首页 > 论文发表知识库 > 工程力学选题论文

工程力学选题论文

发布时间:

工程力学选题论文

不好意思,打扰一下,请问你弄好了吗?能不能给我发一下,急用,谢谢

工程力学要求是什么任务是什么。

怎样写论文? 建议你先去知网找相关论文研究,不会弄的话可以去我qq空间参考下网络找论文的介绍

工程力学毕业论文题目选题

浅谈护坡、挡土墙设计随着国民经济发展水平的不断提升,基本建设投入的增长,建设用地资源越来越馈乏,建设用地向远离城市的地区延伸,场地的复杂性增加了。山地、坡地、人工回填的场地越来越多,场地的护坡、挡土墙的设计项目日趋增多。在实际工作中如何做到保证场地的护坡、挡土墙的安全,既节省工程造价又能使设计与环境有机结合,起到美化环境的作用。是工程师们必须思考的一个问题。根据本人在工作中的经验,从设计的角度对护坡、挡土墙设计作一些探讨。一.边坡在地表标高发生突变处,较高的侧面称为边坡。按边坡的形成原因,分为天然边坡和人工边坡。天然边坡也称自然山体边坡,是指在自然地质作用下形成的山体斜坡、河谷岸坡、冲沟岸坡、海岸陡崖等;人工边坡也称工程边坡,是指在人类的工程活动中形成的斜坡,例如:基坑边坡、路堤边坡、路堑边坡、露天采矿边坡、堆料边坡、土石坝边坡,以及在水利工程中常见的渠道、船闸、溢洪道、坝肩边坡等。按边坡体介质的构成情况,边坡又可分为石质边坡和土质边坡。边坡在一定的地形地貌、地质构造、岩土性质、水文地质等自然条件下,由于地表水及地下水的作用或地震、爆破、切坡、堆载等因素的影响,其斜坡上的土石体在重力作用下失去原有的稳定状态,沿着斜坡方向向下做整体移动,这种现象称之为滑坡。滑坡的发生可能是长期而缓慢的,也有可能是瞬间完成。滑坡的规模有大有小,小型的滑坡的滑动土石体有数十立方米,中型的有数百立方米,大型的有数则有数千立方米至几亿立方米。滑坡的规模越大它造成的危害就越大。滑坡在其滑动的过程当中通常会形成一系列的形态特征,这些形态特征就是我们识别滑坡的重要标志。一个完整的滑坡一般都具有滑坡体、滑坡床、滑坡壁、滑坡台体、滑坡鼓丘、滑坡舌、滑坡裂隙等特征。滑坡体是边坡体上产生滑动的那一部分岩土体,简称滑体。滑坡床是边坡中滑体之下固定未动的岩土体。滑动面是滑体和滑坡床之间的界面,简称滑面。滑坡壁是滑体最后保留在母体上的出露的陡峭滑动面。滑坡平台又称为滑坡台阶,是指滑坡体各段由于滑动惯性和速度的差异在滑坡体上部形成的小型台阶,工程上也称台坎。滑坡裂隙分布在滑坡体的下部,是因滑体下滑受阻、上体隆起过程中形成的张性裂隙。在滑坡体与滑坡壁之间,岩土体分离拉开形成沟槽,相邻土契形成反坡地形,四周高,中间下洼,形成的封闭洼地。滑坡舌又称为滑坡前沿或滑坡头,其形态像舌头的那部分滑体。滑坡鼓丘是位于滑坡舌之后,因受后方滑坡土体挤推,有受滑坡舌阻碍而鼓胀隆起的滑动体。滑坡产生得更本原因在于边坡土体的性质、坡体介质内部的结构构造和边坡体的空间形态。滑坡的形成与地层岩性、地质构造、地形地貌等内部条件密切相关。水的作用、地震、大型爆破和其他人为因素影响是产生滑坡的外因。天然边坡是由各种各样的岩体或土体所组成,由于介质性质的不同,其抗剪切能力、抗风化能力和抗水冲刷、抗破坏能力也各不相同,抗滑移的稳定性自然各异。例如:土边坡体的力学指标容易收税的影响而降低,较容易滑动。边坡体的面层、节理、裂隙等常常是边坡体稳定性的决定因素。这些部位容易风化,抗剪强度低,尤其当中的一些裂隙或结构构造面的产状比较陡峭时,就很容易引起边坡体的滑动。例如:1.硬质岩层中夹有有薄层软质岩、软弱破碎带或薄的风化层,软弱夹层的倾角较陡且有地下水活动时,岩层可能沿着软弱夹层产生滑动;2边坡为页岩等层状介质时,极容易顺岩体的结构层面发生顺层滑坡,含煤地层容易沿煤层发生顺层滑坡;3.边坡体由玄武岩组成且玄武岩地层中有下伏的凝灰岩时,容易沿凝灰岩发生顺层滑坡;4.变质岩类中的片岩、千枚岩、板岩等结构构造面密集,容易发生滑坡;5.坡积地层或洪积地层下方常有基岩面下伏,下伏的基岩面坚硬且隔水,当大气降水沿土体孔隙下渗后,极容易在下伏基岩面之上形成软弱的饱和土层,从而使土体沿此软弱面滑动;6.存在断层破碎带、节理裂隙密集带的边坡体,也容易沿构造面发生滑坡。边坡的坡高、倾角和表面起伏形状对其稳定性有很大的影响。坡角越平缓、坡高越低,边坡的稳定性越好。边坡表面复杂、起伏严重时,较容易受到地表水或地下水的冲蚀,边坡的稳定性较差。边坡的表面形状不同,其内部应力状态也不同,坡体稳定性自然不同。高低起伏的丘陵地貌,是滑体集中分布的地貌单元,山间盆地边缘区、山地地貌和平原地貌交界处的坡积地貌和洪积地貌也是滑体集中分布的地貌单元,凸形地貌和上陡下缓的山坡,当岩层倾角与边坡顺向时,容易产生顺层滑坡。地表水及地下水的活动常是导致滑坡的重要因素之一。90%以上的滑坡都与水的作用有关。水的作用主要表现在以下几个方面:1.由于水进入土体而使边坡体的土体重量增加,改变了土体改变了土坡原有的受力状态导致滑坡;2. 由于水进入边坡土体力学性质指标的变化从而导致边坡的滑动。3.断裂带的存在使地下水、地表水和不同的含水层之间发生水力作用,使边坡体内的水压力产生变化且受力状态也发生变化,引起土体的滑动;4.地下水在渗流中对边坡土体介质的溶解、溶蚀、冲蚀改变了土体的内部结构,河流对土体的冲刷、切割也容易产生滑坡;水位的涨落是导致滑坡的另一原因。有关地下水的成因、危害问题在后面做详细介绍。气候条件的变化会使岩石风化作用加剧,炎热干燥的气候会使土层开裂破坏,对边坡的稳定产生极其不利的影响。在地震过程中,受地震力的反复作用,边坡土体结构很容易遭受破坏,并造成边坡土体沿其中的一些裂隙、构造面或其他软弱面向下滑动。一般认为,地震烈度在5度以上时就可能诱发边坡的滑动。人为因素的影响的影响是边坡滑动破坏的另一个重要因素。人们再平整场地、修筑道路、开挖渠道、基坑以及采矿过程中,如果不合理地开挖坡脚,不适当地在坡体上堆重或进行工程项目建设,都有可能破坏边坡的原有的稳定性而引起滑坡。二.工程地质通过岩土工程勘察,可以准确的分析出边坡土体产生滑坡的可能性以及可能产生滑坡的各种不利因素,从而采取相应的防治措施。因此,岩土工程勘察报告是护坡、挡土墙设计中最为基本也是最为重要的设计依据。设计师们对岩土工程勘察报告的理解是设计工作的基础。要做到这一点,工程地质方面的基础知识尤为重要。地球按其组成的物质的形态不同可划分为外圈层和内圈层,其外圈层包括大气圈和水圈(生物圈);内圈层包括地壳、地幔和地核。地壳是内圈层的最外部的一层薄壳,最薄处约,最厚处约70km,我们人类的工程活动目前仍限于在地壳范围之内。而我们所处在的地壳是处于不断运动、变化之中。导致地壳物质成分、地表形状、岩层结构、岩层构造发生变化的一切自然作用都称之为地质作用。这些作用有些进行得激烈而又迅速,人们较容易察觉;但更多的情况下,进行得非常缓慢,人们不容易直接感觉得到,但其作用的痕迹却随处可见。按地质作用力的来源不同,可将地质作用划分为内力地质作用和外力地质作用。由地球的旋转能和地球中的放射性物质在其衰减过程中释放的热能所引起的地质作用成为内力地质作用。大多数的地震、岩浆活动、地壳运动都属于内力地质作用。由太阳的辐射能和地球的重力(包括其它星体的引力作用)所引起的地质作用成为外力地质作用。常见的现象有气温变化、雨、雪、风、地面汇流、河流、湖泊、海洋作用、生物作用等。地质年代在工程实际中常被用到,在了解建筑场地的地质构造、岩层间的相互关系以及阅读地质资料或地质图时都必须具备地质年代的知识。特别是对褶皱、断层的判断,如果没有这方面的知识就可能发生原则性的错误。地球形成到现在大约有50亿年。在这悠长的岁月里,地球经过了一连串的变化,这些变化在整个地球历史中可以分为若干发展阶段。地球发展阶段的的时间段落称之为地质年代。也叫相对地质年代。相对地质年代将整个地壳发展的历史划分为五大代:太古代、元古代、古生代、中生代和新生代。代下面分纪,纪下面设世。例如:中生代的侏罗纪距今大约137-195百万年,距离现代最近的是新生代第四纪全新世(Q4),也有10万年。在地壳的表面是高低起伏的。地壳表面的外部特征称之为地形。如:坡度大小、高低变化、空间分布等。按地球表面的起伏形态、分布及其发生和发展规律研究的地表形态称之为地貌。常见的地貌单元有:山地、平原、海岸海底、冲沟、坡积裙和洪积扇、河谷、黄土地貌。这些地貌均产生于新生代第四纪全新世(Q4)。工程设计人员对其发生和发展规律需要了解。护坡、挡土墙是与土体直接接触的工程结构,土体特性、分类、组成、结构是设计中必须研究的一个重要部分。土的概念。任何建筑物都支承于地层之上,地球表面的地层一般是由岩石经过风化、搬运、沉积而形成的松散的堆积物,工程中称之为土。是岩石风化的产物,主要是第四纪沉积物(残积物、坡积物、洪积物、冲积物、海洋湖泊和风作用的堆积物)。土在地球表面分布极广,它与工程建设关系密切。在工程建设中,土被广泛用作各类建筑的地基或材料,或构成建筑物周围的环境或护层。土的分类。一般情况下,分为一般土和特殊土。一般土又可分为无机土和有机土。原始沉积的无机土大致可分为碎石类土、砂类土、粉类土和黏性土四大类。当土中巨粒、粗粒粒组的含量超过全重的50%时属于碎石类土或砂类土;其它则属于粉类土和黏性土。碎石类土和砂类土总称为无黏性土,其一般特征是透水性大,无黏性;而黏性土的透水性小;而粉性土的性质介于砂土和黏性土之间。特殊土有:遇水沉陷的湿陷性土(常见的湿陷性黄土)、湿胀干缩性土(膨胀土)、冻胀性土(冻土)、红黏土、软土、填土、混合土、盐渍土、污染土、风化岩与残积土等。 土的形成。风化作用是一种使岩石产生物理和化学变化的破坏作用。岩石风化后变成粒状的物质,导致强度降低,透水性增强。风化作用根据其性质和影响因素的不同可分为物理风化、化学风化和生物风化三种类型。由于温度变化和岩石裂隙中水的冻结以及岩类的结晶引起岩石表面逐渐破碎崩解,这种过程称为物理风化。这一作用仅使岩石机械破碎,风化产物与母岩的矿物成分相同,化学成分没有发生变化。地表岩石在水溶液、大气以及有机体的化学作用或生物化学作用下引起的破坏过程称为化学风化。它不仅破坏岩石的结构,而且使其化学成分改变,形成新的矿物质。化学风化主要有氧化、水化、水解、溶解和碳酸化等作用。生物活动过程中对岩石产生的破坏过程称为生物风化。如:树根、细菌对岩石的作用。 土的组成。土是由岩石经风化生成的松散沉积物。它的物质成分包括构成土的骨架的矿物颗粒以及充填在孔隙中的水和气体。一般来说,土就是由颗粒(固相)、水(液相)和气(气相)所组成的三相体系。当孔隙全部被水充满时,形成饱和土;当孔隙中只有空气时,为干土。土体中颗粒大小和矿物成分差别很大,各组成部分的比例也不同,土粒与其周围的水又发生复杂的作用。因此,要了解土的性质,就必须了解土的结构构造。土的结构。土的结构是指土粒或土粒集合体的大小、形状、相互排列与联结等综合特征,一般分为单粒结构、蜂窝结构和絮状结构三种类型。单粒结构是由土粒(>)在水或空气中下沉而形成的,全部由砂粒或更粗土粒组成的土,其颗粒较大,在重力作用下落到较为稳定的状态,土粒间的分子引力相对很小,颗粒之间几乎没有联结。单粒结构可以是疏松的,也可以是紧密的。疏松单粒结构的土,土粒间的空隙较大,其骨架是不稳定的,受到振动及其它外力作用时,土粒容易发生相对移动,引起较大的变形。蜂窝结构主要是指较细的土粒()组成的结构形式。这些土粒在水中基本上是以单个土粒下沉,当碰到已经下沉的土粒时,由于土粒之间的分子引力大于土颗粒的重力,因而土粒就停留在最初的接触点上不再下沉,形成孔隙体积大的蜂窝状结构。絮状结构是由黏粒(<)集合体组成的结构形式。黏粒能够在水中长期悬浮,不因重力作用而下沉。当悬浮液介质发生变化,黏粒便凝聚成絮状的粒集,并相继和已沉积的絮状粒集接触,从而形成孔隙体积很大的絮状结构。具有蜂窝结构和絮状结构的土,其土粒之间有大量的孔隙,结构不稳定,当其天然结构被破坏后,土的压缩性增大。土的构造。图的构造是指土层中的物质成分和颗粒大小相近的各部分之间的相互关系的特征。土的构造最主要的特征是层状性,即层理构造。它是在土的形成过程中,由于不同阶段沉积的物质成分、颗粒大小或颜色不同,而沿竖向呈现的成层特征。常见的有水平层理构造和带有夹层、尖灭或透镜体等交错层理构造。层理构造使土在垂直层理方向与平行层理方向性质不同,一般平行层理方向的压缩模量与渗透系数往往大于垂直方向的。土的构造的另一特征是土的裂隙性,即裂隙构造。土体被许多不连续的小裂隙所分割,在裂隙中常填充有各种盐类的沉淀物质,裂隙的存在破坏了土体的整体性,降低了土体的稳定性,增大了其透水性,对工程不利。此外,土中的裹物(如:腐殖质、贝壳等)以及天然或人为的孔洞等构造特征也会造成土的不均匀性和不稳定性。地下水通常是指地表以下岩土空隙中的重力水,是岩土三相物质中的一个重要组成部分。地下水的渗流可以引起岩土体渗透变形,直接影响建筑物、地基、边坡的稳定与安全;地下水位的变化,可使地基土的强度降低,产生不均匀沉降,造成基坑边坡的移动和基坑周围地面的沉陷等。地下水埋藏、分布在一定的岩土层和地质构造中,并按照补给、径流和排泄的规律不断地运动和变化。自然界的岩土体,无论是在松散堆积物还是坚硬的基岩中,都具有多少不等、形状不一的空隙。不同土体中的空隙形状、多少、大小、连通程度以及分布状况等特征都有很大的差别,岩石的这些特征统称为岩石的空隙性。岩石中的空隙是地下水储存的场所和运动的通道,岩石的空隙性在很大程度上决定着地下水的埋藏、分布及运动。水在岩土体中的储存形式。天然状态的土一般都含水,而水常以不同的形式存在于土中,并与土粒相互作用,它是影响土的工程、力学性质的重要因素之一。岩土的空隙性为地下水的储存和运动提供了条件,但水能否自由地进入这些空间,以及这些空间的地下水能否自由地运动和渗出,则与岩土的水理性质有直接的关系。水与岩土作用后表现出来的性质称为水理性质。包括:胀缩性、崩解性、毛细性、容水性、持水性、给水性、透水性和可塑性。自然界不存在没有空隙的岩土层,也就几乎不存在不含水的岩土层。其容水性和给水性关键在于其水理性质。空隙小的岩土体,含的几乎全是结合水;空隙大的主要是含有重力水,它能给出和透过水。根据岩土体给出和透过重力水的能力,可把岩土层划分为含水层和隔水层。含水层是指渗透性大、给水性强且饱含重力水的土层。当岩土体具有地下水储存和运动的空间、有储存地下水的地质条件并有一定的补给水源时即可形成含水层。隔水层是指渗透性极小、给水性也极小的岩土体。含水层与隔水层相互结合才能形成地下水埋藏的条件。在各种不同的地质环境中,含水层和隔水层的形成,控制着地下水的聚集、分布和埋藏。根据埋藏条件的不同,可以把地下水分为上层滞水、潜水和承压水三大类;按含水层空隙性质可分为孔隙水、裂隙水和岩溶水。含水层从大气降水、地表水以及其它水源获得补给后,在含水层中经过一段距离的径流然后排出地表或其它含水层中,重新变成地表水和大气水,这种补给、径流、排泄无限往复形成地下水的循环。对于遇水容易软化的岩层,地下水常常可以使岩石内部的联结变弱,强度降低。凡是节理发育、风化严重、层间夹有黏土矿物的岩体,除大气降水或由其它地表水渗入地面以下形成地下水外,在干旱少雨地区,也可由空气中的水气侵入岩石缝隙或土的孔隙,经凝结作用形成地下水。储存在岩质斜坡中的地下水,不仅可以降低岩石的强度,使软夹层的黏聚力和内摩擦力削弱,或使岩体发生膨胀、崩解,还可使层间的黏土矿物含水饱和而形成润滑作用。对局部岩体或岩块,地下水还可附加以浮力、动水压力,促使岩块在重力作用下碎落和滑移。由于地下水对岩土边坡经常起着破坏作用,因此地下水比地面流水对边坡稳定性的危害更严重。护坡、挡土墙不可避免地长期与地下水接触,地下水含有多种化学成份,它们可以与结构的混凝土部分或水泥砂浆发生化学反应,形成新的化合物。这些物质的形成时体积膨胀产生开裂破坏,或溶解某些组成部分使其强度降低、结构破坏,严重影响护坡、挡土墙的安全。在设计中须高度重视。三.护坡、挡土墙设计(一)工程勘察以上是有关边坡、土、地下水的一些基础知识。在实际工作当中,作为工程技术人员,对于岩土工程勘察仍需要作进一步的了解。按国家规范(GB50007-2002)的要求,边坡工程勘察必须查明以下内容:1.地貌的形态;当存在滑坡等不良地质作用时,须做到:1).查明各层滑坡面(带)的位置,2).各层地下水的位置、流向和性质,3).在滑坡体、滑坡面(带)和稳定地层中采取土试样进行试验;4).对滑坡作稳定性分析和评价;5).对滑坡的防治和监测提出建议。2.岩土的类型、成因、工程特性,覆盖厚度、基岩面的形态和坡度;3.岩体主要结构面的类型、产状、沿伸情况、闭合程度、充填状态、充水状态、力学属性和组合关系,主要结构面与临空面关系,是否存在外倾结构面。4.地下水的类型、水位、水压、水量、补给和动态变化,岩土的透水性和地下水的出露情况;5.地区的气象条件(特别是雨期、暴雨强度)、汇水面积、坡面植被,地表水对坡面、坡脚的冲刷情况;6.岩土的物理力学性质和软弱面的抗剪强度。勘察工作不能局限于红线范围,必须扩大勘察面,一般在坡顶勘察范围,应达到坡高的1-2倍,才能获取较完整的地质资料。对于高大的边坡,应进行专题研究,提出可行性方案,经论证后方可进行实施。(二)设计原则:1.应保护和整治边坡环境,边坡水系应因势利导,设置排水设施。对于稳定的边坡,应采取保护及营造植被的防护措施。注重环保。2.在山区建设,应防止大挖大填。场地平整时,应采取确保周边建筑物安全的施工顺序和工作方法。由于平整场地而出现的新边坡,应及时进行支挡或构造防护。3.边坡支挡结构应进行排水设计。对于可以向坡外排水的支挡结构,应在支挡结构上设置排水孔。排水孔应沿着横竖两个方向设置,其间距宜取2-3m,排水孔外斜坡度宜为5%,最下一排的泄水孔应高出地面。孔眼尺寸不宜小于100mm。常用的孔眼尺寸有:50x100、100x100、150x200或100的圆孔。泄水孔附近应用粗颗粒材料覆盖,并做成反滤层以免淤塞。为了防止墙后积水渗入基础,应在最低泄水孔下部铺设粘土层并夯实。支挡结构后面应做好滤水层,必要时应作排水沟。支挡后面有山坡时,应在坡脚处设置截水沟。对于不能向坡外排水的边坡,应在支挡结构后面设置排水暗沟。4.支挡结构后面的填土,应选择透水性强的填料。当采用粘土作填料时,宜掺入适量的碎石。在季节性冻土地区,应选择炉渣、碎石、粗砂等非冻胀性填料。在填土表面宜铺设防水层,一般可用黏土夯实,厚300mm。边坡支挡的排水设计,是支挡结构设计很重要的一环,许多支挡结构的失效,都与排水不善有关。倒塌的支挡约有80%是排水不善造成的。(三)边坡的设计在土体整体稳定的条件下,土质边坡的坡度允许应根据当地经验,参照同类土层的稳定坡度确定。当土质良好且均匀、无不良地质现象、地下水不丰富时,可按下表进行坡度设计。 土质边坡的坡度允许值 岩土类别 密实度或状态 坡度允许值(高宽比)坡高在5m以内坡高在5m-10m 碎石土 密实中密稍密1: 粘性土 坚硬硬塑1:注:1.表中碎石土的填充物为坚硬或硬塑状态的粘性土; 2.对于砂土或填充物为砂土的碎石土,其边坡坡度允许值均按自然休止角确定。 岩石边坡的坡度允许值 岩土类别 风化程度 坡度允许值(高宽比)坡高在8m以内坡高在8m-15m 硬质岩 微风化中风化强风化1: 软质岩 微风化中风化强风化1:土质边坡开挖时,应采取排水措施,边坡顶部应设置截水沟。在任何情况下不允许在坡脚及坡面上存在积水。边坡开挖时,应由上往下开挖,一次进行。弃土应分散处理,不得将弃土堆置在坡顶及坡面上。当必须在坡顶或坡面上设置弃土转运站时,应进行坡体的稳定性验算,严格控制堆栈的土方量。边坡开挖后,应立即对边坡进行防护处理。防护措施要因地制宜,就地取材。在植物容易生长的土质边坡上,可采取种草、铺草皮、植树等防护措施。边坡过陡或植物不易生长的边坡可采用挡墙、框格防护、封面、护面墙等防护措施,并应符合下列要求:1.种草边坡坡度不宜陡于1:1。根据防护目的、气候、土质、施工季节,宜采用易成活、生长快、根系发达、叶茎低矮的多年生草种。如系不利于种草的土壤,可在坡面铺撒一层100-150厚的种植土层,并挖成防止土层流失的小台阶。2.铺草皮适用于要迅速绿化的土质边坡。宜采用根系发达、茎矮叶茂的耐旱草种。坡度宜为1:.主要有平铺、叠铺等形式。可采用方块状或带状,方块尺寸可采用200mmX250mm、250mmX400mm和300mmX500mm,草皮厚度宜为60-100mm,以小木桩钉牢,并露出草皮面20mm。3.树种应选用能迅速生长且根深枝密的低矮灌木类,其布置形式可选用带状、条形和连续式。4.框格防护应以混凝土、浆砌片(块)石、卵(砾)石等做骨架,框格内宜采用植物防护或其它辅助防护措施。方形框格大小应视边坡坡度、土质而定,通常宜为1000mmX1000mm至3000mmX3000mm。石料的强度等级不应小于Mu200,砂浆强度等级不应小于M10,混凝土强度等级不应小于C20。边坡坡顶及坡脚应采用与骨架部分相同的材料加固。5.封面可采用抹面、喷浆或喷射混凝土。抹面材料可用石灰炉渣灰浆、石灰炉渣三合土、水泥石灰砂浆,厚度宜为30-70mm;喷浆的砂浆强度不应低于M10,厚度宜为50-100mm;喷射混凝土应设置钢筋网、钢丝网或土工格栅,并应通过锚杆或土钉固定于边坡上。混凝土强度等级不应低于C15,厚度宜为100-150mm。封面防护应间隔2-3m交错设置直径100mm的泄水孔。6.对于严重风化破碎或容易产生碎落的岩石边坡,可采用护面墙,其坡度不宜陡于1:。护面墙应采用浆砌片石、砌块石结构,也可采用现浇或预制混凝土结构。石料的强度等级不应小于Mu300,砂浆强度等级不应小于M10,混凝土强度等级不应小于C20。基础应设置在稳定的地基土上,埋置深度为墙厚度的倍,每隔10-20m设200mm宽的伸缩缝,间隔2-3m交错设置直径100mm的泄水孔。

要看你选择的方向。

数学领域中的一些著名悖论及其产生背景

工程力学论文标题

机械和土木专业都需要力学知识,力学也可以转方向到这两个区域。但这两个方向都不是力学优势方向。工程力学,学一些工程知识,学一些力学知识。倘若读研的话就会很不一样了。方向会有突破。

工程力学的题目可以在学小易上面搜题,关于工科专业的大学练习题再学小易上面基本都是有的,简答题选择题判断题基本都是可以搜到的。

如果是带有图形的题目的话,可以使用拍照搜题,一样是可以搜出答案的。

工程力学这个专业主要研究力学和数学的基本理论和知识,研习二维、三维绘图,运用计算机和现代实验技术手段解决与力学有关的工程问题。例如:桥梁的总承重计算、室内墙体的强度和受重分析计算、建筑的结构稳定性分析等。

工程力学研究自然界以及各种工程中机械运动最普遍、最基本的规律,以指导人们认识自然界、科学地从事工程技术工作。它涵盖了原有理论力学(静力学部分)和材料力学两门课程的主要经典内容。工程力学不仅与力学密切相关,而又紧密联系于广泛的工程实际。

对土木工程的发展起关键作用的,首先是作为工程物质基础的土木建筑材料,其次是随之发展起来的设计理论和施工技术。每当出现新的优良的建筑材料时,土木工程就 会有飞跃式的发展。人们在早期只能依靠泥土、木料及其它天然材料从事营造活动,后来出现了砖和瓦这种人工建筑材料,使人类第一次冲破了天然建筑材料的束缚。中国在公元前十一世纪 的西周初期制造出瓦。最早的砖出现在公元前五世纪至公元前三世纪战国时的墓室中。砖和瓦具有比土更优越的力学性能,可以就地取材,而又易于加工制作。砖和瓦的出现使人们开始广泛地、大量地修建房屋和城防工程等。由此土木工程技术得到了飞速的发展。直至18~19世纪,在长达两千多年时间里,砖和瓦一直是土木工程的重要建筑材料,为人类文明作出了伟大的贡献,甚至在目前还被广泛采用。钢材的大量应用是土木工程的第二次飞跃。 十七世纪70年代开始使用生铁、十九世纪初开始使用熟铁建造桥梁和房屋,这是钢结构出现的前奏。从十九世纪中叶开始,冶金业冶炼并轧制出抗拉和抗压强度都很高、延性好、质量均匀的建筑钢材,随后又生产出高强度钢丝、钢索 。于是适应发展需要的钢结构得到蓬勃发展。除应用原有的粱、拱结构外,新兴的桁架、框架、网架结构、悬索结构逐渐推广,出现了结构形式百花争艳的局面。建筑物跨径从砖结构、石结构、木结构的几米、几十米发展到钢结构的百米、几百米,直到现代的千米以上。于是在大江、海峡上架起大桥,在地面上建造起摩天大楼和高耸铁塔,甚至在地面下铺设铁路,创造出前所未有的奇迹。为适应钢结构工程发展的需要,在牛顿力学的基础上,材料力学、结构力学、工程结构设计理论等就应运而生。施工机械、施工技术和施工组织设计的理论也随之发展,土木工程从经验上升成为科学,在工程实践和基础理论方面都面貌一新,从而促成了土木工程更迅速的发展。十九世纪20年代,波特兰水泥制成后,混凝土问世了。混凝土骨料可以就地取材,混凝土构件易于成型,但混凝土的抗拉强度很小,用途受到限制。 十九世纪中叶以后,钢铁产量激增,随之出现了钢筋混凝土这种新型的复合建筑材料,其中钢筋承担拉力,混凝土承担压力,发挥了各自的优点。 二十世纪初以来,钢筋混凝土广泛应用于土木工程的各个领域。从三十年代开始,出现了预应力混凝土。预应力混凝土结构的抗裂性能、刚度和承载能力,大大高于钢筋混凝土结构,因而用途更为广阔。土木工程进入了钢筋混凝土和预应力混凝土占统治地位的历史时期。混凝土的出现给建筑物带来了新的经济、美观的工程结构形式,使土木工程产生了新的施工技术和工程结构设计理论。这是土木工程的又一次飞跃发展。土木工程的特点建造一项工程设施一般要经过勘察、设计和施工三个阶段,需要运用工程地质勘察、水文地质勘察、工程测量、土力学、工程力学、工程设计、建筑材料、建筑设备、工程机械、建筑经济等学科和施工技术、施工组织等领域的知识 ,以及电子计算机和力学测试等技术。因而土木工程是一门范围广阔的综合性学科。随着科学技术的进步和工程实践的发展,土木工程这个学科也已发展成为内涵广泛、门类众多、结构复杂的综合体系。土木工程是伴随着人类社会的发展而发展起来的。它所建造的工程设施反映出各个历史时期社会经济、文化、科学、技术发展的面貌,因而土木工程也就成为社会历史发展的见证之一。远古时代,人们就开始修筑简陋的房舍、道路、桥梁和沟澶,以满足简单的生活和生产需要。后来,人们为了适应战争、生产和生活以及宗教传播的需要,兴建了城池、运河、宫殿、寺庙以及其他各种建筑物。许多著名的工程设施显示出人类在这个历史时期的创造力。例如,中国的长城、都江堰、大运河、赵州桥、应县木塔,埃及的金字塔,希腊的巴台农神庙,罗马的给水工程、科洛西姆圆形竞技场(罗马大斗兽场),以及其他许多著名的教堂、宫殿等。产业革命以后,特别是到了20世纪,一方面社会向土木工程提出了新的需求;另一方面,社会各个领域为土木工程的前进创造了良好的条件。因而这个时期的土木工程得到突飞猛进的发展。在世界各地出现了现代化规模宏大的工业厂房、摩天大厦,核电站、高速公路和铁路、大跨桥梁、大直径运输管道长隧道、大运河、大堤坝、大飞机场、大海港以及海洋工程等等。现代土木工程不断地为人类社会创造崭新的物质环境,成为人类社会现代文明的重要组成部分。土木工程是具有很强的实践性的学科。在早期,土木工程是通过工程实践,总结成功的经验,尤其是吸取失败的教训发展起来的。从17世纪开始,以伽利略和牛顿为先导的近代力学同土木工程实践结合起来,逐渐形成材料力学、结构力学、流体力学、岩体力学,作为土木工程的基础理论的学科。这样土木工程才逐渐从经验发展成为科学。在土木工程的发展过程中,工程实践经验常先行于理论,工程事故常显示出未能预见的新因素,触发新理论的研究和发展。至今不少工程问题的处理,在很大程度上仍然依靠实践经验。土木工程技术的发展之所以主要凭借工程实践而不是凭借科学试验和理论研究,有两个原因:一是有些客观情况过于复杂,难以如实地进行室内实验或现场测试和理论分析。例如,地基基础、隧道及地下工程的受力和变形的状态及其随时间的变化,至今还需要参考工程经验进行分析判断。二是只有进行新的工程实践,才能揭示新的问题。例如,建造了高层建筑、高耸塔桅和大跨桥梁等,工程的抗风和抗震问题突出了,才能发展出这方面的新理论和技术。在土木工程的长期实践中,人们不仅对房屋建筑艺术给予很大注意,取得了卓越的成就;而且对其他工程设施,也通过选用不同的建筑材料,例如采用石料、钢材和钢筋混凝土,配合自然环境建造了许多在艺术上十分优美、功能上又十分良好的工程。古代中国的万里长城,现代世界上的许多电视塔和斜张桥,都是这方面的例子。

工程力学力学导论论文题目

工程力学的题目怎么找?1. 可以在网上搜索相关的文章或者书籍,如《工程力学基本原理》、《工程力学实验及应用》。2. 访问国内外大学的教材与课件,找到相关的题目。3. 科学资源平台(如SpringerLink、IEEE Xplore Digital Library)中检索有关“工程力学”的文章或会议论文,查看里面是否有适当的题目。

解析法:∑Fx=0  p+NAx=0          (1)

∑Fy=0  NB+NAy=0       (2)

∑MA=0    (3)

联立解上三式得:

NAx=-p(实际方向与所设相反)、NB=p/2 、NAy=-p/2(实际方向与所设相反)

若求合力 NA=√(NAx^2+NAy^2)=p√5/2

几何法:三力:p、NA和NB汇交与D,力多边形自行封闭成如图三角形。

在该三角形中:NB=α=p/2 ,NA=p/cosα=p/(2/√5)=p√5/2

一般情况下的话,我觉得工程力学的这个题目的话,主要就是包括三个方面。所以说大家可以直接就是进行一下这个查看选择就可以了

工程力学方面的论文在 轻风论文网 很多的哦,之前我就找上面的老师 帮忙指导的。相对于网上很多个人和小机构要好很多,我之前找的 轻风论文 王老师咨询的,非常专业的说这里还有些 资料,你看看钢板材包装木托架的承 载研究和结构优化目前我国钢产量早已 跃居世界第一位,钢铁企业的工艺和装备水平也已走在世界前列,但钢铁企业对于钢材 的包装技术,基本停留在经验阶段 ,远落后于先进的钢铁生产 制造工艺,从而造成了不必要的资源浪费和安全隐患。 其中薄钢板材在储运过 程中,承载作用 的木托架常有破坏事故发生,给生产使用造成了巨大的安全隐患。本文通过木材的试验和木托架的承载受力情况分析对规范木托架的包装形式提供一定的理 论依据。木托架是 作为钢板材单元负荷用于集装、堆放、搬运和运输的水平平台装置, 它是一 种由纵木和横木联接构成的简易装置。本 文分别通过对常用木材的物理性能分析;木托架承载 性能分析和有限元 分析;对木托架结 构设计进行初探。主要采用足尺寸试样的试验方法对常用木材进 行力学性能试验,确定不同木材的抗弯性能和抗压性能,为不同运输环境选择合适 的木材提供了数据支持。基 于薄钢板材对木托架的合理设计 要求,分析了流通环境中木托架的具体工况 ,采用相 应的工程力学理论,进行典型工况下 木托架的承载分析,建立相应的力学模型。根据力学模型对木 托架的尺寸和结构 进行了优化,初步获得 了兼顾木托架承载性能与成本的设计方法,对木 托架的设计和生产提供了力学分析的初步依据。采用ANSYS有限元分析软件对薄钢板包装用木托 架在吊运工况下的受 力和变形情况进行分析,对典型工况下的木托架进行了承载分析和有限元仿 真。根据理论分析,确定木材为正交异 性的材料,通过承载分析建立了木托架在堆码和吊运工况 下的力学模型 ;通过有限元仿真进一步对承载分析进行验证,并确定不同木托架在吊运时的结构稳定性。在吊 运工况下同等尺寸外伸梁木 托架比田字型木托架结构更稳定,增加横梁的数量可以增加木托架的结构稳定性。对木托架的吊运位置 选取进行了初步分析。本文对木托架的设计和生产应用提供了理论上的 依据。本文对用于钢板 材包装的木托架进行了受力分析及有限元仿真,并对木托架常用木材 的力学性能进行了试验,最 对木托架的结构进行优化。由于木托架的约束理论简化与实际 情况存在一定程度误差,加之 材料力学相对于木材力学分析的局限性,在模型的 建立和有限元的仿真过程中,都对木托架的实际承载情况作了近似的处理和简化, 还需要作 进一步的理论和实验研究 以及实践应用不懂的你上 轻风论文网自己看吧

静力学工程力学论文

工程力学是最最基础的力学,是理论力学和材料力学的简单综合。理论力学是讲静态平衡的,和高中物理的平衡有点类似,但是很多很多的概念是新的,并且适合工程有关的,高中的物理只是一种简单的理论,(其实材料力学也很理论,只是相对具有工程性质一些),材料力学主要研究变形的问题,在什么情况下梁弯了之类的问题,并要求校正强度方面的问题。而工程力学这两方面都要研究,但是都不深,我们学分都才个学分

结构理论分析的步骤是首先确定计算模型,然后选择计算方法。土力学在二十世纪初期即逐淅形成,并在40年代以后获得了迅速发展。在其形成以及发展的初期,泰尔扎吉起了重要作用。岩体力学是一门年轻的学科, 二十世纪50年代开始组织专题学术讨论,其后并已由对具有不连续面的硬岩性质的研究扩展到对软岩性质的研究。岩体力学是以工程力学与工程地质学两门学科的融合而发展的。从十九世纪到二十世纪前半期,连续体力学的特点是研究各个物体的性质,如梁的刚度与强度,柱的稳定性,变形与力的关系,弹性模量,粘性模量等。这一时期的连续体力学是从宏观的角度,通过实验分析与理论分析,研究物体的各种性质。它是由质点力学的定律推广到连续体力学的定律,因而自然也出现一些矛盾。于是基于二十世纪前半期物理学的进展 ,并以现代数学为基础,出现了一门新的学科——理性力学。1945年,赖纳提出了关于粘性流体分析的论文,1948年,里夫林提出了关于弹性固体分析的论文,逐步奠定了所谓理性连续体力学的新体系。随着结构工程技术的进步,工程学家也同力学家和数学家一样对工程力学的进步做出了贡献。如在桁架发展的初期并没有分析方法,到1847年,美国的桥梁工程师惠普尔才发表了正确的桁架分析方法。电子计算机的应用,现代化实验设备的使用,新型材料的研究,新的施工技术和现代数学的应用等,促使工程力学日新月异地发展。质点、质点系及刚体力学是理论力学的研究对象。所谓刚体是指一种理想化的固体,其大小及形状是固定的,不因外来作用而改变,即质点系各点之间的距离是绝对不变的。理论力学的理论基础是牛顿定律,它是研究工程技术科学的力学基础。固体力学包括材料力学、结构力学、弹性力学、塑性力学、复合材料力学以及断裂力学等。尤其是前三门力学在土木建筑工程上的应用广泛,习惯上把这三门学科统称为建筑力学,以表示这是一门用力学的一般原理研究各种作用对各种形式的土木建筑物的影响的学科。在二十世纪50年代后期,随着电子计算机和有限元法的出现,逐渐形成了一门交叉学科即计算力学。计算力学又分为基础计算力学及工程计算力学两个分支 ,后者应用于建筑力学时,它的四大支柱是建筑力学、离散化技术、数值分析和计算机软件。其任务是利用离散化技术和数值分析方法,研究结构分析的计算机程序化方法,结构优化方法和结构分析图像显示等。如按使结构产生反应的作用性质分类,工程力学的许多分支都可以 再分为静力学与动力学。例如结构静力学与结构动力学,后者主要包括:结构振动理论、波动力学、结构动力稳定性理论。由于施加在结构上的外力几乎都是随机的,而材料强度在本质上也具有非确定性。随着科学技术的进步,20世纪50年代以来,概率统计理论在工程力学上的应用愈益广泛和深入,并且逐渐形成了新的分支和方法,如可靠性力学、概率有限元法等。

工程力学作为一门课程,是理论力学和材料力学的基础部分的简单综合 但是工程力学作为一个本科专业 它包含的范围是极其广泛的 分支众多 具体的你可以参考学校工程力学专业介绍 祝好

物理力学是力学的一个新分支,它从物质的微观结构及其运动规律出发,运用近代物理学、物理化学和量子化学等学科的成就,通过分析研究和数值计算,阐明介质和材料的宏观性质,并对介质和材料的宏观现象及其运动规律作出微观解释。主要包括静力学、动力学、流体力学、分析力学、运动学、固体力学、材料力学、复合材料力学、流变学、结构力学、弹性力学、塑性力学、爆炸力学、磁流体力学、空气动力学、理性力学、物理力学、天体力学、生物力学、计算力学 物理力学主要研究平衡现象,如气体、液体、固体的状态方程,各种热力学平衡性质和化学平衡的研究等。对于这类问题,物理力学主要借助统计力学的方法。 物理力学对非平衡现象的研究包括四个方面:一是趋向于平衡的过程,如各种化学反应和弛豫现象的研究;二是偏离平衡状态较小的、稳定的非平衡过程,如物质的扩散、热传导、粘性以及热辐射等的研究;三是远离于衡态的问题,如开放系统中所遇到的各种能量耗散过程的研究;四是平衡和非平衡状态下所发生的突变过程,如相变等。解决这些问题要借助于非平衡统计力学和不可逆过程热力学理论。 物理力学的研究工作,目前主要集中三个方面:高温气体性质,研究气体在高温下的热力学平衡性质(包括状态方程)、输运性质、辐射性质以及与各种动力学过程有关的弛豫现象;稠密流体性质,主要研究高压气体和各种液体的热力学平衡性质(包括状态方程)、输运性质以及相变行为等;固体材料性质,利用微观理论研究材料的弹性、塑性、强度以及本构关系等。 物质的性质及其随状态参量变化规律的知识,无论对科学研究还是工程应用都极为重要,力学本身的发展就一直离不开物性和对物性的研究。 近代工程技术和尖端科学技术迅猛发展,特别需要深入研究各种宏观状态下物体内部原子、分子所处的微观状态和相互作用过程,从而认识宏观状态参量扩大后物体的宏观性质和变化规律。因此,物理力学的建立和发展,不但可直接为工程技术提供所需介质和材科的物性,也将为力学和其他学科的发展创造条件。

  • 索引序列
  • 工程力学选题论文
  • 工程力学毕业论文题目选题
  • 工程力学论文标题
  • 工程力学力学导论论文题目
  • 静力学工程力学论文
  • 返回顶部