高了我们的思维能力,而且让我们初步尝到了数学家研究问题成功时的滋味,使我们对数学的学习兴趣倍增。

四则运算

四则运算的意义和计数方法。

加法意义、减法意义、乘法意义、除法意义、加法、减法、除法、乘法、验算。

运算定律与简便方法、四则混合运算。

减法运算性质:a-(b+c)=a-b-c a-(b-c)=a-b+c。

运算分级:加法和减法叫做一级运算;乘法和除法叫做二级运算(简略)。

复合应用题

长度、面积和体积以及其同类量之间的进率。

质量单位和他们之间的进率。

1吨=1000千克 一千克=1000克。

时间单位进率、人民币进率。

1小时=60分钟 1分钟=60秒。

1块=10角。

比与比例。

正比例、反比例、化简比、求比值、比与分数、除法联系、比、比例、可以用比例解应用题。

图形与空间

图形、空间、周长、面积、侧面积、表面积、图形的变换、图形与位置、图形的认识与测量。

以上内容参考:百度百科-小学数学

二年级数学教学论文:激发学生课堂学习兴趣进入21世纪以来,我国基础教育课程改革与更新正在轰轰烈烈地展开。新课标的推出,要求我们更新观念,与改革同步。如何组织教学,怎样做才能体现“学生是数学学习的主人”,我们的角色转变为“数学学习的组织者,引导者与合作者”,怎样通过数学教学培养学生的创新意识和实践能力,成为这个学期研究的重要课题。二年级第一学期数学,在整个小学阶段占一定的重要位置。本学期数学教学的指导思想是贯彻党和国家的教育方针和新课标的精神,落实对儿童少年的素质教育,促进学生的全面发展。初步培养学生的抽象、概括能力;分析、综合能力;判断、推理能力和思维的灵活性、敏捷性等。着眼于发展学生数学能力,通过让学生多了解数学知识的来源和用途,培养学生良好的行为习惯。因此,在教学过程中应着重抓好以下几点:一、激发学生的学习兴趣兴趣,是一个人积极完成一件事物的重要前提和条件。二年级小学生年龄还比较小,稳定性较差,注意力容易分散。要改变这种现象,必须使小学生对数学课产生浓厚的兴趣,有了对学习的兴趣,他们就能全身心地投入学习中。那么,怎样才能使他们产生学习的兴趣呢?首先,“学生是数学学习的主人”。新授课,练习课更加讲究方法。新授课中,我们可以和学生建立平等的地位,象朋友一样讨论教学内容,走进小朋友的心里,使他们消除心理障碍和压力,使“要我学”转变为“我要学”。在练习课上,利用多种多样的练习形式完成练习。可以请小朋友当小老师来判断其他正确;或者通过比赛形式来完成。对于胜出的小组给予红花或星星等作为奖品,这样促进学生。其次,创设问题情境,激发学生兴趣。创设问题情境是在教学中不断提出与新内容有关的能激起学生的好奇心和思考的问题,是激发学生学习的兴趣和求知欲的有效方法,也可以培养学生解决问题能力。我在教学“时间”这部分时,由于这部分知识比较抽象,学生比较难理解,所以我在三个星期前就先告诉学生,三个星期后我们要学习时间,希望同学们多去了解。然后我有意创设一些有关时间的生活中的问题情境让大家接触,结果学生来了兴趣,在学这部分知识时再让学生通过观察、操作、猜测、交流、反思等活动中学习,学生学习的积极性很高,解决相关的问题就容易多了。二、设计符合小学生年龄特点的实践活动。二年级学生掌握的数学知识不算多,接触社会的范围也比较窄。因此,根据学生的实际情况,在教学“方向与位置”这部分时,我让学生通过判断学校的方向,再来判断教室的方向,最后再判断自己的位置方向,这样一次次、一层层地认识,加深对着部分知识的理解。多让他们实践,就能提高他们的实践能力。三、结合基础知识,加强各种能力和良好习惯的培养。在重视学生掌握数学基础知识的同时,也发展他们的智力,培养他们的判断、推理能力。例如:教学乘法口诀时,先引导学生观察找规律,再小组讨论,最后小组汇报得出结论。由于二年级的学生太小了,滋长能力比较差。所以导致教学工作有一定的难度,但我一定会努力认真的总结、反思,虚心求教,不断学习,提高自己。

节日爸爸妈妈陪我去超市,爸爸给我50元让我自己买学习用品和玩具,我买了3张动画碟片,每张6元,我又买了一个1元的玩具,又买了5本本子,每本1元,爸爸让我算算一共多少元。我刚学会了乘法,这还不容易,3×6=18(元),1×5=5(元),18+5+1=24(元),一共用了24元。我算的快吧! 东方明珠塔里的数学

五年级数学小论文简单

五年级数学小论文500字! 今天,我和妈妈在做数学题。妈妈问我:“阳阳,你会算组合图形的面积吗?”我自以为是地说:“当然会了,这么简单!”妈妈拿出8个完全相同小正方体,摆成一个正方形,问我:“总面积怎么算?”我用直尺量了量,一个正方形的一条边大约是3厘米,我说出算式:“一条边3厘米,那么一个正方形的一个面就是3×3=9(平方厘米),一个正方形有6个面,就是9×6=54(平方厘米),8个就是54×8=432(平方厘米)。”妈妈好像很沮丧,说:“你犯了一个致命的错误!既然是组合图形,有些面肯定会重合了!”我恍然大悟:“对哦。”我又重算了一下:重合了1、2、3、4、5……24个面,24×9=216(平方厘米),432-216=216(平方米)。现在对了吧? 过了一会,妈妈又摆出了另一种组合图形,这个图形上下8个,左右都是2个,前后都是4个,问我:“面积怎么算?”我说:“用 12×6=72(平方厘米)就是上面的面积,再用6×3=18(平方厘米)就是左边的面积,再用12×3=36(平方厘米)就是前面的面积,最后用(72+18+36)×2=252(平方厘米)。”妈妈说:“没有发现一些规律吗?”我看了看,真有嘞!“每个正方体它的上面是什么下面就是什么,左边是什么右边就是什么,前后也一样。”我有些感触。妈妈欣慰地笑了,说“我的女儿真聪明!” 哦,原来如此,组合图形的面积算好前面后面就不要算了,算好上面下面就不要算了,算好左边右边就不要算了。太好了,以后算组合图形的面积就很方便了,你们学会了吗

数学的色彩 清晨,鲜红的太阳露出半个笑脸,和谐的阳光洒满人间,我的心情真是好极了。突然接到爷爷的电话,叫我巧算九块五加九十九块五,我马上告诉爷爷:九加九十九,再加一,不就等于一百零九吗?爷爷说我的算法还不算巧,如果凑整减零头就好算得多。我马上打断爷爷的话,告诉他:10+100-1=109(元)。这时爷爷夸我,说我还算灵巧。这是早晨的数学题,我把数学定为红色。 上午,爸爸从银行交完电费回来,叫我计算电费。用电量是从1079-1279(度),每度电单价是元,我用心算整好200度,我把单价变为分数是38/100,列式:200×(38/100),先约分再乘,等于76元。爸爸说没错,和电脑算得一样。我很得意,这时已近中午,我把数学定为黄色。 下午,我和妹妹在家里切西瓜,把半个西瓜再均匀地切两刀,其中的两份就是2/3,我问妹妹这两份是整个西瓜的几分之几呢?妹妹开学才上一年级,当然不会算,我告诉她把西瓜整体看作1,第一分率是1/2,它的分率是2/3,相乘的结果就是这两份是整个西瓜的2/6,约分后就是1/3。这时我想爷爷曾说七色阳光为白色,那么,这个数学就定为白色吧。 夜晚在蓝色的星空下,我和妈妈在一起看电视,我怎么也弄不懂考古学家是怎样从腿骨的化石推算出大艾尔恐龙的身高呢?妈妈说这蓝色的数学等你长大了,本事大了自然就会了。 生活中的数学简直是太多了,真是绚丽多彩,它随时在你身边出现。我爱数学,我要学好数学。

巧用平均数,同学们我们日常生活中都做过简单有趣的数学问题吧,今天我和大家来分享一题罢问题有¥6超重,鹅卵石他们的重量是千克6千克4千克4千克3千克2千克要求他们分别放在三个背包里,最要求,最终的一个背包尽可能近一点,请写出最终的背包的石头是多少千克,请同学们动手开始吧,接下来我来解答 6:00 +6+4+4+3+2 ( ÷3等于千克,这时三个背包的平均数,所以最终的肯定要超过千克,如果¥1中联部,不是整数体育课块平均数为整数,所以最小最重的背包重量只能是 千克10千克在这六个重量中,正好有6+46+4单千克与其余的¥5中做的另一块都不可能得到千克的重量最重的背包的证明,不可能是千克,那么悲观中就可能最小就是10千克,六个重量重正好有个是6+4等于10或4+4+4+2等于10 24+4+2等于10也就是说,可以取到10千克,剩下的石头中4+3+2等于9000客衣个背包中千克,所以这样这道题的正确答案是10千克,同学们你们明白了吗了吗?

0是一个神秘的数字,它像宇宙中的奥秘一样,让人捉摸不透。0也是一个重要的数字,如果你一不小心,多添了一个0或少加了一个0的话,那后果真是不堪设想。这次的数学考试,让我真正领略了0的重要性。当考卷发下来的时候,99分!我立即寻找错误点。结果令我目瞪口呆。原来是4500÷90这道题。“怎么可能这么简单的题我也会出错?”我心里嘀咕道。想起当时在口算45000÷90这道题时,我轻而易举地写下50,还十分自信,可到头来一计算原来得500,差了一个0。这是多少不应该的呀!不该错的也错了,想必0是多么重要呀!如果我以后当了公司的财务总经理,别人来提钱,本来要提10000元,我却多加了一个0--100000,在帐单上仍然记了10000元。那这90000元我向谁来要呀!这一切后果都得我承担啊。通过这件事,我明白了在工作上、学习上都要一丝不苟,要不然后果非常严重。

  • 索引序列
  • 三年级简单的组合论文
  • 三年级科技简单小论文范文
  • 数学论文六年级简单
  • 二年级数学论文简单
  • 五年级数学小论文简单
  • 返回顶部