集约化养猪场废水处理技术及应用养猪场废水是养殖业废弃物中最典型的一类污染物,主要包括猪尿、部分猪粪和猪舍冲洗水,属高浓度有机废水。由于养猪业属传统产业,用于废水处理的资金有限,所以养猪场废水处理各项指标要完全达标难度很大。迄今为止,国内外对养猪场废水处理已进行了大量研究和工程应用实践。文章分析总结了近3年来集约化养猪场废水处理的工艺研究和工程应用等方面的情况,现报道如下。1 猪场废水处理工艺目前,养猪场废水处理研究的工艺方法有物化处理、自然生态处理、好氧处理、厌氧处理等,实际工程应用中常常是这些处理技术的组合工艺。猪场废水悬浮物质浓度很高,悬浮物质是COD的主要来源之一,过高的悬浮物质将会影响后续生化处理的效果,所以在养猪场废水进入生化处理系统之前进行固液分离处理是必要的。固液分离机有振动筛、回转筛、水力筛和挤压式分离机等,其中挤压式分离机可以连续运行,效率较高。德国研制的FAN -SEPATOR的挤压式离心分离机,具有很好的分离效果,在我国的应用表明,悬浮物的去除效率较高,分离出来的泥渣含水率为80%左右。猪场废水氮磷含量很高, 采用磷酸镁铵(MgNH4 PO4 ·6H2O,俗称鸟粪石)化学沉淀法处理,使得废水中的氨氮转化为缓释肥中的营养元素,解决了氮的回收和氨的污染两大问题,同时达到较好的预处理效果,为后续的生化处理创造了条件。但该方法必须考虑废水中N、P、Mg的平衡问题,所以廉价的添加剂是化学沉淀法能否实际应用的关键。Lee S I等人利用海水或制盐工业中的废盐卤作为Mg2 + 添加剂,沉淀速度快,与添加MgCl2 作镁源对磷有等同的去除效果,是一种处理成本低廉的方法,但去除氨的效果不如添加MgCl2。自然生态法是运用生态学原理与工程学方法相结合的技术,应用较多的是稳定塘工艺和人工湿地系统。PoachM E[ 1 ]为了研究有机负荷和去除效果的关系,设计了6个并联的湿地- 池塘- 湿地处理系统,通过分别进水控制各处理单元的有机负荷,试验研究表明,最佳TSS、COD、TN、TP去除率分别为35% ~51%、30% ~50%、37% ~51%、13% ~26%,夏季处理效果明显优于冬季,处理效果受温度和降雨的影响较大。自然生态法处理建设费用较低,运行成本低廉,但受自然条件的影响较大,适宜于土地资源丰富的地区,具有良好的应用前景。好氧生化法主要有活性污泥法和生物接触氧化法。成文[2]采用接触氧化水解(酸化) -两段接触氧化-混凝工艺处理猪场废水,水解对CODcr有较高的去除率,稳定在60%~70%;接触氧化对COD的去除效果在50%左右。整个工艺对氨氮去除效果较好,出水氨氮在13~15 mg/L, CODcr在200~250 mg/L,经过聚合氯化铝混凝沉淀后,最终出水CODcr稳定在100 mg/L 以下,出水达到污水综合排放一级标准(GB8978 - 88) 。但该工艺程序复杂,占地面积大,对氨氮的去除效果还有待进一步研究。邓良伟[ 3 ]研究水解- SBR处理猪场废水,大大简化了处理工艺, 水解去除了大部分的COD, TP去除率达到55% ,但对氨氮去除效果不好;SBR对氨氮有较好的去除效果, TN的去除率为 ,氨氮的去除率在97%以上,但最终出水的COD残留量较大。猪场废水的高氨氮常常导致生化处理过程中碳源不够、C /N过低,从而影响总氮的去除效果,如果采用外加碳源则会增加处理成本。Ju -Hyun Kim等人利用序批式反应器( SBR) 实时控制工艺,采取补充源水作外加碳源的方式处理猪场废水,通过ORP以及pH值实时控制缺氧段、好氧段,TOC和总氮的去除率分别在94%和96%以上,能够有效除去TOC和TN,但对TP的去除效果不佳。猪场废水氨氮浓度高,对直接进行生化处理可能会产生影响,因此在生化处理前进行化学脱氮以减轻后续生化处理的难度,是目前猪场废水处理的一个新途径,于金莲等人提出了加石灰乳混凝沉淀- 脱氨- 好氧生化的联合处理工艺,在生化处理前进行混凝沉淀和脱氨预处理,一方面去除了大部分悬浮物和部分难降解有机物;另一方面提高pH值,脱除大部分氨氮,使后续生化处理降低能耗、容易达标。自然生态法和好氧处理都有各自的不足,自然生态法处理需要大面积的处理场地;好氧处理能耗大,去除污染物不完全。对于高浓度有机废水的处理,厌氧技术是必然选择之一。目前较常用也比较有效的处理方法是厌氧或厌氧+好氧后续处理工艺,研制高效厌氧反应器是猪场废水处理的关键。邓良伟等人利用内循环厌氧反应器( IC)处理猪场废水,水力停留时间0. 8~2. 0 d,COD 负荷3~7 kg / (m3 ·d) ,经过半年的运行,结果表明, COD 平均去除率为80. 3% ,耐冲击负荷好,BOD5 平均去除率为95. 8% , SS去除率为78. 5%。厌氧反应器中,部分有机氮转化为氨态氮,使得出水氨氮浓度比进水高2. 82% ,反应器对总氮、总磷的去除还需进一步的试验研究。一般而言,单纯使用厌氧工艺,出水有机污染物还很高,必须采用后续处理才能达到排放标准。考虑到SBR 对氨氮有较好的去除,杨朝晖等人提出沉淀- UASB - SBR工艺处理猪场废水,经厌氧消化可除去大部分的有机质,在SBR工艺中的曝气过程分为2个阶段,中间添置闲置阶段,既防止产生过多泡沫,又增强反消化作用。经过稳定运行, UASB 反应器COD 有机负荷稳定在8~10 kg/ (m3 ·d) , COD去除率达到70%左右,BOD5去除率80%左右,经SBR 处理可去除氨氮95% ~98% ,最终出水CODcr为186 ~412 mg/L, BOD5 为78~146 mg/L,氨氮为20 ~60 mg/L,出水仍残留部分生化处理难以去除的难降解有机物,这是因为厌氧消化较完全,消化液COD较低,而氨氮很高,导致后续生化处理碳源不足,影响了后续的处理效果。杨朝晖等人又研究水解酸化+好氧处理猪场废水工艺,采用水解酸化反应器(ASBR)进行厌氧处理,保持厌氧消化处理控制在水解、酸化阶段,使出水C /N 较高,保证了后续SBR的生化效果。经过最终混凝处理,COD去除率为99. 6% , BOD5 去除率为99. 8%, TN为88. 3% ,氨氮为99. 8% ,出水达到污水综合排放二级标准(GB8978 - 96) 。但水解酸化反应器COD 的容积负荷较低仅为2. 3 kg/ (m3 ·d) ,还需进一步研究提高其负荷。猪场废水中还存在大量细菌,如不经处理可能将大肠杆菌带入地表水和地下水,危害人类健康, JamesA Entry等人提出用水溶性的阴离子聚丙烯酰胺( PAM ) 处理猪场废水, 基建投资低、应用快捷。PAM、PAM与CaO复配和PAM与Al2 ( SO4 ) 4 复配能够使总的大肠杆菌和排泄物大肠杆菌减少30% ~50%,降低源水中的总磷、正磷酸根以及氨氮。正确的应用PAM及其复配物可以减少进入地表水和地下水中的污染物数量,保护水质。2 猪场废水处理技术应用情况目前,应用到实际工程上的猪场废水处理工艺有自然生态法处理、好氧处理、厌氧+好氧处理等。潘涌璋等人利用高级综合稳定塘处理猪场废水,经过稳定运行, 出水达到畜禽养殖业污染物排放标准(GB18596 - 2001)的要求,氨氮在60 mg/L 左右,总氮没有考虑,总停留时间在20 d以上,占地面积大,适合于土地资源较丰富的亚热带山区。由于凤眼莲对水体中的污染物质和营养物质有较好的吸收,]考虑用凤眼莲处理猪场废水,工艺流程如下:该凤眼莲生化处理系统对COD 的______去除率为43%~69% ,对总氮的去除率为55% ~72% ,对氮元素的吸收量很大,同时对总磷、挥发酚等污染物都有较好的去除效果。该处理系统的停留时间为30 d,日设计流量为600 m3 ,但需要较大的处理场地,且受气候条件影响很大,这都限制了该工艺的应用。目前,厌氧+好氧处理工艺应用较为广泛。胡海良等人将环形生活污水高效净化沼气装置应用到猪场废水的处理上,废水经过高效净化沼气装置后进入接触氧化池,进行自然曝气去除CODcr和BOD5 , 该工艺对COD、BOD的去除率达到90%以上,但出水氨氮为100~200 mg/L,去除效果不好。邓良伟等人进行了厌氧- 加源水- 间隙曝气(Anarwia)的研究,此工艺是厌氧+ SBR工艺的改良,因为厌氧消化较完全,导致好氧处理中C /N较低,影响后续消化效果,如果添加外源碳源或外源有机物提高C /N,运行成本随之增高,故提出了部分猪场废水进入厌氧池进行厌氧处理,另一部分进入沉淀配水池与厌氧出水混合后再采用间歇曝气的序批式反应器( SBR)处理,经过一年的生产性试验,该改良工艺对COD、氨氮、TN的去除率分别为93. 1% ~97. 4%、98. 2% ~99. 5%、93. 1% ,但最终剩余难降解的有机质还需要进一步物化处理才能达到排放标准。3 其他相关处理技术猪场废水处理还有其他的相关处理技术,如从养猪场生产过程的环境管理上考虑,在源头改进工艺减少排污,减轻污染。采用干清粪工艺取代水冲式清粪就是一种较好的方法,干清粪工艺是将粪便单独清出,不与尿、污水混合排出,这种工艺固态粪便含水量低,粪中营养成分损失小,肥料价值高,便于堆肥和其他方式处理,还可以节约用水,减少废水和污染物排放量,易于净化处理,是目前理想的清粪工艺。以万头规模化养猪场为例,将现有的水冲粪工艺改为干清粪工艺,每年可减少污水排放5. 5万吨,既节约了用水,又减少了污染。王德刚等人提出“零污染”干式法养猪,即在栏舍内铺上敷料,将猪的粪尿吸附混合,生物处理后进行二次发酵,并经工艺处理合成生态有机肥,对周围环境达到“零污染”的排放效果,同时降低猪群疾病发生率,加快生长速度,提高饲养效益以达到较好的经济效益、环境效益。目前很多学者提出了不少猪场废水处理的新方法,但都只停留在试验室小试阶段,真正应用到生产中还需要进一步的研究试验。邓良伟等人利用秸秆作为载体进行堆肥,在堆肥发酵过程中,产生的生物热蒸发浓缩“猪场废水”,达到处理猪场废水和生产有机肥的目的。以秸秆为载体用猪粪水及其厌氧消化液进行堆肥处理,其吸水比可达1∶5. 94~1∶6. 65,堆肥含水率基本在70%以上,超过一般堆肥过程含水率( 50% ~60% ) ,且能保持较长的高温期,说明以秸秆为载体吸收猪粪水在高温条件下进行堆肥的工艺路线是可行的。在堆肥过程中,氮、磷、钾是一个累加的过程,所获得的堆肥是一种肥效较高的有机肥,但该工艺消耗猪场生产废水有限,仅限于小规模的污水处理,对于大规模的猪场废水处理还需研究探讨。4 结论与展望根据以上分析,解决猪场废弃物污染问题,首先应当加强猪场环境管理,从源头污水减量化考虑,采用“零污染”干式养猪,减少用水量,基本实现零污染物排放;或采用干清的方式代替水冲,既不会流失营养物质,又可以大大减少废水的排放。养猪业属于传统产业,猪场废水处理必须寻求经济可行、处理效果好的方法。开发经济有效的处理工艺是目前猪场废水处理的重点。高效厌氧反应器的研制、氮磷污染物的去除、沼气发电技术及无害化资源能源的回收是今后猪场废水处理的重要研究方向。参考文献:[ 1 ] POACH M E. SwineWastewater treatment bymarsh - pond - marshconstructed wetlands under varying nitrogen loads [ J ]. EcologicalEngineering, 2004 (23) : 165 - 175.[ 2 ] 成文. 养猪场废水处理工艺研究[ J ]. 环境污染与防治, 2000, 22(1) : 24 - 27.[ 3 ] 邓良伟. 水解- SBR工艺处理规模化猪场粪污研究[ J ]. 中国给水排水, 2001, 17 (3) : 8 - 11.[ 4 ] 余远松. 凤眼莲水生生态系统处理大型养猪场废水的应用研究[ J ]. 农业环境保护, 2000, 19 (5) : 301 - 303.畜禽粪便用于生产饲料的方法随着我国畜牧业的蓬勃发展,生产规模化、集约化趋势越来越明显,在给人类提供丰富的畜禽产品同时,由于规模化养殖场的畜禽粪便和污水多不处理直接用作肥料,某些地区甚至直接排入江河,造成严重的环境污染。其实,畜禽粪便并非完全是不可利用的废物,粪便中有一部分营养物质能被动物直接再吸收,还有一部分物质可通过处理再被动物吸收。现在被各国所接受和使用的主要处理方法有以下几种。1 干燥法一般只适用于营养物质含量较高的鸡粪。1. 1 自然干燥将新鲜粪便单独或掺入一定比例糠麸拌匀后,摊在水泥地面或塑料布上,随时翻动,自然风干、晒干,然后粉碎,掺到其他饲料中饲喂。此法成本较低,操作简单,但受天气影响大,晒干时造成的环境污染大。1. 2 加温干燥干燥快速,可达到灭菌、灭杂草籽和去臭的目的,但是经处理后的粪便养分损失较大,成本较高。1. 2. 1 低温干燥 将畜禽粪便运到装有机械搅拌和气体蒸发的干燥车间或干燥机、隧道窖中,在70 ~500 ℃的温度下烘干,使畜禽粪便含水量降到13%以下,再储藏和利用。1. 2. 2 高温快速干燥 将含水量为70% ~75%的畜禽粪便通过高温快速干燥机,在不停旋转的干燥机中,畜禽粪便通过间接加热( 500 ~700 ℃) , 12 s左右,含水量即可降至13%以下。1. 3 微波处理干燥
丹麦大型城市污水处理厂运行、维护和管理崔成武1,* Gert Petersen1,2(1. 丹麦技术大学环境与资源学院,Lyngby,丹麦,2800; 2. EnviDan,Kastrup,丹麦,2770) 摘要:本文简要介绍了丹麦城市污水处理的现状,包括城市污水处理厂数量、类型、处理负荷以及欧盟和丹麦环保部门的相关要求等。另外,针对大型城市污水处理厂,本文以Lynetten、Damhusen、Lundtofte 和Avedre 四大城市污水处理厂为例,介绍其运行维护和管理方面的经验。最后,本文还介绍了丹麦以及上述四大城市污水厂的污水和污泥处理费用。 关键词:丹麦,污水处理,污泥处理,气体处理,城市污水处理厂,运行管理,运行费用 中图分类号: 文献标识码:AThe operation, maintenance and management of big domestic wastewater treatment plants in DenmarkCui Chengwu1,* Gert Petersen1,2(1. Institute of Environment & Resources, Technical University of Denmark, Lyngby, Denmark, 2800 2. EnviDan, Kastrup, Denmark, 2770)Abstract: This paper briefly introduces the situation of domestic wastewater treatment in Denmark, which includes the numbers, types, capacities of domestic wastewater treatment plants and the effluent requirements from both EU and Danish EPA. The operational experiences and management of the big domestic wastewater treatment plants are explained mainly based on the data from Lynetten, Damhus?en, Lundtofte and Aved?re WWTP in Denmark. At last, this paper also introduces the average wastewater treatment fee in Denmark and the operational cost of both wastewater treatment and sludge treatment in those 4 words: Denmark, wastewater treatment, sludge treatment, gas treatment, domestic wastewater treatment plant, operation and management, operation fee1.简介 丹麦位于欧洲北部,经济发达,人均国民生产总值居于世界前列。同时,丹麦政府对环保建设非常重视,尤其是城市污水处理问题。在欧盟委员会关于91/271/EEC 法案(城市污水处理法案)执行情况的第三次和第四次总结报告中[1,2],丹麦与德国、奥地利等国共同被归属于欧盟城市污水处理较好的国家之列。自执行欧盟91/271/EEC 法案后,丹麦城市污水处理厂和工业废水处理厂出水质量均得到明显改善。自1989 年到2004 年,丹麦城市污水处理的发展可分为两个阶段,分别是1989~1996 年的快速成效阶段和1996~2004 年的平稳下降阶段。例如:在1989 年,丹麦城市污水处理厂出水中BOD5 总量为35000 吨,到1996 年,这一数据快速下降到5000 吨,而到2004 年,则平稳下降到2500 吨。 丹麦政府规定,当人口当量大于30PE1 时需建设相应的污水处理设备。根据2004 年统计结果[3],丹麦全国共有1193 个城市污水厂,其中237 个为私营污水厂。自1993 年到2004年的12 年间,丹麦城市污水处理厂的类型发生了巨大的变化。具有脱氮功能的生物污水处理厂的比例从1993 年的54%提高到2004 年。与此变化相符合的是城市污水厂出水氮磷含量明显降低。2004 年,城市污水处理厂TN 平均去除率为80%,TP 平均去除率高达96%。 在丹麦,尽管城市污水处理厂的数量较多,但规模普遍较小。在1193 个城市污水处理厂中,处理规模小于1000 m3/天的污水厂占到了,但却只处理全国6%的城市污水。绝大多数的城市污水是由大规模集中式城市污水处理厂处理的。如:处理规模大于10000 m3/ 天的污水厂只有62 个,但却处理了全丹麦70%的城市污水。 丹麦城市污水处理厂出水标准遵照欧盟91/271/EEC 法案以及丹麦环保部门和地方行政 区所制定的出水标准来执行。具体出水标准见表 1。2.丹麦大型城市污水厂的运行和维护 丹麦大型城市污水处理厂(人口当量大于100000 PE,即进水量大于20000 吨/天的城市污水厂)所具有的共同特点之一就是污水和污泥处理的工艺非常接近。就下文重点讨论的Lynetten、Damhus?en、Lundtofte 和Aved?re 污水厂来说,其污水处理的核心技术均采用基于氧化沟工艺的Biodenitro 或Biodenipho 技术。而对于污泥处理,一般都需要经过厌氧硝化、离心脱水和焚烧处理后,外排到垃圾填埋场。 另外一个共同的特点就是污水厂的管理方式非常类似。一般来说,丹麦大型城市污水处理厂有两个具有不同功能的管理机构,分别称为董事会和市政业务委员会。董事会成员由污水厂管辖范围内的几个行政区的工作人员组成。董事会成员代表其所在行政区,主要工作是协调行政区与污水厂之间的关系以及监督污水厂的日常运行情况。同时,还需对该行政区污水处理进行详细的规划和总结。而市政业务委员会则主要负责污水厂的日常运行维护和管理工作。同时,在市政业务委员会中也会有各个行政区的负责人员,其主要负责与董事会成员进行对接,确保行政区与污水处理厂之间关系的通畅。以Aved?re 污水厂机构为例,该污水厂的污水来源于10 个行政区。该污水厂管理结构见图 1。 基本情况简介 Lynetten、Damhus?en、Lundtofte 和Aved?re 污水厂均位于丹麦西兰岛上,负责周边行政区的城市污水和工业废水处理[4,5]。2004 年,污水厂处理负荷和进水负荷情况见表 2。Lynetten 是丹麦最大的城市污水处理厂,设计处理能力为15 万吨/天,2004 年实际进水负荷近20 万吨/天。Damhus?en 为丹麦第三大城市污水处理厂,设计处理能力为7 万吨/天。Damhus?en 与Lynetten 共属Lynettenf?llesskabet 公司(Lynetten 联合公司)经营管理。Aved?re 为丹麦第五大污水处理厂,设计处理能力 万吨/天,归属丹麦Spildevandscenter Aved?re (Aved?re 污水中心)经营管理。Lundtofte 相对较小,设计处理量为 万吨/天。 上述四个污水厂进水水质特性和出水情况见表 3 和表 4。对进水水质分析后发现:4 个污水厂进水水质的COD/BOD5 值属文献中[6]的中低值域范围,这可能与工业废水汇入有关。经过总结后发现:丹麦城市污水的COD/TN 和 COD/TP 均处于文献中[6]规定的中高值域范围内。从中发现,四个城市污水厂的重点污染物出水指标均低于欧盟91/271/EEC 法案以及丹麦环保部门的相关要求。 工艺流程 丹麦城市污水处理厂工艺一般可分为三部分:污水处理单元、污泥和废物处理单元以及废气处理单元。Lundtofte 污水厂是丹麦非常典型的城市污水厂,下面基于Lundtofte 污水厂的工艺流程对各部分进行讨论。Lundtofte 污水处理厂的具体工艺流程见图 2 所示。 污水处理单元 机械处理 对于城市污水厂来说,污水机械处理通常包括粗格栅、曝气沉砂池、细格栅、初沉池以及二沉池等工序。由于各种机械处理工艺的设计已经非常成熟,因此无需再进行详细讨论。但是,针对机械处理过程所产生的废物和废气处理问题是值得学习和借鉴的。 在进入曝气池前,一系列的机械处理过程会产生大量的废物。丹麦大型城市污水厂的做法是:固体废弃物并没有与剩余污泥混合进入厌氧消化池,而是经过脱水后直接进入污泥焚烧炉进行焚烧处理。这是因为此类固体中无机物含量相对较高,直接进入消化池会影响厌氧消化效果。另外,这类废物也没有应用于建筑方面的回用,主要原因是此类沙子中含有重金属以及持久性有机物,对人体健康具有潜在危害。 丹麦大型城市污水处理厂十分重视机械处理过程中由于曝气或搅动所产生废气的收集和处理问题。一般来说,曝气沉砂池全部采用铝质材料封顶。部分污水厂的初沉池上面也会封顶。处理过程中所产生的气体,如H2S 也会随特定的气体管路进入焚烧炉处理。 生物处理 如前所述,丹麦大型城市污水厂污水生物处理工艺非常接近。上述四个污水厂均采用Biodenitro 或是Biodenipho 工艺。下面针对这两种工艺进行简单介绍。 工艺简介 Biodenitro 和Biodenipho 工艺为丹麦Krüger 公司的专利技术。该种技术的特点是自动化控制程度高、占地面积小、有机物和氮磷的去除效果良好。与Biodenitro 工艺不同的是,Biodenipho 在前面添加了一个厌氧池(Bio-P tank),因此具有生物除磷功能。而Biodenitro 无法进行生物除磷,只能借助于化学除磷。 下面以Biodenitro 工艺为例,重点介绍该工艺的运行和控制。 Biodenitro 工艺的运行是基于氧化沟技术(丹麦城市污水厂多采用基于表曝的氧化沟技术)。通常是将两个氧化沟划分为一组,采用交替曝气的方式运行以达到硝化反硝化的目的。Biodenitro 工艺分为四个阶段,见图 3 所示。其中,值得注意的是设置b 阶段和d 阶段的主要目的有两个:一是去除第一阶段在缺氧池中残留的氨氮;二是由于硝化耗时相对较长,为了能够达到更好的出水标准。一般来说,尽管Biodenipho 工艺具有较强的生物除磷功能,但污水厂依然会辅助使用化学除磷的方法已达到更佳的出水TP 浓度。而采用Biodenitro 工艺的污水厂更是如此。投放的物质一般为FeCl3 或AlCl3,投放地点设置在曝气池前。在曝气池后安装了磷在线监控装置,当发现TP 浓度超标时会自动投加除磷。 控制系统 上述4个大型城市污水处理厂均采用SCADA和STAR系统来控制污水厂的正常运行。SCADA 技术建立在3C+S (Computer、Communication、Control、Sensor)基础上。该系统主要用于控制泵站、流量以及污泥脱水工艺等等。而STAR系统(Krüger公司的专利技术)是建立在SCADA系统之上,是一种用于控制曝气池运行的应用软件系统。在氧化沟中会安装在线检测仪器,从而将主要的污染物参数,如:氨氮、硝酸盐氮、总磷以及溶解氧浓度的信息发送到中心PLC上。由微机程序控制曝气池各阶段的运行时间和曝气模式。因此,图3中所示的4个阶段的具体运行时间是由STAR系统通过曝气池中具体污染物浓度的数据来控制的,但是会有一个最长运行时间。Lundtofte污水厂各阶段的最长运行时间为90min。 另外,如果设备一旦发生问题,程序会自动向技术人员的手机发送短信息以告知其出现技术故障的具体位置。同时,微机程序还会自动向技术人员发送电子邮件告知其具体问题,技术人员可以据此判断是否应该立即处理该故障问题。 污泥处理单元 丹麦污泥处理情况简介 欧盟及丹麦政府非常重视城市污水处理厂所产生的污泥及其处理和排放的问题,并制定了相关的法案,如86/278/EEC 法案、91/271/EEC 法案等。对城市污水厂排放污泥中的重金属以及持久性有性有机物的含量做出了相关的规定。 经过统计后发现,1999—2005 年,丹麦城市污水厂污泥处理和排放都产生了一定的变化,见表 5 所示。可以看出,变化最为明显的是污泥焚烧比例大幅提高和填埋比例明显下降。其中,污泥焚烧比例从1999 年的6%提高到2005 年的25%。上述的四个丹麦大型城市污水厂的污泥都经过焚烧处理。另外,尽管污泥总产量有所提高,但人均污泥产量基本保持不变。 污泥处理 初沉池和二沉池排出的剩余污泥首先进行脱水、絮凝,之后进行厌氧消化。丹麦城市污水厂多采用中温厌氧消化工艺,温度控制在32~37℃,SRT 控制在25~30 天。一般来说,经过厌氧消化后,污泥的固含率约为~3%。 污泥经过厌氧消化后,进入离心机脱水,污泥固含率提高到20%~32%。经过离心脱水后的剩余污泥将会和沉砂池内的污泥混合,并进入焚烧炉。经过焚烧处理后的污泥收集后运送到垃圾填埋场。 生物气 一般来说,丹麦城市污水厂厌氧消化池产生的生物气中甲烷含量在65%左右,而每产生1m3 生物气会削减 kg 干污泥。生物气能够得到有效的收集并回用。回用主要的方式有两种:一是产热、产电,供本厂内部使用;另一部分则出售给附近的工厂或天然气公司等。 废气处理单元 丹麦城市污水厂在污泥焚烧处理过程中,十分重视潜在的大气污染问题。自焚烧炉产生的废气都要经过深度处理后才能排放到大气中。下面以Lundtofe 污水厂为例,简单介绍污泥焚烧后气体深度处理设备和装置。 从焚烧炉中排出的废气首先经过降温后进入旋风分离器,在这一过程中有85%~90%的灰分会从气体中分离出来。随后,气体进入湮灭炉中进行深度处理。在湮灭炉中,首先用水喷浇,使气体进一步降温。在水体内有溶解的NaHCO3 和少量的活性炭。主要目的是使用NaHCO3 吸附SO2、HCl 和HF 气体,并转化为Na2SO4、NaCl 以及NaF。活性炭则用来吸附汞等重金属。最后,经过处理后的气体进入布袋分离器进行固气分离,所有固体连同污泥被运送到垃圾填埋厂,而经过处理后的气体则通过烟筒排放到大气中。3.能耗、化学品消耗及污水厂运行费用 由于丹麦大型城市污水厂采用的工艺、运行方式以及管理结构大同小异,因此污水厂能耗、运行费用等统计数据也存在一定的一致性。对这些数据进行统计核算对于今后我国拟采用或已经采用类似工艺的城市污水厂的设计、运行、管理和评估工作具有一定的价值和意义。 但是,鉴于国情不同,环境和污水管理方式也有所差异,因此,利用单一货币形式(如欧元)来描述污水处理厂的运行费用是不合理的。因此,在运行费用的具体核算上,分以下几方面进行讨论。化学药品以药品使用量作为衡量标准;能量采用kWh 作为衡量标准。 污水处理厂能耗 丹麦大型城市污水厂电耗在35~45 kWh/(PE·年),和~ kWh/m3 污水。而生物污水处理电耗约为~ kWh/m3 污水,占总电耗的30%~50%;污泥处理电耗约占总电耗的30%~40%;而污水提升、机械处理和管理电耗约占总电耗的15%~35%。对于污泥处理来说,处理1kg 干污泥需耗能~ kWh。 化学药品使用量 污水厂化学物质主要用于化学除磷和污泥脱水等。针对化学除磷,不同污水厂采用的物质不同。例如:Lynetten 污水厂采用FeCl3;而Lundtofte 污水厂采用AlCl3。化学物质投加量与污水水质、工艺以及出水指标有直接关系。Lynetten 和Lundtofte 污水处理厂化学除磷的情况见表 6。从表 6 的数据可以看出,在进水TP 浓度基本相当的情况下,采用具有生物除磷功能的Biodenipho 工艺更加节省化学除磷物质量,而且可以获得更好的出水TP 效果。 污水处理厂运行费用 丹麦城市污水厂运行费用主要费为四部分:员工工资、税费、能耗和化学药品费以及运行维护费用。以Lynetten 和Damhus?en 为例,2005 年两个污水厂运行费用为 亿DKK,具体比例分配见图 4。一般情况下,丹麦污水处理厂最大的费用支出为员工工资。同时,在运行维护中还有相当部分是用于场地租用等。另外,丹麦污水处理厂需向政府缴纳污水和污泥处理税费。污泥焚烧以及外运到垃圾填埋场也都需要缴税。在丹麦,只有污泥回用时不用向政府交税。一般来说,丹麦城市污水处理厂污泥处理费用占总运行费用(不含人工费用和税费)的40%~50%。 上述四个污水厂运行费用统计见下表 7。值得一提的是,丹麦平均污水处理费用为15 DKK/m3,这与核算后的城市污水处理厂污水处理费存在较大差异。主要原因是丹麦总污水处理费用不但包括污水处理厂的运行费用,还需计算污水管道的建设和维护费用。而市政污水管道的维护和管理归各行政区。4.结论 丹麦自20 世纪90 年代至今,城市污水处理发生了巨大的变化。这一变化得益于丹麦政府积极执行欧盟91/271/EEC 法案及制定更为严格的相关出水标准。丹麦大型城市污水厂无论是运行工艺还是管理方式比较相似。总结其发展经验和管理体制,对有效数据进行统计并吸收消化对处于发展中的中国城市污水处理是十分有益的。参考文献:[1] 3rd Report from the Commission to the Council, the European Parliament, the European Economic and Social Committee and the Committee of the Regions - Implementation of Council Directive 91/271/EEC of 21 May 1991 concerning urban waste water treatment, as amended by Commission Directive 98/15/EC of 27 February 1998. Access via Internet (20/08/2007):[2] 4th Report from the Commission to the Council, the European Parliament, the European Economic and Social Committee and the Committee of the Regions - Implementation of Council Directive 91/271/EEC of 21 May 1991 concerning urban waste water treatment, as amended by Commission Directive 98/15/EC of 27 February 1998. Access via Internet (20/08/2007): uwwtd_report/final_circa-per/[3] Milj?styrelsen 2005; Punktkilder 2004. Det nationale program for overv?gning af vandmilj?et; Fagdatacenterrapport. (In Danish)[4] Cui Chengwu et al. The Maintenance and Management in Lundtofte Wastewater Treatment Plant, Denmark. China water & wastewater. (In Press)[5] Cui Chengwu et al. The Maintenance and Management in Lynetten Wastewater Treatment Plant, Denmark. Water & Wastewater. (In Press)[6] Henze M., Harremoes P., La Cour J., Arvin E. (2001) Wastewater treatment biological and chemical processes. Third edition, Springer, Berlin,
有氨氮速测试剂盒,但是监测范围不高,你的水样如果氨氮属于低浓度则可以一试。速测盒厂址我下次贴上。
最简方法:①水样预处理:取250mL水样(如氨氮含量较高,可取适量并加水至250mL,使氨氮含量不超过),移入凯氏烧瓶中,加数滴溴百里酚蓝指示液,用氢氧化钠溶液或盐酸溶液调至pH7左右。加入轻质氧化镁和数粒玻璃珠,立即连接氮球和冷凝管,导管下端插入吸收液液面下。加热蒸馏,至馏出液达200mL时,停止蒸馏,定容至250mL。采用酸滴定法或纳氏比色法时,以50mL硼酸溶液为吸收液;采用水扬酸—次氯酸盐比色法时,改用50mL ·L-1硫酸溶液为吸收液。②标准曲线的绘制:吸取0、、、、、和铵标准使用液分别于50mL比色管中,加水至标线,加酒石酸钾钠溶液,混匀。加纳氏试剂,混匀。放置10min后,在波长420nm处,用光程20mm比色皿,以水为参比,测定吸光度。由测得的吸光度,减去零浓度空白管的吸光度后,得到校正吸光度后,得到校正吸光度,绘制以氨氮含量(mg)对校正吸光度的标准曲线。③水样的测定:a.分取适量经絮凝沉淀预处理后的水样(使氨氮不超过),加入50mL比色管中,稀释至标线,加酒石酸钾钠溶液。以下同标准曲线的绘制。b.分取适量经蒸馏预处理后的馏出液,加入50mL比色管中,加一定量1mol·L-1氢氧化钠溶液,以中和硼酸,稀释至标线。加纳氏试剂,混匀。放置10min后,同标准曲线步骤测量吸光度。④空白试验:以无氨水代替水样,做全程序空白测定。
你好,南京量子化工小编为你解答!
一、什么是氨氮
氨氮是指水中以游离氨(NH3)和铵离子(NH4+)形式存在的氮。
二、氨氮的测定方法
1、纳氏试剂分光光度法测定原理:本法低检出浓度为(光度法),测定上限为2mg/L.采用目视比色法,低检出浓度为.水样做适当的预处理后,本法可用于地面水,地下水,工业废水和生活污水中氨氮的测定。
2、水杨酸—次氯酸盐分光光度法
测定原理下铵与水杨酸盐和次氯酸离子反应生成蓝色化合物,在波长697nm下具有大吸收,再此波长测其吸光度,并计算含量值。
本方法低检测出限度为,测定上线为1mg/L.适用于饮用水,生活污水和大部分工业废水的氨氮测定。本方法受钙镁等阳离子的干扰,可以加酒石酸钾钠进行屏蔽。
3、滴定法测量原理:本方法仅适用于已经进行蒸馏预处理的水样,调节水样PH值在范围之内,加入氧化镁使其成微碱性。加热蒸馏释放出氨被硼酸溶液吸收,以甲基蓝—亚甲蓝为指示剂,用算标准溶液滴定蒸馏出溶液中的铵。当溶液中含有在此条件下可能被蒸馏出并在滴定时与酸反应的物资时,测出的数据会偏高。
4、气象分子吸收光谱法测定原理:水样中加入次溴酸钠氧化剂,将铵以及铵盐氧化成亚硝酸盐,然后按亚硝酸盐氮气象分析吸收光谱法测定水样中氨氮含量。
要精确测试氨氮还是要借助专业的水质检测仪,小编推荐南京量子化工的水质检测仪,
南京量子化工有多种水质、重金属快速检测仪和检测试剂,根据中国人操作习惯而设计,用于地表水、生活污水、工业废水、灌溉水等化学需氧量(COD)、氨氮、总磷、总氮、磷酸盐等检测,采用冷光源技术,光源寿命长,消除了人为转动的误差因素,使用户检测过程更简单。
第三代多参数水质检测仪/LZ-W101
·直接测定化学需氧量(COD)、氨氮、总磷、总氮、磷酸盐等多项参数、浓度直读
·直接显示测定结果
·可根据客户需求,支持自建工作曲线
·支持大容量内存卡,电脑传输
·内置多条工作曲线,可自动切换不同检测对象及浓度工作曲线,可校准标准浓度
·仪器可自动无限存储数据(可精确到时间、日期、参数、编号、结果)
·可随时调用各阶段的数据
·配备自动消解仪,可根据时间和温度自动控制,实现自动控温和控时,具有自动断电功能,实现仪器的延时保护功能
·防护等级:防尘等级IP 4, 防水等级IP 1
·可使用两节电池(连续工作72小时),电源适配器(220VAC-3VDC),可实现便携户外现场检测
·仪器可根据客户需求,拓展多种检测项目,真正实现仪器的多功能检测。
手持式多参数水质快速检测仪
UVA便携式多参数水质检测仪测定有机物特定波长,非特异性检测水中有机物浓度。
插入水中,即刻显示读数。
该检测仪可作为水质检测中TOC、DOC和THMs前驱物等常用有机物控制指标的快速检测;而且在对事故的早期预警预报、趋向判断、突发事故应急鉴定、要求快速得到数据的场合、大批量样品的筛选预检、污水处理过程的效率监控等方面具有传统检测手段不具有的优势。
◆精度高、稳定性好,符合欧美和日本标准。
◆使用成本低廉,长寿命,维护和运行成本低。
◆无需任何化学试剂,不会产生无二次污染,环境友好。
◆电池供电、功耗极低、便携方便。
应用范围广泛,可应用于地表水、生活污水、工业废水、灌溉水等环境检测领域。适合各大检测机构、企业、科研院所、种植(养殖)等领域的实验室及野外快速水质检测。
详情可搜索“南京量子化工”
氨氮 的 测定 方法 ,通常有纳氏比色法、苯酚—次氯酸盐(或水杨酸—次氯酸盐)比色法和电极法等。纳氏比色法具有操作简便、灵敏等特点,但钙、镁、铁等金属离子、硫化物、醛、酮类,以及水中色度和混浊等干扰 测定 ,需要相应 的 预处理。以下是纳氏试剂比色法 的 测定 方法 。一、纳氏试剂比色法 的 原理碘化钾和碘化汞 的 碱性溶液与氨反应生成淡红棕色胶态化和物,其色度与 氨氮 含量成正比,通常可在410-425nm范围内测其吸光度,计算其含量。本法最低检出浓度为(光度法), 测定 上限为2mg/L。采用目视比色法,最低检出浓度为。水样作适当 的 预处理后,本法可适用于地面水、地下水、工业 废水 和生活污水。二、仪器1、带氮球 的 定氮蒸馏装置:500mL凯氏烧瓶、氮球、直形冷凝管。2、分光光度计3、PH计三、试剂 做次实验配制试剂均应用无氨水配制。 1、无氨水。配制可选用以下任意一种 方法 制备:(1)蒸馏法:每升蒸馏水 中 加硫酸,在全玻璃蒸馏器 中 重蒸馏,弃去50mL初馏液,接取其余馏出液于具塞磨口 的 玻璃瓶 中 ,密塞保存。(2)离子交换法:使蒸馏水通过强酸性阳离子交换树脂柱。2、1mol/L 的 盐酸溶液3、1mol/L 的 氢氧化钠溶液4、轻质氧化镁:将氧化镁在500℃下加热,以除去碳酸盐。5、溴百里酚蓝指示计()。6、防沫剂:如石蜡碎片7、吸收剂:①硼酸溶液:称取20g硼酸溶于水,稀释至1L。②硫酸溶液。8、纳氏试剂。可选用下列 方法 之一制备:(1)称取20g碘化钾溶于约25mL水中,边搅拌边分次加入少量 的 二氯化汞(HgCl2)结晶粉末(约10g),至出现朱红色不易降解时,改为滴加饱和二氯化汞溶液,并充分搅拌,当出现微量朱红色沉淀不再溶解时,停止滴加氯化汞溶液。另称取60g氢氧化钾溶于水,并稀释至250mL,冷却至室温后,将上述溶液徐徐注入氢氧化钾溶液 中 ,用水稀释至400mL,混匀。静置过夜,将上清液移入聚乙烯瓶 中 ,密塞保存。(2)称取16g氢氧化钠,溶于50mL水中,充分冷却至室温。另称取7g碘化钾和碘化汞溶于水,然后将次溶液在搅拌下徐徐注入氢氧化钠溶液 中 ,用水稀释至100mL,贮于聚乙烯瓶 中 ,密塞保存。9、酒石酸钾钠溶液:称50g酒石酸钾钠(KNaC4H4O6 - 4H2O)溶于100mL水中,加热煮沸以除去氨,放冷,定容至100mL。10、铵标准贮备溶液:称取经100℃干燥过 的 氯化氨(NH4Cl)溶于水中,移入1000mL容量瓶 中 ,稀释至标线。从溶液每毫升含 氨氮 。11、铵标准使用溶液:移取铵标准贮备溶液于500mL容量瓶 中 ,用水稀释至标线。此溶液每毫升含 氨氮 。四、 测定 步骤1、水样预处理:取250mL水样(如 氨氮 含量较高,可取适量并加水至250mL,使 氨氮 含量不超过),移入凯氏烧瓶 中 ,加数滴溴百里酚蓝指示液,用氢氧化钠溶液或盐酸溶液调节至PH为7左右。加入轻质氧化镁和数粒玻璃珠,立即连接氮球和冷凝管,导管下端插入吸收液液面下。加热蒸馏,至馏出液达200mL时,停止蒸馏。定容至250mL。 采用酸滴定法或纳氏比色法时,以50mL硼酸溶液为吸收剂;采用水扬酸—次氯酸盐比色法时,改用硫酸溶液为吸收剂。 2、标准曲线 的 绘制:吸取0、、、、、和铵标准使用溶液于50mL比色管 中 ,加水至标线,加酒石酸钾钠溶液,混匀。加纳氏试剂,混匀。放置10min 后,在波长420nm处,用光程20mm比色皿,已水作参比 测定 吸光度。 由测得 的 吸光度,减去零浓度空白管 的 吸光度后,得到校正吸光度,绘制以 氨氮 含量(mg)对校正吸光度 的 标准曲线。3、水样 的 测定(1)分取适量经絮凝预处理后的水样(使 氨氮 含量不超过),加入50mL比色管 中 ,稀释至标线,加酒石酸钾钠溶液。(2)分取适量经蒸馏预处理后 的 馏出液,加入50mL比色管 中 ,加一定量 的 1mol/L氢氧化钠溶液以 中 和硼酸,稀释至标线,加纳氏试剂,混匀。放置10min后,同标准曲线步骤测量吸光度。4、空白实验:以无氨水代替水样,做全程序空白 测定 。五、计算由水样测得 的 吸光度减去空白实验 的 吸光度后,从标准曲线上查得 的 氨氮 含量(mg)。氨氮 (N,mg/L)=1000m/V式 中 :m——由校准曲线查得 的 氨氮 量(mg);V——水样体积(mL)
水中氨氮的测定—纳氏试剂分光光度法一、实验试剂10%硫酸锌溶液,25%氢氧化钠溶液,纳氏试剂,酒石酸钾钠溶液,铵标准使用溶液 二、实验仪器UNICO分光光度计,50ml比色管8支,漏斗,实验室常用仪器三、实验步骤1. 试剂配制 10%硫酸锌溶液:称取10g硫酸锌溶于水,稀释100ml,贮于玻璃试剂瓶中 25%氢氧化钠溶液:称取25g氢氧化钠溶于水,稀释至100ml,贮于聚乙烯瓶中 纳氏试剂:称取16g氢氧化钠,溶于50mL水中,充分冷却至室温。另称取7g碘化钾和10g碘化汞(HgI2)溶于水,然后将亲氧化钠溶液在搅拌下徐徐注入此溶液中。用水稀释至100mL,贮于聚乙烯瓶中。 酒石酸钾钠溶液:称取50g酒石酸钾钠(KNaC4H4O6·4H2O)溶于100mL水中,加热煮沸以除去氨,放冷,定容至100mL 铵标准贮备溶液:称取经100℃干燥过的氯化铵(NH4Cl)溶于水中,移入100mL容量瓶中,稀释至标线。此溶液每毫升含氨氮。 铵标准使用溶液:移取铵标准贮备液于250mL容量瓶中,用水稀释至标线。此溶液每毫升含氨氮。2. 氨氮的测定标准曲线的绘制 用氯化铵配制的标准使用液,每毫升溶液含有氨氮,分别吸取0,、、、、、溶液于50ml比色管中,加水至标线,加酒石酸钾钠溶液,混匀。加纳氏试剂,混匀。防止10min,在波长420nm,用光程伟20nm的比色皿,以水为参比,测量吸光度。减去空白吸光度,得到校正吸光度,绘制以氨氮含量(mg)对校正吸光度的校准曲线。预处理水样 取水样100ml于烧杯中,加入10%的硫酸锌溶液1ml,滴加25%的氢氧化钠溶液(大约2-3滴),调节pH值至左右。然后用中速定量滤纸过滤,弃去初滤液20ml左右。 水样的测定 取滤液5ml(保证其中氨氮含量不超过)于50ml比色管中,用蒸馏水稀释至刻度线,加酒石酸钾钠溶液,纳氏试剂,摇匀,静置显色10min,在721分光光度计上,于420nm波长处,以水为参比,用2cm比色皿测定吸光度。空白实验 用100ml蒸馏水代替水样,同步进行实验,即从预处理开始,直到测定吸光度。
纳氏试剂比色法测水中氨氮常见问题探讨论文
摘要: 纳氏试剂比色法测定水中的氨氮,因方法简便、快速、灵敏度高而广泛应用于水中氨氮检测。文章初步探讨了纳氏试剂比色法测定氨氮的几个应注意的问题:预处理方法的选择;水样中干扰的消除;配制酒石酸钾钠溶液及纳氏试剂应注意的问题以及显色条件的控制等等。
关键词: 纳氏试剂比色法,预处理,纳氏试剂,显色条件
1预处理方法的选择
水样带色或浑浊以及含其他干扰物质,影响暗淡的测定,因此需要相应的预处理,对于较清洁的水样可采用絮凝沉淀法[1],对严重污染的水或工业废水,则用蒸馏法[1]预处理以消除干扰。其中因前者更简单快捷,成为首选的方法。
絮凝沉淀法及改进
仪器
100ml具塞量筒或比色管
试剂:
(1)10%硫酸溶液
(2)25%氢氧化钠溶液
步骤
取100ml水样于具塞量筒或比色管中,加入1ml10%硫酸锌溶液和2~4滴25%氢氧化钠溶液,调pH值左右,混匀,静置使沉淀。取适量上清液备用。在此处有一方法的改进,就是没用滤纸过滤,而是取静置后的上清液。静置的时间视取样时不能取到絮状物为准。
讨论:《在水和废水监测分析方法》第四版中,经絮凝沉淀后的水样使用无氨水充分洗涤过的中速滤纸过滤,弃去初滤液20ml后的滤液。有实验表明,不同滤纸或同种滤纸但不同张之间铵盐含量差别很大,有些含量较高的滤纸虽多次用水洗涤,但仍达不到实验要求。因此使用前需对每一批次滤纸进行抽检,淋洗时要少量多次。也有研究发现滤纸中约有的可溶物和滤纸平均失重,这些可溶物将影响到分析结果的准确性。直接取上清液避免了这一弊端。
2水样中各种干扰的消除:
在实际工作中,由于样品千差万别,干扰物复杂多样,有时会出现样品经絮凝沉淀预处理后显色溶液浑浊的现象,严重影响透光率,造成结果偏高,这时要用蒸馏预处理法。方法参见《水和废水监测分析方法》(第四版)
色(浊)度干扰的消除。
取50mL水样于50mL比色管中,加酒石酸钾钠溶液,加氢氧化钾溶液,测量吸光度(校正吸光度),水样经纳氏试剂比色后测得吸光度减去校正吸光度。
金属离子干扰的消除。
在碱性环境中,金属离子容易发生水解,一般加入酒石酸钾钠络合;含有汞盐可加少量硫代硫酸钠络合而掩蔽;含有Mn2+时,用50%酒石酸钾钠代替纯酒石酸钾钠能掩蔽Mn2+干扰[2];含有大量Cu、Fe等金属离子,采用蒸馏法进行预处理后,再测定。
有机物干扰的消除。
水样中含有甘氨酸、肼和某些胺类等有机物时,调节水样pH值到左右,对其进行蒸馏处理;含有酮类、醛类和其他胺类时,在pH值较低情况下,用煮沸方法除去。
显色溶液浑浊的应对措施
用絮凝沉淀法预处理后取上清液,加入酒石酸钾钠溶液和纳氏试剂后,有时会出现浑浊现象,严重影响透光率,误差非常大。笔者在测污水处理厂的'出水水样是经常会遇到此情况,不加酒石酸钾钠显色溶液不浑浊,由此可见是酒石酸钾钠的问题,可用()方法提纯后的酒石酸钾钠溶液,再不行就用蒸馏法预处理后测定。
3试剂配制应注意的问题
药品的纯度及试剂的配置方法都影响到实验结果。
酒石酸钾钠纯度直接关系到测定结果,导致实验空白值高和引起实际水样浑浊,影响测定需要对其溶液进行提纯,以去除其中的铵盐。实际工作中,有两种处理方法。
①采用纳氏试剂对酒石酸钾钠溶液(50%)进行提纯,纳氏试剂加入量为酒石酸钾钠溶液体积2%,空白吸光度最小且基本稳定;
②向酒石酸钾钠溶液中加少量碱液,煮沸蒸发至50mL左右,冷却并定容至100mL。试验表明:经以上两种方法提纯后空白值也能满足分析测定要求。
纳氏试剂的配制
了解纳氏试剂测氨氮的显色原理有利于理解纳氏试剂的配制方法,原理如下:2K2[HgI4]+3NaOH+NH3→NH2HgIO+3NaI+4KI+2H2O
纳氏试剂的配制有两种方法,均能产生显色基团[HgI4]2—,第一种配制方法用氯化汞和碘化钾,关键在于把HgCl2的加入量,这决定着获得显色基团含量的多少,进而影响方法的灵敏度。但方法未给出HgCl2的确切用量,需要根据试剂配制过程中的现象加以判断,经验性强,因而较难把握。有人据经验总结出HgCl2与KI的用量比为∶1时(即溶于20gKI溶液),效果很好。在此不再赘述,第二种方法用碘化汞和碘化钾:称取16g氢氧化钠,溶于50ml水中,充分冷却至室温。另称取7g碘化钾和10g碘化汞溶于水,将此溶液在搅拌下徐徐注入氢氧化钠溶液中,用水稀释至100ml。在此尤其要注意碘化汞与碘化钾的比例,I—不能过量,否则反应会逆向进行,显色基团[HgI4]2—减少,纳氏试剂颜色变浅,用此纳氏试剂做出的氨氮工作曲线低点显色不灵敏,几乎没有差别,线性很差,实验失败。碘化汞微溶于水,溶液中存在I—的碱性溶液中反应生成[HgI4]2—红色沉淀才消失,过量时以红色碘化汞沉淀的形式存在,不会使显色反应逆向进行,因此在实际工作中应使碘化汞稍稍过量,配制好的的纳氏试剂静置后弃去沉淀,小心倒入聚乙烯瓶中,密塞,低温保存。
4显色反应条件的控制
反应温度、时间。实验表明:反应温度为25℃时,显色最完全,反应时间为10~30min,溶液颜色较稳定。实际工作中,显色温度控制在20℃~25℃,时间控制在10min左右,快速测定,以确保监测数据准确可靠。
反应体系pH值。水样pH值的变化对显色有显著影响,水样呈中性或碱性,测定结果相对偏差符合分析要求,水样呈酸性无可比性。实验发现[3],当水样呈酸性时测定值为 ,呈碱性时测定值为 mg/L ,呈中性时测定值为 mg/L。实验表明[4]:当溶液pH<11时,不能使溶液中nh4+全部转化为nh3,使测定结果偏低;当ph>11时,99%以上NH4+ 转化为NH3。在测定水样时先调整pH至中性,加入纳氏试剂后体系pH值在~为宜。实际工作中,配制较强缓冲能力的氢氧化钾-酒石酸溶液(浓度比为:1),能够更好地控制体系pH值。
结论:纳氏试剂比色法测水中氨氮,灵敏度高,操作简便,易于推广,对于不同的水样要选择不同的预处理方法,否则会给结果带来很大误差,对于相对清洁,干扰较少的水样可采用简单省时的絮凝沉淀法,采用此法时可用取上清液的方法,以避免滤纸过滤引进的氨氮污染。对于污染严重,干扰物较多的水样应用蒸馏法予以预处理。针对不同的干扰物应分别采取相应的消除措施。试剂的配制也很关键,对市售酒石酸钾钠予以提纯以消除高铵盐带来的误差,纳氏试剂的配制碘化汞应稍稍过量,出现少量的红色沉淀不影响实验结果,相反,碘化钾过量会导致显色不灵敏,实验失败。控制显色的时间、温度及反应体系的pH值也结果准确可靠的重要条件。
参考文献:
[1]国家环境保护总局,《水和废水监测分析方法》编委会.水和废水监测分析方法.—4版. [M]北京:中国环境科学出版社 2002
[2]丁建森,李 凌. 饮用水中锰对氨氮检测影响的探讨[J] 上海预防医学杂志,1997 ,9 (10) :474 – 475
[3] 苏爱梅,王俊荣. 氨氮测定过程中有关问题的探讨[J] 干旱环境监测,2003,17(2):123-125
[4] 陈国强,卢明宇. 应用离子选择电极法测定生活污水中的氨氮[J].重庆环境科学,1998 ,20(3):58-90
氨氮的测定方法,通常有纳氏比色法、苯酚-次氯酸盐(或水杨酸-次氯酸盐)比色法和电极法等。纳氏试剂比色法具操作简便、灵敏等特点,水中钙、镁和铁等金属离子、硫化物、醛和酮类、颜色,以及浑浊等干扰测定,需做相应的预处理,苯酚-次氯酸盐比色法具灵敏、稳定等优点,干扰情况和消除方法同纳氏试剂比色法。电极法通常不需要对水样进行预处理和具测量范围宽等优点。氨氮含量较高时,尚可采用蒸馏-酸滴定法。氨氮是指水中以游离氨和铵离子形式存在的氮。动物性有机物的含氮量一般较植物性有机物为高。同时,人畜粪便中含氮有机物很不稳定,容易分解成氨。因此,水中氨氮含量增高时指以氨或铵离子形式存在的化合氮。
去外面找检测机构检测,现场出结果
纳氏试剂比色法测水中氨氮常见问题探讨论文
摘要: 纳氏试剂比色法测定水中的氨氮,因方法简便、快速、灵敏度高而广泛应用于水中氨氮检测。文章初步探讨了纳氏试剂比色法测定氨氮的几个应注意的问题:预处理方法的选择;水样中干扰的消除;配制酒石酸钾钠溶液及纳氏试剂应注意的问题以及显色条件的控制等等。
关键词: 纳氏试剂比色法,预处理,纳氏试剂,显色条件
1预处理方法的选择
水样带色或浑浊以及含其他干扰物质,影响暗淡的测定,因此需要相应的预处理,对于较清洁的水样可采用絮凝沉淀法[1],对严重污染的水或工业废水,则用蒸馏法[1]预处理以消除干扰。其中因前者更简单快捷,成为首选的方法。
絮凝沉淀法及改进
仪器
100ml具塞量筒或比色管
试剂:
(1)10%硫酸溶液
(2)25%氢氧化钠溶液
步骤
取100ml水样于具塞量筒或比色管中,加入1ml10%硫酸锌溶液和2~4滴25%氢氧化钠溶液,调pH值左右,混匀,静置使沉淀。取适量上清液备用。在此处有一方法的改进,就是没用滤纸过滤,而是取静置后的上清液。静置的时间视取样时不能取到絮状物为准。
讨论:《在水和废水监测分析方法》第四版中,经絮凝沉淀后的水样使用无氨水充分洗涤过的中速滤纸过滤,弃去初滤液20ml后的滤液。有实验表明,不同滤纸或同种滤纸但不同张之间铵盐含量差别很大,有些含量较高的滤纸虽多次用水洗涤,但仍达不到实验要求。因此使用前需对每一批次滤纸进行抽检,淋洗时要少量多次。也有研究发现滤纸中约有的可溶物和滤纸平均失重,这些可溶物将影响到分析结果的准确性。直接取上清液避免了这一弊端。
2水样中各种干扰的消除:
在实际工作中,由于样品千差万别,干扰物复杂多样,有时会出现样品经絮凝沉淀预处理后显色溶液浑浊的现象,严重影响透光率,造成结果偏高,这时要用蒸馏预处理法。方法参见《水和废水监测分析方法》(第四版)
色(浊)度干扰的消除。
取50mL水样于50mL比色管中,加酒石酸钾钠溶液,加氢氧化钾溶液,测量吸光度(校正吸光度),水样经纳氏试剂比色后测得吸光度减去校正吸光度。
金属离子干扰的消除。
在碱性环境中,金属离子容易发生水解,一般加入酒石酸钾钠络合;含有汞盐可加少量硫代硫酸钠络合而掩蔽;含有Mn2+时,用50%酒石酸钾钠代替纯酒石酸钾钠能掩蔽Mn2+干扰[2];含有大量Cu、Fe等金属离子,采用蒸馏法进行预处理后,再测定。
有机物干扰的消除。
水样中含有甘氨酸、肼和某些胺类等有机物时,调节水样pH值到左右,对其进行蒸馏处理;含有酮类、醛类和其他胺类时,在pH值较低情况下,用煮沸方法除去。
显色溶液浑浊的应对措施
用絮凝沉淀法预处理后取上清液,加入酒石酸钾钠溶液和纳氏试剂后,有时会出现浑浊现象,严重影响透光率,误差非常大。笔者在测污水处理厂的'出水水样是经常会遇到此情况,不加酒石酸钾钠显色溶液不浑浊,由此可见是酒石酸钾钠的问题,可用()方法提纯后的酒石酸钾钠溶液,再不行就用蒸馏法预处理后测定。
3试剂配制应注意的问题
药品的纯度及试剂的配置方法都影响到实验结果。
酒石酸钾钠纯度直接关系到测定结果,导致实验空白值高和引起实际水样浑浊,影响测定需要对其溶液进行提纯,以去除其中的铵盐。实际工作中,有两种处理方法。
①采用纳氏试剂对酒石酸钾钠溶液(50%)进行提纯,纳氏试剂加入量为酒石酸钾钠溶液体积2%,空白吸光度最小且基本稳定;
②向酒石酸钾钠溶液中加少量碱液,煮沸蒸发至50mL左右,冷却并定容至100mL。试验表明:经以上两种方法提纯后空白值也能满足分析测定要求。
纳氏试剂的配制
了解纳氏试剂测氨氮的显色原理有利于理解纳氏试剂的配制方法,原理如下:2K2[HgI4]+3NaOH+NH3→NH2HgIO+3NaI+4KI+2H2O
纳氏试剂的配制有两种方法,均能产生显色基团[HgI4]2—,第一种配制方法用氯化汞和碘化钾,关键在于把HgCl2的加入量,这决定着获得显色基团含量的多少,进而影响方法的灵敏度。但方法未给出HgCl2的确切用量,需要根据试剂配制过程中的现象加以判断,经验性强,因而较难把握。有人据经验总结出HgCl2与KI的用量比为∶1时(即溶于20gKI溶液),效果很好。在此不再赘述,第二种方法用碘化汞和碘化钾:称取16g氢氧化钠,溶于50ml水中,充分冷却至室温。另称取7g碘化钾和10g碘化汞溶于水,将此溶液在搅拌下徐徐注入氢氧化钠溶液中,用水稀释至100ml。在此尤其要注意碘化汞与碘化钾的比例,I—不能过量,否则反应会逆向进行,显色基团[HgI4]2—减少,纳氏试剂颜色变浅,用此纳氏试剂做出的氨氮工作曲线低点显色不灵敏,几乎没有差别,线性很差,实验失败。碘化汞微溶于水,溶液中存在I—的碱性溶液中反应生成[HgI4]2—红色沉淀才消失,过量时以红色碘化汞沉淀的形式存在,不会使显色反应逆向进行,因此在实际工作中应使碘化汞稍稍过量,配制好的的纳氏试剂静置后弃去沉淀,小心倒入聚乙烯瓶中,密塞,低温保存。
4显色反应条件的控制
反应温度、时间。实验表明:反应温度为25℃时,显色最完全,反应时间为10~30min,溶液颜色较稳定。实际工作中,显色温度控制在20℃~25℃,时间控制在10min左右,快速测定,以确保监测数据准确可靠。
反应体系pH值。水样pH值的变化对显色有显著影响,水样呈中性或碱性,测定结果相对偏差符合分析要求,水样呈酸性无可比性。实验发现[3],当水样呈酸性时测定值为 ,呈碱性时测定值为 mg/L ,呈中性时测定值为 mg/L。实验表明[4]:当溶液pH<11时,不能使溶液中nh4+全部转化为nh3,使测定结果偏低;当ph>11时,99%以上NH4+ 转化为NH3。在测定水样时先调整pH至中性,加入纳氏试剂后体系pH值在~为宜。实际工作中,配制较强缓冲能力的氢氧化钾-酒石酸溶液(浓度比为:1),能够更好地控制体系pH值。
结论:纳氏试剂比色法测水中氨氮,灵敏度高,操作简便,易于推广,对于不同的水样要选择不同的预处理方法,否则会给结果带来很大误差,对于相对清洁,干扰较少的水样可采用简单省时的絮凝沉淀法,采用此法时可用取上清液的方法,以避免滤纸过滤引进的氨氮污染。对于污染严重,干扰物较多的水样应用蒸馏法予以预处理。针对不同的干扰物应分别采取相应的消除措施。试剂的配制也很关键,对市售酒石酸钾钠予以提纯以消除高铵盐带来的误差,纳氏试剂的配制碘化汞应稍稍过量,出现少量的红色沉淀不影响实验结果,相反,碘化钾过量会导致显色不灵敏,实验失败。控制显色的时间、温度及反应体系的pH值也结果准确可靠的重要条件。
参考文献:
[1]国家环境保护总局,《水和废水监测分析方法》编委会.水和废水监测分析方法.—4版. [M]北京:中国环境科学出版社 2002
[2]丁建森,李 凌. 饮用水中锰对氨氮检测影响的探讨[J] 上海预防医学杂志,1997 ,9 (10) :474 – 475
[3] 苏爱梅,王俊荣. 氨氮测定过程中有关问题的探讨[J] 干旱环境监测,2003,17(2):123-125
[4] 陈国强,卢明宇. 应用离子选择电极法测定生活污水中的氨氮[J].重庆环境科学,1998 ,20(3):58-90
请使用氨氮测定仪测定会很快的,YHNH—100型氨氮测定仪工作原理:利用碘化钾和碘化汞的碱性溶液与氨反应,生成淡红棕色胶态化合物,此颜色在较宽的波长范围内(一般测量波长为410--425nm)具强烈吸收,用仪器内的单色光比计,测定吸光度,进而计算出氨氮浓度。
纳氏试剂比色法测水中氨氮常见问题探讨论文
摘要: 纳氏试剂比色法测定水中的氨氮,因方法简便、快速、灵敏度高而广泛应用于水中氨氮检测。文章初步探讨了纳氏试剂比色法测定氨氮的几个应注意的问题:预处理方法的选择;水样中干扰的消除;配制酒石酸钾钠溶液及纳氏试剂应注意的问题以及显色条件的控制等等。
关键词: 纳氏试剂比色法,预处理,纳氏试剂,显色条件
1预处理方法的选择
水样带色或浑浊以及含其他干扰物质,影响暗淡的测定,因此需要相应的预处理,对于较清洁的水样可采用絮凝沉淀法[1],对严重污染的水或工业废水,则用蒸馏法[1]预处理以消除干扰。其中因前者更简单快捷,成为首选的方法。
絮凝沉淀法及改进
仪器
100ml具塞量筒或比色管
试剂:
(1)10%硫酸溶液
(2)25%氢氧化钠溶液
步骤
取100ml水样于具塞量筒或比色管中,加入1ml10%硫酸锌溶液和2~4滴25%氢氧化钠溶液,调pH值左右,混匀,静置使沉淀。取适量上清液备用。在此处有一方法的改进,就是没用滤纸过滤,而是取静置后的上清液。静置的时间视取样时不能取到絮状物为准。
讨论:《在水和废水监测分析方法》第四版中,经絮凝沉淀后的水样使用无氨水充分洗涤过的中速滤纸过滤,弃去初滤液20ml后的滤液。有实验表明,不同滤纸或同种滤纸但不同张之间铵盐含量差别很大,有些含量较高的滤纸虽多次用水洗涤,但仍达不到实验要求。因此使用前需对每一批次滤纸进行抽检,淋洗时要少量多次。也有研究发现滤纸中约有的可溶物和滤纸平均失重,这些可溶物将影响到分析结果的准确性。直接取上清液避免了这一弊端。
2水样中各种干扰的消除:
在实际工作中,由于样品千差万别,干扰物复杂多样,有时会出现样品经絮凝沉淀预处理后显色溶液浑浊的现象,严重影响透光率,造成结果偏高,这时要用蒸馏预处理法。方法参见《水和废水监测分析方法》(第四版)
色(浊)度干扰的消除。
取50mL水样于50mL比色管中,加酒石酸钾钠溶液,加氢氧化钾溶液,测量吸光度(校正吸光度),水样经纳氏试剂比色后测得吸光度减去校正吸光度。
金属离子干扰的消除。
在碱性环境中,金属离子容易发生水解,一般加入酒石酸钾钠络合;含有汞盐可加少量硫代硫酸钠络合而掩蔽;含有Mn2+时,用50%酒石酸钾钠代替纯酒石酸钾钠能掩蔽Mn2+干扰[2];含有大量Cu、Fe等金属离子,采用蒸馏法进行预处理后,再测定。
有机物干扰的消除。
水样中含有甘氨酸、肼和某些胺类等有机物时,调节水样pH值到左右,对其进行蒸馏处理;含有酮类、醛类和其他胺类时,在pH值较低情况下,用煮沸方法除去。
显色溶液浑浊的应对措施
用絮凝沉淀法预处理后取上清液,加入酒石酸钾钠溶液和纳氏试剂后,有时会出现浑浊现象,严重影响透光率,误差非常大。笔者在测污水处理厂的'出水水样是经常会遇到此情况,不加酒石酸钾钠显色溶液不浑浊,由此可见是酒石酸钾钠的问题,可用()方法提纯后的酒石酸钾钠溶液,再不行就用蒸馏法预处理后测定。
3试剂配制应注意的问题
药品的纯度及试剂的配置方法都影响到实验结果。
酒石酸钾钠纯度直接关系到测定结果,导致实验空白值高和引起实际水样浑浊,影响测定需要对其溶液进行提纯,以去除其中的铵盐。实际工作中,有两种处理方法。
①采用纳氏试剂对酒石酸钾钠溶液(50%)进行提纯,纳氏试剂加入量为酒石酸钾钠溶液体积2%,空白吸光度最小且基本稳定;
②向酒石酸钾钠溶液中加少量碱液,煮沸蒸发至50mL左右,冷却并定容至100mL。试验表明:经以上两种方法提纯后空白值也能满足分析测定要求。
纳氏试剂的配制
了解纳氏试剂测氨氮的显色原理有利于理解纳氏试剂的配制方法,原理如下:2K2[HgI4]+3NaOH+NH3→NH2HgIO+3NaI+4KI+2H2O
纳氏试剂的配制有两种方法,均能产生显色基团[HgI4]2—,第一种配制方法用氯化汞和碘化钾,关键在于把HgCl2的加入量,这决定着获得显色基团含量的多少,进而影响方法的灵敏度。但方法未给出HgCl2的确切用量,需要根据试剂配制过程中的现象加以判断,经验性强,因而较难把握。有人据经验总结出HgCl2与KI的用量比为∶1时(即溶于20gKI溶液),效果很好。在此不再赘述,第二种方法用碘化汞和碘化钾:称取16g氢氧化钠,溶于50ml水中,充分冷却至室温。另称取7g碘化钾和10g碘化汞溶于水,将此溶液在搅拌下徐徐注入氢氧化钠溶液中,用水稀释至100ml。在此尤其要注意碘化汞与碘化钾的比例,I—不能过量,否则反应会逆向进行,显色基团[HgI4]2—减少,纳氏试剂颜色变浅,用此纳氏试剂做出的氨氮工作曲线低点显色不灵敏,几乎没有差别,线性很差,实验失败。碘化汞微溶于水,溶液中存在I—的碱性溶液中反应生成[HgI4]2—红色沉淀才消失,过量时以红色碘化汞沉淀的形式存在,不会使显色反应逆向进行,因此在实际工作中应使碘化汞稍稍过量,配制好的的纳氏试剂静置后弃去沉淀,小心倒入聚乙烯瓶中,密塞,低温保存。
4显色反应条件的控制
反应温度、时间。实验表明:反应温度为25℃时,显色最完全,反应时间为10~30min,溶液颜色较稳定。实际工作中,显色温度控制在20℃~25℃,时间控制在10min左右,快速测定,以确保监测数据准确可靠。
反应体系pH值。水样pH值的变化对显色有显著影响,水样呈中性或碱性,测定结果相对偏差符合分析要求,水样呈酸性无可比性。实验发现[3],当水样呈酸性时测定值为 ,呈碱性时测定值为 mg/L ,呈中性时测定值为 mg/L。实验表明[4]:当溶液pH<11时,不能使溶液中nh4+全部转化为nh3,使测定结果偏低;当ph>11时,99%以上NH4+ 转化为NH3。在测定水样时先调整pH至中性,加入纳氏试剂后体系pH值在~为宜。实际工作中,配制较强缓冲能力的氢氧化钾-酒石酸溶液(浓度比为:1),能够更好地控制体系pH值。
结论:纳氏试剂比色法测水中氨氮,灵敏度高,操作简便,易于推广,对于不同的水样要选择不同的预处理方法,否则会给结果带来很大误差,对于相对清洁,干扰较少的水样可采用简单省时的絮凝沉淀法,采用此法时可用取上清液的方法,以避免滤纸过滤引进的氨氮污染。对于污染严重,干扰物较多的水样应用蒸馏法予以预处理。针对不同的干扰物应分别采取相应的消除措施。试剂的配制也很关键,对市售酒石酸钾钠予以提纯以消除高铵盐带来的误差,纳氏试剂的配制碘化汞应稍稍过量,出现少量的红色沉淀不影响实验结果,相反,碘化钾过量会导致显色不灵敏,实验失败。控制显色的时间、温度及反应体系的pH值也结果准确可靠的重要条件。
参考文献:
[1]国家环境保护总局,《水和废水监测分析方法》编委会.水和废水监测分析方法.—4版. [M]北京:中国环境科学出版社 2002
[2]丁建森,李 凌. 饮用水中锰对氨氮检测影响的探讨[J] 上海预防医学杂志,1997 ,9 (10) :474 – 475
[3] 苏爱梅,王俊荣. 氨氮测定过程中有关问题的探讨[J] 干旱环境监测,2003,17(2):123-125
[4] 陈国强,卢明宇. 应用离子选择电极法测定生活污水中的氨氮[J].重庆环境科学,1998 ,20(3):58-90
有氨氮速测试剂盒,但是监测范围不高,你的水样如果氨氮属于低浓度则可以一试。速测盒厂址我下次贴上。
污水中的氨氮测定用国标的蒸馏滴定法已经够简单了,而且适用,能满足较高氨氮的测定。想要快速你得用到便携式的仪器,比如可以用哈希DR890,需要购买专门的药剂,测定一个样的时间半小时以内,直接读出结果,很方便。问题是你们学校很可能没有这些东西。如果你有费用的话,可以花钱送去专门的化验室做,不便宜,还有你的论文用别人的数据也不太专业。
测定Cl-(利用AgCl沉淀的方法)测定NH3总量(加入过量水NaOH,加热,用硫酸吸收NH3测定。)
集约化养猪场废水处理技术及应用养猪场废水是养殖业废弃物中最典型的一类污染物,主要包括猪尿、部分猪粪和猪舍冲洗水,属高浓度有机废水。由于养猪业属传统产业,用于废水处理的资金有限,所以养猪场废水处理各项指标要完全达标难度很大。迄今为止,国内外对养猪场废水处理已进行了大量研究和工程应用实践。文章分析总结了近3年来集约化养猪场废水处理的工艺研究和工程应用等方面的情况,现报道如下。1 猪场废水处理工艺目前,养猪场废水处理研究的工艺方法有物化处理、自然生态处理、好氧处理、厌氧处理等,实际工程应用中常常是这些处理技术的组合工艺。猪场废水悬浮物质浓度很高,悬浮物质是COD的主要来源之一,过高的悬浮物质将会影响后续生化处理的效果,所以在养猪场废水进入生化处理系统之前进行固液分离处理是必要的。固液分离机有振动筛、回转筛、水力筛和挤压式分离机等,其中挤压式分离机可以连续运行,效率较高。德国研制的FAN -SEPATOR的挤压式离心分离机,具有很好的分离效果,在我国的应用表明,悬浮物的去除效率较高,分离出来的泥渣含水率为80%左右。猪场废水氮磷含量很高, 采用磷酸镁铵(MgNH4 PO4 ·6H2O,俗称鸟粪石)化学沉淀法处理,使得废水中的氨氮转化为缓释肥中的营养元素,解决了氮的回收和氨的污染两大问题,同时达到较好的预处理效果,为后续的生化处理创造了条件。但该方法必须考虑废水中N、P、Mg的平衡问题,所以廉价的添加剂是化学沉淀法能否实际应用的关键。Lee S I等人利用海水或制盐工业中的废盐卤作为Mg2 + 添加剂,沉淀速度快,与添加MgCl2 作镁源对磷有等同的去除效果,是一种处理成本低廉的方法,但去除氨的效果不如添加MgCl2。自然生态法是运用生态学原理与工程学方法相结合的技术,应用较多的是稳定塘工艺和人工湿地系统。PoachM E[ 1 ]为了研究有机负荷和去除效果的关系,设计了6个并联的湿地- 池塘- 湿地处理系统,通过分别进水控制各处理单元的有机负荷,试验研究表明,最佳TSS、COD、TN、TP去除率分别为35% ~51%、30% ~50%、37% ~51%、13% ~26%,夏季处理效果明显优于冬季,处理效果受温度和降雨的影响较大。自然生态法处理建设费用较低,运行成本低廉,但受自然条件的影响较大,适宜于土地资源丰富的地区,具有良好的应用前景。好氧生化法主要有活性污泥法和生物接触氧化法。成文[2]采用接触氧化水解(酸化) -两段接触氧化-混凝工艺处理猪场废水,水解对CODcr有较高的去除率,稳定在60%~70%;接触氧化对COD的去除效果在50%左右。整个工艺对氨氮去除效果较好,出水氨氮在13~15 mg/L, CODcr在200~250 mg/L,经过聚合氯化铝混凝沉淀后,最终出水CODcr稳定在100 mg/L 以下,出水达到污水综合排放一级标准(GB8978 - 88) 。但该工艺程序复杂,占地面积大,对氨氮的去除效果还有待进一步研究。邓良伟[ 3 ]研究水解- SBR处理猪场废水,大大简化了处理工艺, 水解去除了大部分的COD, TP去除率达到55% ,但对氨氮去除效果不好;SBR对氨氮有较好的去除效果, TN的去除率为 ,氨氮的去除率在97%以上,但最终出水的COD残留量较大。猪场废水的高氨氮常常导致生化处理过程中碳源不够、C /N过低,从而影响总氮的去除效果,如果采用外加碳源则会增加处理成本。Ju -Hyun Kim等人利用序批式反应器( SBR) 实时控制工艺,采取补充源水作外加碳源的方式处理猪场废水,通过ORP以及pH值实时控制缺氧段、好氧段,TOC和总氮的去除率分别在94%和96%以上,能够有效除去TOC和TN,但对TP的去除效果不佳。猪场废水氨氮浓度高,对直接进行生化处理可能会产生影响,因此在生化处理前进行化学脱氮以减轻后续生化处理的难度,是目前猪场废水处理的一个新途径,于金莲等人提出了加石灰乳混凝沉淀- 脱氨- 好氧生化的联合处理工艺,在生化处理前进行混凝沉淀和脱氨预处理,一方面去除了大部分悬浮物和部分难降解有机物;另一方面提高pH值,脱除大部分氨氮,使后续生化处理降低能耗、容易达标。自然生态法和好氧处理都有各自的不足,自然生态法处理需要大面积的处理场地;好氧处理能耗大,去除污染物不完全。对于高浓度有机废水的处理,厌氧技术是必然选择之一。目前较常用也比较有效的处理方法是厌氧或厌氧+好氧后续处理工艺,研制高效厌氧反应器是猪场废水处理的关键。邓良伟等人利用内循环厌氧反应器( IC)处理猪场废水,水力停留时间0. 8~2. 0 d,COD 负荷3~7 kg / (m3 ·d) ,经过半年的运行,结果表明, COD 平均去除率为80. 3% ,耐冲击负荷好,BOD5 平均去除率为95. 8% , SS去除率为78. 5%。厌氧反应器中,部分有机氮转化为氨态氮,使得出水氨氮浓度比进水高2. 82% ,反应器对总氮、总磷的去除还需进一步的试验研究。一般而言,单纯使用厌氧工艺,出水有机污染物还很高,必须采用后续处理才能达到排放标准。考虑到SBR 对氨氮有较好的去除,杨朝晖等人提出沉淀- UASB - SBR工艺处理猪场废水,经厌氧消化可除去大部分的有机质,在SBR工艺中的曝气过程分为2个阶段,中间添置闲置阶段,既防止产生过多泡沫,又增强反消化作用。经过稳定运行, UASB 反应器COD 有机负荷稳定在8~10 kg/ (m3 ·d) , COD去除率达到70%左右,BOD5去除率80%左右,经SBR 处理可去除氨氮95% ~98% ,最终出水CODcr为186 ~412 mg/L, BOD5 为78~146 mg/L,氨氮为20 ~60 mg/L,出水仍残留部分生化处理难以去除的难降解有机物,这是因为厌氧消化较完全,消化液COD较低,而氨氮很高,导致后续生化处理碳源不足,影响了后续的处理效果。杨朝晖等人又研究水解酸化+好氧处理猪场废水工艺,采用水解酸化反应器(ASBR)进行厌氧处理,保持厌氧消化处理控制在水解、酸化阶段,使出水C /N 较高,保证了后续SBR的生化效果。经过最终混凝处理,COD去除率为99. 6% , BOD5 去除率为99. 8%, TN为88. 3% ,氨氮为99. 8% ,出水达到污水综合排放二级标准(GB8978 - 96) 。但水解酸化反应器COD 的容积负荷较低仅为2. 3 kg/ (m3 ·d) ,还需进一步研究提高其负荷。猪场废水中还存在大量细菌,如不经处理可能将大肠杆菌带入地表水和地下水,危害人类健康, JamesA Entry等人提出用水溶性的阴离子聚丙烯酰胺( PAM ) 处理猪场废水, 基建投资低、应用快捷。PAM、PAM与CaO复配和PAM与Al2 ( SO4 ) 4 复配能够使总的大肠杆菌和排泄物大肠杆菌减少30% ~50%,降低源水中的总磷、正磷酸根以及氨氮。正确的应用PAM及其复配物可以减少进入地表水和地下水中的污染物数量,保护水质。2 猪场废水处理技术应用情况目前,应用到实际工程上的猪场废水处理工艺有自然生态法处理、好氧处理、厌氧+好氧处理等。潘涌璋等人利用高级综合稳定塘处理猪场废水,经过稳定运行, 出水达到畜禽养殖业污染物排放标准(GB18596 - 2001)的要求,氨氮在60 mg/L 左右,总氮没有考虑,总停留时间在20 d以上,占地面积大,适合于土地资源较丰富的亚热带山区。由于凤眼莲对水体中的污染物质和营养物质有较好的吸收,]考虑用凤眼莲处理猪场废水,工艺流程如下:该凤眼莲生化处理系统对COD 的______去除率为43%~69% ,对总氮的去除率为55% ~72% ,对氮元素的吸收量很大,同时对总磷、挥发酚等污染物都有较好的去除效果。该处理系统的停留时间为30 d,日设计流量为600 m3 ,但需要较大的处理场地,且受气候条件影响很大,这都限制了该工艺的应用。目前,厌氧+好氧处理工艺应用较为广泛。胡海良等人将环形生活污水高效净化沼气装置应用到猪场废水的处理上,废水经过高效净化沼气装置后进入接触氧化池,进行自然曝气去除CODcr和BOD5 , 该工艺对COD、BOD的去除率达到90%以上,但出水氨氮为100~200 mg/L,去除效果不好。邓良伟等人进行了厌氧- 加源水- 间隙曝气(Anarwia)的研究,此工艺是厌氧+ SBR工艺的改良,因为厌氧消化较完全,导致好氧处理中C /N较低,影响后续消化效果,如果添加外源碳源或外源有机物提高C /N,运行成本随之增高,故提出了部分猪场废水进入厌氧池进行厌氧处理,另一部分进入沉淀配水池与厌氧出水混合后再采用间歇曝气的序批式反应器( SBR)处理,经过一年的生产性试验,该改良工艺对COD、氨氮、TN的去除率分别为93. 1% ~97. 4%、98. 2% ~99. 5%、93. 1% ,但最终剩余难降解的有机质还需要进一步物化处理才能达到排放标准。3 其他相关处理技术猪场废水处理还有其他的相关处理技术,如从养猪场生产过程的环境管理上考虑,在源头改进工艺减少排污,减轻污染。采用干清粪工艺取代水冲式清粪就是一种较好的方法,干清粪工艺是将粪便单独清出,不与尿、污水混合排出,这种工艺固态粪便含水量低,粪中营养成分损失小,肥料价值高,便于堆肥和其他方式处理,还可以节约用水,减少废水和污染物排放量,易于净化处理,是目前理想的清粪工艺。以万头规模化养猪场为例,将现有的水冲粪工艺改为干清粪工艺,每年可减少污水排放5. 5万吨,既节约了用水,又减少了污染。王德刚等人提出“零污染”干式法养猪,即在栏舍内铺上敷料,将猪的粪尿吸附混合,生物处理后进行二次发酵,并经工艺处理合成生态有机肥,对周围环境达到“零污染”的排放效果,同时降低猪群疾病发生率,加快生长速度,提高饲养效益以达到较好的经济效益、环境效益。目前很多学者提出了不少猪场废水处理的新方法,但都只停留在试验室小试阶段,真正应用到生产中还需要进一步的研究试验。邓良伟等人利用秸秆作为载体进行堆肥,在堆肥发酵过程中,产生的生物热蒸发浓缩“猪场废水”,达到处理猪场废水和生产有机肥的目的。以秸秆为载体用猪粪水及其厌氧消化液进行堆肥处理,其吸水比可达1∶5. 94~1∶6. 65,堆肥含水率基本在70%以上,超过一般堆肥过程含水率( 50% ~60% ) ,且能保持较长的高温期,说明以秸秆为载体吸收猪粪水在高温条件下进行堆肥的工艺路线是可行的。在堆肥过程中,氮、磷、钾是一个累加的过程,所获得的堆肥是一种肥效较高的有机肥,但该工艺消耗猪场生产废水有限,仅限于小规模的污水处理,对于大规模的猪场废水处理还需研究探讨。4 结论与展望根据以上分析,解决猪场废弃物污染问题,首先应当加强猪场环境管理,从源头污水减量化考虑,采用“零污染”干式养猪,减少用水量,基本实现零污染物排放;或采用干清的方式代替水冲,既不会流失营养物质,又可以大大减少废水的排放。养猪业属于传统产业,猪场废水处理必须寻求经济可行、处理效果好的方法。开发经济有效的处理工艺是目前猪场废水处理的重点。高效厌氧反应器的研制、氮磷污染物的去除、沼气发电技术及无害化资源能源的回收是今后猪场废水处理的重要研究方向。参考文献:[ 1 ] POACH M E. SwineWastewater treatment bymarsh - pond - marshconstructed wetlands under varying nitrogen loads [ J ]. EcologicalEngineering, 2004 (23) : 165 - 175.[ 2 ] 成文. 养猪场废水处理工艺研究[ J ]. 环境污染与防治, 2000, 22(1) : 24 - 27.[ 3 ] 邓良伟. 水解- SBR工艺处理规模化猪场粪污研究[ J ]. 中国给水排水, 2001, 17 (3) : 8 - 11.[ 4 ] 余远松. 凤眼莲水生生态系统处理大型养猪场废水的应用研究[ J ]. 农业环境保护, 2000, 19 (5) : 301 - 303.畜禽粪便用于生产饲料的方法随着我国畜牧业的蓬勃发展,生产规模化、集约化趋势越来越明显,在给人类提供丰富的畜禽产品同时,由于规模化养殖场的畜禽粪便和污水多不处理直接用作肥料,某些地区甚至直接排入江河,造成严重的环境污染。其实,畜禽粪便并非完全是不可利用的废物,粪便中有一部分营养物质能被动物直接再吸收,还有一部分物质可通过处理再被动物吸收。现在被各国所接受和使用的主要处理方法有以下几种。1 干燥法一般只适用于营养物质含量较高的鸡粪。1. 1 自然干燥将新鲜粪便单独或掺入一定比例糠麸拌匀后,摊在水泥地面或塑料布上,随时翻动,自然风干、晒干,然后粉碎,掺到其他饲料中饲喂。此法成本较低,操作简单,但受天气影响大,晒干时造成的环境污染大。1. 2 加温干燥干燥快速,可达到灭菌、灭杂草籽和去臭的目的,但是经处理后的粪便养分损失较大,成本较高。1. 2. 1 低温干燥 将畜禽粪便运到装有机械搅拌和气体蒸发的干燥车间或干燥机、隧道窖中,在70 ~500 ℃的温度下烘干,使畜禽粪便含水量降到13%以下,再储藏和利用。1. 2. 2 高温快速干燥 将含水量为70% ~75%的畜禽粪便通过高温快速干燥机,在不停旋转的干燥机中,畜禽粪便通过间接加热( 500 ~700 ℃) , 12 s左右,含水量即可降至13%以下。1. 3 微波处理干燥
纳氏试剂比色法测水中氨氮常见问题探讨论文
摘要: 纳氏试剂比色法测定水中的氨氮,因方法简便、快速、灵敏度高而广泛应用于水中氨氮检测。文章初步探讨了纳氏试剂比色法测定氨氮的几个应注意的问题:预处理方法的选择;水样中干扰的消除;配制酒石酸钾钠溶液及纳氏试剂应注意的问题以及显色条件的控制等等。
关键词: 纳氏试剂比色法,预处理,纳氏试剂,显色条件
1预处理方法的选择
水样带色或浑浊以及含其他干扰物质,影响暗淡的测定,因此需要相应的预处理,对于较清洁的水样可采用絮凝沉淀法[1],对严重污染的水或工业废水,则用蒸馏法[1]预处理以消除干扰。其中因前者更简单快捷,成为首选的方法。
絮凝沉淀法及改进
仪器
100ml具塞量筒或比色管
试剂:
(1)10%硫酸溶液
(2)25%氢氧化钠溶液
步骤
取100ml水样于具塞量筒或比色管中,加入1ml10%硫酸锌溶液和2~4滴25%氢氧化钠溶液,调pH值左右,混匀,静置使沉淀。取适量上清液备用。在此处有一方法的改进,就是没用滤纸过滤,而是取静置后的上清液。静置的时间视取样时不能取到絮状物为准。
讨论:《在水和废水监测分析方法》第四版中,经絮凝沉淀后的水样使用无氨水充分洗涤过的中速滤纸过滤,弃去初滤液20ml后的滤液。有实验表明,不同滤纸或同种滤纸但不同张之间铵盐含量差别很大,有些含量较高的滤纸虽多次用水洗涤,但仍达不到实验要求。因此使用前需对每一批次滤纸进行抽检,淋洗时要少量多次。也有研究发现滤纸中约有的可溶物和滤纸平均失重,这些可溶物将影响到分析结果的准确性。直接取上清液避免了这一弊端。
2水样中各种干扰的消除:
在实际工作中,由于样品千差万别,干扰物复杂多样,有时会出现样品经絮凝沉淀预处理后显色溶液浑浊的现象,严重影响透光率,造成结果偏高,这时要用蒸馏预处理法。方法参见《水和废水监测分析方法》(第四版)
色(浊)度干扰的消除。
取50mL水样于50mL比色管中,加酒石酸钾钠溶液,加氢氧化钾溶液,测量吸光度(校正吸光度),水样经纳氏试剂比色后测得吸光度减去校正吸光度。
金属离子干扰的消除。
在碱性环境中,金属离子容易发生水解,一般加入酒石酸钾钠络合;含有汞盐可加少量硫代硫酸钠络合而掩蔽;含有Mn2+时,用50%酒石酸钾钠代替纯酒石酸钾钠能掩蔽Mn2+干扰[2];含有大量Cu、Fe等金属离子,采用蒸馏法进行预处理后,再测定。
有机物干扰的消除。
水样中含有甘氨酸、肼和某些胺类等有机物时,调节水样pH值到左右,对其进行蒸馏处理;含有酮类、醛类和其他胺类时,在pH值较低情况下,用煮沸方法除去。
显色溶液浑浊的应对措施
用絮凝沉淀法预处理后取上清液,加入酒石酸钾钠溶液和纳氏试剂后,有时会出现浑浊现象,严重影响透光率,误差非常大。笔者在测污水处理厂的'出水水样是经常会遇到此情况,不加酒石酸钾钠显色溶液不浑浊,由此可见是酒石酸钾钠的问题,可用()方法提纯后的酒石酸钾钠溶液,再不行就用蒸馏法预处理后测定。
3试剂配制应注意的问题
药品的纯度及试剂的配置方法都影响到实验结果。
酒石酸钾钠纯度直接关系到测定结果,导致实验空白值高和引起实际水样浑浊,影响测定需要对其溶液进行提纯,以去除其中的铵盐。实际工作中,有两种处理方法。
①采用纳氏试剂对酒石酸钾钠溶液(50%)进行提纯,纳氏试剂加入量为酒石酸钾钠溶液体积2%,空白吸光度最小且基本稳定;
②向酒石酸钾钠溶液中加少量碱液,煮沸蒸发至50mL左右,冷却并定容至100mL。试验表明:经以上两种方法提纯后空白值也能满足分析测定要求。
纳氏试剂的配制
了解纳氏试剂测氨氮的显色原理有利于理解纳氏试剂的配制方法,原理如下:2K2[HgI4]+3NaOH+NH3→NH2HgIO+3NaI+4KI+2H2O
纳氏试剂的配制有两种方法,均能产生显色基团[HgI4]2—,第一种配制方法用氯化汞和碘化钾,关键在于把HgCl2的加入量,这决定着获得显色基团含量的多少,进而影响方法的灵敏度。但方法未给出HgCl2的确切用量,需要根据试剂配制过程中的现象加以判断,经验性强,因而较难把握。有人据经验总结出HgCl2与KI的用量比为∶1时(即溶于20gKI溶液),效果很好。在此不再赘述,第二种方法用碘化汞和碘化钾:称取16g氢氧化钠,溶于50ml水中,充分冷却至室温。另称取7g碘化钾和10g碘化汞溶于水,将此溶液在搅拌下徐徐注入氢氧化钠溶液中,用水稀释至100ml。在此尤其要注意碘化汞与碘化钾的比例,I—不能过量,否则反应会逆向进行,显色基团[HgI4]2—减少,纳氏试剂颜色变浅,用此纳氏试剂做出的氨氮工作曲线低点显色不灵敏,几乎没有差别,线性很差,实验失败。碘化汞微溶于水,溶液中存在I—的碱性溶液中反应生成[HgI4]2—红色沉淀才消失,过量时以红色碘化汞沉淀的形式存在,不会使显色反应逆向进行,因此在实际工作中应使碘化汞稍稍过量,配制好的的纳氏试剂静置后弃去沉淀,小心倒入聚乙烯瓶中,密塞,低温保存。
4显色反应条件的控制
反应温度、时间。实验表明:反应温度为25℃时,显色最完全,反应时间为10~30min,溶液颜色较稳定。实际工作中,显色温度控制在20℃~25℃,时间控制在10min左右,快速测定,以确保监测数据准确可靠。
反应体系pH值。水样pH值的变化对显色有显著影响,水样呈中性或碱性,测定结果相对偏差符合分析要求,水样呈酸性无可比性。实验发现[3],当水样呈酸性时测定值为 ,呈碱性时测定值为 mg/L ,呈中性时测定值为 mg/L。实验表明[4]:当溶液pH<11时,不能使溶液中nh4+全部转化为nh3,使测定结果偏低;当ph>11时,99%以上NH4+ 转化为NH3。在测定水样时先调整pH至中性,加入纳氏试剂后体系pH值在~为宜。实际工作中,配制较强缓冲能力的氢氧化钾-酒石酸溶液(浓度比为:1),能够更好地控制体系pH值。
结论:纳氏试剂比色法测水中氨氮,灵敏度高,操作简便,易于推广,对于不同的水样要选择不同的预处理方法,否则会给结果带来很大误差,对于相对清洁,干扰较少的水样可采用简单省时的絮凝沉淀法,采用此法时可用取上清液的方法,以避免滤纸过滤引进的氨氮污染。对于污染严重,干扰物较多的水样应用蒸馏法予以预处理。针对不同的干扰物应分别采取相应的消除措施。试剂的配制也很关键,对市售酒石酸钾钠予以提纯以消除高铵盐带来的误差,纳氏试剂的配制碘化汞应稍稍过量,出现少量的红色沉淀不影响实验结果,相反,碘化钾过量会导致显色不灵敏,实验失败。控制显色的时间、温度及反应体系的pH值也结果准确可靠的重要条件。
参考文献:
[1]国家环境保护总局,《水和废水监测分析方法》编委会.水和废水监测分析方法.—4版. [M]北京:中国环境科学出版社 2002
[2]丁建森,李 凌. 饮用水中锰对氨氮检测影响的探讨[J] 上海预防医学杂志,1997 ,9 (10) :474 – 475
[3] 苏爱梅,王俊荣. 氨氮测定过程中有关问题的探讨[J] 干旱环境监测,2003,17(2):123-125
[4] 陈国强,卢明宇. 应用离子选择电极法测定生活污水中的氨氮[J].重庆环境科学,1998 ,20(3):58-90