首页 > 论文发表知识库 > 研究氯化物性质论文目的

研究氯化物性质论文目的

发布时间:

研究氯化物性质论文目的

浅析塑料摘要:从第一个塑料产品赛璐珞诞生算起,塑料工业迄今已有120年的历史。经历了天然高分子加工阶段, 合成树脂阶段,19世纪70年代聚烯烃塑料系列成为了重中之重,同时出现了多品种高性能的工程塑料,到70年代末塑料工业趋于稳定增长阶段,生产技术更加合理完善,性能优异的材料开始问世。塑料以其优异的性能在人类的生产和生活中发挥了不可估量的作用,推动了整个世界的进步. 关键词:塑料的合成 分类 降解与节能 发展前景正文:20世纪以来,在人类生活的深刻变化中,塑料材料革命发挥了极其重要的作用。特别是近50年,各种塑料由于具有广泛的用途及良好的使用性能在农业,包装,轻工,纺织,建筑,汽车,电子电气乃至航空航天,国防军工等各个领域中,与钢铁,木材,水泥构成现代工业的四大基础材料。进入21世纪,随着信息技术等高新技术的不断渗透,合成树脂即塑料性能进一步改善,应用更加广泛,对国民经济和社会发展以及人民生活水平的提高将产生越来越重要的影响。一、塑料的合成塑料的定义:塑料是以合成或天然高分子化合物维基本成分,附加填料和各种助剂,在一定的条件下塑化成行,最终能保持形状不变的材料。原料:制造塑料的原料是树脂,而单体是构成高分子化合物即合成树脂的基本结构单元。单体的来源经历过从易到难的发展过程:动物,植物,煤,石油和天然气。至今四种单体来源同时存在,石油和天然气是目前各工业国家制造塑料的最重要原料来源。制造: :从单体到塑科制品要经过聚合和加工二大步骤。聚合的方法来说有本体、悬浮、乳掖、镕液聚合法四种。通过一定的温度、压力、催化剂使单体分子活化聚合成大分子,聚合后得到没有一定的形状和强度从而无实用性粉粒状聚合物,通过挤压、注射、压延、砍塑、压制(模压、层压)等各种加工方法变成有实用价值的塑料制品,加工之前必须根据制品的使用要求添加适当的助剂最常见的有增塑剂、稳定剂(热、光稳定剂)、抗氧剂等。 二、塑料的分类塑料的分类体系比较复杂,各种分类方法也有所交叉。以下就结构和使用性质进行简单的分类介绍。按结构分:塑料高分子的结构基本有两种类型。第一种是线型结构,具有这种结构的高分子化合物称为线型高分子化合物。线型高分子制成的是热塑性塑料,加热可熔融可再造,常见的热塑性树脂有:聚乙烯、聚氯乙烯、聚苯乙烯、聚酰胺、聚甲醛、聚碳酸酯、聚苯醚、聚砜、橡胶等。其优点是加工成型简便,具有较高的机械能。缺点是耐热性和刚性较差。第二种是体型结构 ,具有这种结构的高分子化合称为体型高分子化合物,由体型高分子制成的是热固性塑料,因其形成键与键之间的不可逆共价键从而不能再熔融和流动而无法从新塑造。它包括大部分的缩合树脂,热固性树脂的优点是耐热性高,受压不易变形。其缺点是机械性能较差。热固性树脂有酚醛、环氧、氨基、不饱和聚酯以及硅醚树脂等。 按使用特性分:1、通用塑料:一般是指产量大、用途广、成型性好、价格便宜的塑料。如聚乙烯、聚丙烯、酚醛等。2、工程塑料:一般是指能承受一定外力作用,具有良好的机械性能和耐高、低温性能,尺过稳定性较好,可以用作工程结构件的塑料。如聚酰胺、聚砜等。在工程塑料中又将其分为通用工程塑料盒特种工程塑料两大类。三、塑料的应用:国内塑料制品市场未来需求主要集中在包装、建筑、农用、工业交通及电子通讯等几个方面;体育健身器材和医疗器械行业应用将大幅增长;玩具行业有可能转为使用具有环保特性的塑料;ABS树脂在建材管材和管件、医疗器械和合金共混物等的应用上也有良好前景。工程塑料仍将是增长最快的领域。工程塑料是电子信息、交通运输、航空航天、机械制造业的上游产业,在国民经济中占据着重要的地位,其发展不仅对国家支柱产业和现代高新技术产业起着支撑的作用,同时也推动传统产业改造和产品结构的调整。近年来,随着我国制造业的快速发展,工程塑料的应用领域日趋广。评价:由其具有强烈抗腐蚀能力,重量轻且坚固,加工方便又高效,原料广而廉还可以用于制备燃料油盒燃料气从而降低的原油的消耗,用途广泛立于材料之林,但是塑料也有不足之处,这是创造一系列改性品种的动力,总起来说塑料尺寸不稳定,容易老化,可燃,必须加各种不同助剂来改善。某些塑料制品有毒性,普通塑料具有抗氧化,难腐蚀,难降解使回收利用废弃塑料时十分困难,生态环境危害极大。此外塑料是由石油炼制的产品制成的,而石油资源是有限的。 随着人类文明的进步,人们开始重视自然环境以及人类的可持续发展,这凸显了废旧塑料所带来的环境问题,白色污染”成为了一个全球性问题,而且由于石油等资源的有限性,人们开始注重资源更加有效的利用。这些都为塑料的发展即带来了挑战也带来了机遇,随着可降解塑料和废旧塑料的回收利用技术的研发,在逐渐减少对生态环境的危害的同时,塑料在材料生产与应用中,目前和将来的能耗、材料成本以及材料使用中的节能优势使其有了更大的发展空间。 四、发展方向:将来最主要的是充分利用具有多种性能和加工工艺优越性的现有材料。增强其在较高温度下使用保持较高强度,降低塑料强度和变形性能的时间和温度的依赖关系,加强研究塑料的燃烧特性,在老化影响因素下使塑料稳定。白色污染主要是由废旧塑料高分子的难降解性以及添加剂的毒害性引起的,目前,世界各国都在大力投入可降解塑料的研发和废旧塑料的回收利用技术的研发。在积极开发塑料回收利用技术的同时,研究开发生物降解塑料成为当今的研究热点。而且为了适应市场需求和高科技发展的需要,开发高性能,功能性材料也将成为热点。塑料的降解和节能1可降解塑料制品研究现状一般来说,塑料除了热降解外,在自然环境中的光降解和生物降解都比较慢。用C14同位素跟踪考察塑料在土壤中的降解,结果表明,塑料的降解速度随着环境条件的不同而有所差异,但通常都需要200~400年 为了解决这一问题,世界各国投入了大量的研发力量来开发和应用可降解塑料。可降解塑料是指一类其制品的各项性能可满足使用要求,在保存期内性能不变,而使用后在自然环境条件下能降解成对环境无害的物质的塑料,从而对环境进行保护 塑料的降解主要是高分子化学键断裂所引起的,其降解的方式和程度与环境条件有关。其主要降解方式有:水解降解、氧化降解、微生物降解和机械降解。但从实际应用的角度,一般是运用光降解、光-生物双降解和生物降解等方式 2节能:在用塑料等合成材料同样可以制造出与传统材料效用相同或相近的制品上替代使用,以求节省材料生产、加工能耗;在使用等合成材料后可以让用能过程或设备节约能源。 实例:据估算,美国1978年使用了150,000吨塑料用于创造冰箱和冶藏箱的部分绝热作用的部件,节约了60%重量的金属或玻璃。不用塑料而用玻璃或金属则需耗能23万亿英热单位,二用塑料部件耗能万亿英热单位,节约了能量万亿英热单位,相当于120万桶原油。 五、结尾:随着能源危机的时隐时现带来的压力,节能已成为主流话题,而塑料以其在生产及使用中的节能优势将必定获得更大的发展。而且各国对可降解塑料的研发和废旧塑料的回收利用技术的大力支持,白色污染的危害性逐渐减少,绿色塑料的出现指日可待。源于自然,归于自然,塑料的前景无限光明!

一、液氯消毒原理和二氧化氯消毒原理 (一)、液氯消毒 氯气加入水中产生一系列化学变化。不同的水质其化学反应的过程也不一样,但最终起消毒作用的产物为次氯酸和次氯酸根离子。 1. 当水中无氨氮存在时 CL2+HO2→HOCL+H++CL– …………………….(1) 次氯酸是一种弱电介质 HOCL→H++OCL– ………………………………(2) 次氯酸与次氯酸根在水里所占的比例主要取决于水的pH值,HOCL和OCL–都具有氧化能力,但HOCL是中性分子,可以扩散到带负电荷细菌的表面,并渗入细菌体内,氯原子氧化作用破坏细菌体内的酶,使细菌死亡;而OCL–带负电,难于靠近带负电荷的细菌,所以虽有氧化能力也难起消毒作用。 从图Ⅰ可以看出,在pH值范围内,水的pH值越低,HOCL的百分含量越大,因而消毒效果越好。 2. 当水中存在氨氮时,(1)式产生的HOCL就会和氨化合,产生一类叫胺的化合物,其成份视水的pH值及CL2和NH3含量的比值而定。 NH3+HOCL →NH2CL+H2O………………….(3) NH3+2HOCL→NHCL2+2H2O…………………(4) NH3+3HOCL →NCL3+3H2O………………….(5) 当水的PH值在之间时,NH2CL和NHCL2同时存在,但PH值低时,NHCL2较多,NHCL2的杀菌能力NH2CL强,所以水的PH值低一些,也是有利于消毒作用的。NCL3要在PH值低 于时才产生,在一般的饮用水中不大可能形成。 所以,无论水中是否存在氨氮,在使用液氯消毒时,在pH值范围内,pH值越低,消毒效果比PH值高的消毒效果好。 (二)、二氧化氯消毒 二氧化氯化学性质活泼,易溶于水,在20℃下溶解度为,是氯气的溶解度的5倍。氧化能力为氯气的2倍。CLO2是中性分子,在水中几乎100%以分子状态存在,所以极易穿透细胞膜,渗入细菌细胞内,将其核酸(DNA或RNA)氧化后,从而阻止细菌的合成代谢,并使细菌死亡。在饮用水中 CLO2灭菌反应如下式.(6)、(7)所示。 CLO2+ e→CLO2–…………………………………………(6) CLO2+2H2O+4e→CL–+4OH–……………………………(7) 实验测知,式(6)式的电极电位 ,式(7) 式的电极电位。所以使用二氧化氯消毒还可以氧化水中的一些还原性金属离子(如Fe2+ Mn2+等),即对水中的铁、锰有着不错的去处效果。CLO2的氧化能力与溶液的酸碱性有关,溶液酸性越强,CLO2的氧化能力越强。但在PH值6-10范围内的杀菌效果几乎不受PH值影响。 综上,在净水工艺条件下,用液氯消毒,起杀菌作用的主要是HOCL,其杀菌效果比OCL–高近80倍。由图表Ⅰ可以看出pH值越高,HOCL离解的越多,当pH值大于8时即达到75%的OCL–,消毒效果就愈发降低。经过众多试验结果得出,CLO2可以在范围内杀灭细菌,液氯只有在近中性条件下才能有效地杀灭细菌。 二、两种消毒剂杀灭饮用水中细菌的情况 在饮用水中投加消毒剂的目的主要是杀灭对人体有害的病原菌、病菌,及其它致病的病原微生物。经过消毒处理的水,不是将水中所有的细菌杀灭,可以允许含有少量的对人体健康无害的细菌,但一定要达到《生活饮用水卫生标准》的要求。 (一)、消毒剂投加量对消毒效果的影响 为了研究消毒剂投加两对消毒效果的影响,对我公司的沉淀水(未加消毒剂)、滤前水(预加 mg/L消毒剂)、滤后水(又加 mg/L消毒剂)进行了细菌学指标的检测,检测结果见图表Ⅱ。 从试验结果可以得出: 1. 二氧化氯和液氯对大肠杆菌均有较好的灭菌效果,且随着投加量增大杀菌率增大;二氧化氯的灭菌效果稍优于液氯。投加量为时,液氯的杀菌率是,二氧化氯的杀菌率则达。 2.二氧化氯杀灭细菌的效果明显优于液氯。 (二)、水温对消毒剂杀菌效果的影响 消毒剂的杀菌能力随着温度的上升而增强,温度低时每上升10℃,细菌死亡率成倍增加。图表Ⅲ为Benarde等试验的不同温度下二氧化氯接触时间与大肠杆菌存活率的关系。由图可见,温度升高,灭菌时间相对缩短,杀菌效果相对增强。 三、两种消毒剂对饮用水中有机卤代物 形成的影响 随着人们对用液氯消毒饮用水所产生的有机卤代物致癌作用的研究,国家自然科学基金资助了对比液氯消毒与二氧化氯消毒处理水中有机物情况的项目。对用液氯消毒和用二氧化氯消毒的四种同一自来水厂饮用水的富集水样进行GC/MS分析,其试验结果见图表Ⅳ。 由试验结果表明,凡是投加液氯消毒,不仅有机物种类多,含量大,且均形成较多的有机卤代物(如CHCl3、CHBr3等)。如投加 mg/L液氯的水样检出2种氯代物和7种溴代物,含量为;而用二氧化氯消毒的水样,未检出有机卤代物。二氧化氯消毒一般只起氧化作用,不起氯化作用,这是二氧化氯消毒几乎不形成有机卤代物的根本原因。可见,源水严重污染或水体中有机物含量高时,二氧化氯是最好的选择。 四、我厂对饮用水消毒剂的合理应用 我厂引进的高效复合二氧化氯发生器,其制备消毒剂的原理是利用氯酸钠水溶液与盐酸溶液在一定温度和负压下充分反应,产生以二氧化氯为主、氯气为辅的消毒气体,来进行饮用水消毒的。 该设备在投入使用初期,由于管垢中的锈蚀物要消耗一些二氧化氯,二氧化氯消耗量较大,运行成本较高。运行一个月左右后,二氧化氯的投加量趋于稳定。统计生产实践所耗用的成本,进行经济技术分析,我们得出,在达到同样的消毒效果时,消耗二氧化氯的量要比液氯的消耗量低一些,但制备二氧化氯的原料成本要比液氯成本高元/吨。为了保证水质,同时兼顾节约成本,我厂在冬季水源污染少、浊度低时,使用液氯消毒;到了夏季,水源污染较重或者水源中有机物含量偏高时,使用二氧化氯消毒。 五、结论 液氯作为经典的饮用水消毒方式,消毒能力强,货源充足,价格低廉,投加设备较为简单,有着价廉物美的优势。但当水中有机物含量高时,会产生有致癌作用的卤化有机物。 二氧化氯作为后发展起来的消毒方式,杀菌能力比液氯消毒强,杀菌效果不受水的pH值影响,只发生氧化作用不发生氯化作用达到消毒效果,避免了有机卤代物的问题。但是二氧化氯制取出来即须应用,不能贮存,制取原料价格较贵。 无论是液氯消毒还是二氧化氯消毒,都有各自的优点和缺点。我应该根据生产实践中的实际情况,因水制宜,合理选用饮用水消毒剂,力争得到最好的性价比 一、兽用消毒剂的种类及机理 消毒剂的种类有多种,常用的兽用消毒药主要是:酚、醛、醇、酸、碱、氯制剂、碘制剂、重金属盐类、表面活性剂等类型消毒剂。 酚类 这类消毒剂能使病原微生物的蛋白变性、沉淀而起杀菌作用,能杀死一般细菌。复合酚能杀灭芽胞、病毒和真菌。主要有苯酚、复合酚、煤酚等。 醛类 醛类的杀菌作用也是较强的,其中以甲醛的效果较好,也最常用。随着生产技术的进步和养殖业的需求,戊二醛、邻苯二甲醛等高效消毒剂也被广泛应用。 酸类 酸类消毒剂的杀菌原理是高浓度的氢离子能使菌体蛋白变性和水解,而低浓度的氢离子可以改变细菌体表蛋白两性物质的离解度,抑制细胞膜的通透性,影响细菌的吸收、排泄、代谢和生长。氢离子还可与其它阳离子在菌体表面竞争性吸附,妨碍细菌的正常活动。 碱类 用于畜禽消毒的碱类消毒药主要有苛性钠、苛性钾、石灰、草木灰、苏打等。碱类消毒作用的机理是阴性氢氧根离子能水解蛋白质和核酸,使细菌酶系统和细胞结构受损害,同时碱还能抑制细菌的正常代谢机能,分解菌体中的糖类,使菌体复活。它对病毒有强大的杀灭作用,可用于许多病毒性传染病的消毒,高浓度碱液亦可杀灭芽胞。碱类消毒剂最常用于畜禽饲养过程中场区及圈舍地面、污染设备(防腐)及各种物品以及含有病原体的排泄物、废弃物的消毒。 醇类 醇类主要用于皮肤、器械以及注射针头、体温计等的消毒,如:75%的酒精。 表面活性剂类 这类消毒药又称除污剂或清洁剂,可降低菌体的表面张力,有利于油的乳化而除去油污,产生一定的清洁作用。另外,表面活性剂还能吸附于细菌表面,改变菌体细胞膜的通透性,使菌体内的酶、辅酶和中间代谢产物选出,阻碍了细菌的呼吸和糖酵解的过程,使菌体蛋白变性,而出现杀菌作用。常用的有新洁尔灭、洗必泰、杜米芬等。 氧化剂类 这是一类含不稳定的结合态氧的化合物,遇到有机物或酶即可放出初生态氧,而后破坏菌体的活性基因,发挥消毒作用。常用的氧化剂消毒剂有高锰酸钾、过氧乙酸等。 卤素类 卤素(包括氯、碘等)对细菌原生质及其它结构成分有高度的亲和力,易渗入细胞,之后和菌体原浆蛋白的氨基或其它基团相结合,使其菌体有机物分解或丧失功能呈现杀菌作用。在卤素中氟、氯的杀菌力最强,依次为溴、碘,但氟和溴一般消毒时不用。常用的该类消毒剂包括:漂白粉精、次氯酸钠溶液、优氯净、强力消毒王、碘酊、复方络合碘等。 二、消毒剂对微生物杀灭效果评价试验现状 评价消毒产品的消毒效果,应以中华人民共和国卫生部2002年颁布的《消毒技术规范》为依据。但是该规范中规定的某些实验方法和操作技术还存在诸多问题。评价消毒效果主要是评价对微生物(细菌、病毒、真菌、芽胞等)的杀灭作用以及有机物、PH值、温度等因素对其效果的影响。 《消毒技术规范》(2006征求意见版)中指出检验消毒产品对细菌、真菌的灭活效果时所选用的基础实验菌种包括:金黄色葡萄球菌ATCC 6538、铜绿假单胞菌ATCC 15442、大肠杆菌 8099、枯草杆菌黑色变种ATCC 9372、龟分枝杆菌脓肿亚种ATCC19977、白色葡萄球菌 8032、白色念珠菌ATCC 10231、黑曲霉菌ATCC 16404。在上述规定的菌株基础上,根据消毒剂特定用途或试验特殊需要,还可增选其他菌株。病毒灭活试验所用试验病毒株为脊髓灰质炎病毒1型(poliovirus-Ⅰ,PV-Ⅰ)疫苗株和艾滋病病毒1型(human immunodeficiency virus,HIV-1)美国株。 评价消毒剂消毒效果的检测方法主要包括中和试验、消毒剂定性消毒试验、消毒剂定量消毒试验、消毒剂杀菌能量试验、乙型肝炎表面抗原抗原性破坏试验。具体试验步骤可参见卫生部提出的《消毒与灭菌效果的评价方法与标准》。 三、兽用消毒药的应用现状 当前我国生产、经营和使用最广泛的兽用消毒药品主要为复合酚类、碘类、季胺盐类和氯制剂四大类。当前养殖单位广泛应用的效果确实的消毒药主要有: 安灭杀 先灵葆雅公司生产,主要成分为15%的戊二醛和10%的COCO季胺盐; 拜净 拜耳动保生产,主要成分为十二烷氧化胺三碘氧化合物; 百胜-30/15 辉瑞动保生产,主要包含碘、磷酸、硫酸等成分; 农福 杜邦化工生产,主要成分为高效复合酚。 兽用消毒药在实际应用中仍存在很多问题,如,忽略清除畜禽舍内的粪便、饲料残渣、体表脱落物等有机物;认为饮水消毒剂对畜禽无害而随意加大浓度,造成损失;认为使用温开水做溶剂能增加所有消毒剂的消毒效果;不能做到交叉应用多种类型消毒剂,造成耐药性的产生;认为消毒剂气味越浓越好,造成畜禽黏膜损伤,影响效益。 四、展望 随着经济贸易的全球化,动物疾病流行也呈现全球化,一些新的疾病的流行给畜禽养殖业造成了巨大损失。由于新型传染病疫苗的研究需要较长周期,因此预防控制新型传染病只能通过加强饲养管理和注重消毒等预防措施来实现。这种形势下,研究一种或多种新型、高效、广谱、安全的消毒药显得十分必要。 理想的兽用消毒药应具有高效、广谱、作用迅速、活性长效、性质稳定、便于储运、抗有机物干扰、高度的安全性、成本适中等几个特点。新型高效复合型消毒剂以及兽用消毒剂专用表面活性剂将成为未来研究的趋势,在此基础上,宠物手术(器械)专用消毒剂、奶牛乳头专用消毒剂、种蛋专用消毒剂、SPF动物屏障设施专用消毒剂、生物安全实验室专用消毒剂、疫苗灭活专用消毒剂等更加细化的专业实用型消毒剂的研究也会逐渐受到人们的关注。 延伸阅读 兽用消毒药监管过程中存在的问题 消毒药品名称繁杂 我国专业和兼产兽用消毒药品的厂家较多,兽药市场销售的消毒剂品种更是繁多。除国产制品外,还有部分进口药品。动物消毒药品品种多而杂,同一个功能的消毒药品,有几十个甚至上百个不同批准文号的产品,给用户在使用消毒药品的选择上造成了一定困难。 生产厂家刻意夸大消毒效果 部分厂家为了迎合消费者消费心理、促进产品销量,刻意的在产品外包装说明中夸大产品的消毒效果,以点盖面,使用绝对化语言,甚至将自己的产品说成“万能药”。 产品质量良莠不齐 由于相关监管体制的不完善,部分经营者利用监管机构的疏忽大意,使大量的劣质消毒药流入兽药市场,既破坏了原有的市场秩序,又给相关养殖单位造成了巨大的经济损失。同时劣质消毒药生产者还利用兽药销售吃回扣的不良心理进入市场,这些受利益驱动的消毒药价格回扣现象,给消毒药品的管理带来消极影响。 缺乏相关药品的科学研究 兽用消毒药的研究涉及消毒学、兽医流行病学、环境卫生学和兽医微生物学等相关方面的知识,研究起来费时费力。同时一个消毒药的问世要经过实验室研究、中试放大和临床等几个步骤,转化为产品的周期较长。目前应用的许多消毒药都是公共卫生部门、防检疫部门研究的,缺乏专门针对兽用消毒药的试验研究。

TbCl3-CdCl2-HCl-H2O()的相平衡 学 生: 指导老师: 年级: 专业: 班级:摘 要 测定了四元体系TbCl3-CdCl2-HCl-H2O()的相平衡溶度数据,绘制了相应的溶度图。该四元体系是复杂体系且有1个新物相化合物4CdCl2· TbCl3·14H2O生成。关键词 四元体系,相平衡,TbCl3 ,CdCl2 一 前 言稀土卤化物与稀碱卤化物所形成的化合物具有特殊的光学性质。文献[1-3]研究了稀土卤化物与稀碱金属卤化物在盐酸介质中的相平衡关系,且发现新化合物CsEuCl8·14H2O、Cs2EuCl5·4H2O、3CsCl·CeCl3·3H2O、CsCl·CeCl3·4H2O具有上转换发光性能。文献[4-6]分别研究了DyCl3-CdCl2- H2O和DyCl3-CdCl2-HCl-H2O()的相平衡,YCl3-CdCl2-H2O和YCl3-CdCl2 -HCl-H2O()的相平衡,在时CeCl3-CdCl2-H2O和CeCl3- CdCl2-HCl-H2O的相平衡,均发现了新的化合物,并且也具有上转换发光性能和较强的荧光性能。为比较过渡元素/稀土氯化物与稀碱金属/稀土氯化物盐水体系中相关系间的差异,丰富盐水相化学,和为合成新的化合物寻找可能的途径,本文在前述研究的基础上研究了在时四元体系TbCl3-CdCl2-HCl-H2O的相平衡关系,发现了1个未见文献报道新物相化合物。 二 实验部分1、试剂及仪器配制TbCl3·6H2O试剂:(1)称取适量Tb2O3固体,放在小烧杯中,加少量水。(2)量取适量浓度为35%的盐酸溶液,缓慢加入到盛有Tb2O3试剂的小烧杯中,搅拌。(3)加热至溶解成无色透明的液体,将其自然冷却。(4)过滤。将滤液加热至产生结晶膜后,自然冷却。(5)抽滤,晶体放入干燥器中自然干燥[1]。化学反应方程式: Tb2O3+6HCl=2TbCl3+3H2O。CdCl2、EDTA、AgNO3、六次甲基四胺、甲基红、二氯荧光黄、二甲酚橙、邻二氮菲均为分析纯试剂。使用蒸馏水。使用仪器:恒温搅拌装置(自制)。2、实验及分析方法设定一系列递变点,按四元体系斜截面布点配样,密封于塑料管中,在的恒温条件下进行搅拌。五天后调整试样的酸度,调节酸度,使各试样酸度一致。将调节过酸度的各试样封闭,继续恒温搅拌。待平衡后,取样,分析液体与湿渣组成。分析方法如下:以甲基红为指示剂,用标准氢氧化钠溶液滴定试样中盐酸的含量;用邻二氮菲掩蔽Cd2+后,以二甲酚橙为指示剂,六次甲基四胺为缓冲溶液,用标准EDTA溶液滴定试样中的三氯化铽的含量;以二氯荧光黄为指示剂,加稍过量碳酸钙固体中和盐酸,加糊精,用标准硝酸银溶液滴定氯离子;用差减法可求得试样中二氯化镉的含量。 三 结果与讨论1、四元体系TbCl3-CdCl2-HCl-H2O的溶度图表1为四元体系TbCl3-CdCl2-HCl-H2O在时的溶度数据及其在底面三角形TbCl3-CdCl2-H2O上的投影数据。图1为相应的溶度图。 由图一知,该体系的溶度曲线由三段构成,分别对应化合物CdCl2·H2O、4CdCl2·TbCl3·14H2O(4:1型)和TbCl3·6H2O。其中4:1 型化合物是固液同成分溶解的化合物,可从体系中直接得到,是未见文献报道表1 四元体系TbCl3-CdCl2-HCl-H2O在时的溶度数据及其在底面三角形TbCl3-CdCl2-H2O上的投影数据液相(%) 湿固相(%)四面体 三角形 四面体 三角形序号 HCl CdCl2 TbCl3 CdCl2 TbCl3 HCl CdCl2 TbCl3 CdCl2 TbCl3 平衡固相平均酸度 = 0 0 --- --- --- --- --- A 2 A 3 A 4 A+B 5 B 6 B 7 B 8 B 9 B 10 B 11 B 12 B+C 13 B+C 14 B+C 15 C 16 C 17 C 18 C 19 C 20 0 0 --- --- --- --- --- C 双饱点组成(平均值):E1: , ; E2: , ·H2O ; B: 4CdCl2·TbCl3·14H2O; C:TbCl3·6H2O图1 四元体系TbCl3-CdCl2-HCl-H2O在三角底面TbCl3-CdCl2-H2O的溶度图的新物相化合物。2、四元体系RECl3-CdCl2-HCl-H2O(RE=La、Ce、Nd、Dy、Tb)间的比较轻稀土元素之间或重稀土元素之间,其相化学行为具有相似性及相异性。如轻稀土元素均有4:1型化合物和9:1型化合物。而重稀土元素有9:2型化合物。本文研究的铽属中稀土元素,其新化合物的类型却为4:1型,说明中稀土元素与轻稀土相比,具有相似性也具有相异性,而与重稀土元素具有相异性。这充分说明稀土元素具有“分组效应”。 四 结论研究了氯化铽与氯化镉在盐酸介质中相关系,绘制了相应的溶度图,在体系中发现和得到了新化合物4CdCl2·TbCl3·14H2O。本文的研究结果为合成新化合物提供了相关系依据。参考文献[1]Wang Hui,DUAN Jin-Xia,TAN Xin-Quan,Study on phase diagram of (cesium chloride+europium trichloride+hydrogen chloride+ water)quaternary system at T= and the fluorescence spectra of its compounds. J. , 2002,34,1495~1506[2]Wang Hui,DUAN Jin-Xia,TAN Xin-Quan,Study on phase diagram of (CsCl-CeCl3-HCl-H2O system and the propertier of the Journal of Chemistry,2002,20(9):904-908[3]Wang Hui,DUAN Jin-Xia,TAN Xin-Quan,Phase equilibrium system of CsCl-YCl3-HCl-H2O at T= and its Journal of chemistry,2004,22(10):1128-1132[4]乔占平,卓立宏,王惠.三元体系YCl3-CdCl2-H2O和四元体系YCl3-CdCl2-HCl-H2O()的相平衡及其固相新化合物的研究[J].无机化学学报,2004,20(8):929-932[5] 乔占平,卓立宏,王惠.四元体系LaCl3-ZnCl2-HCl(7%)-H2O()和三元体系ZnCl2-HCl-H2O()相平衡的研究[J].无机化学学报,2003,19(3):303-306[6] 卓立宏,乔占平,郭应臣,王惠. CeCl3-CdCl2-H2O和CeCl3-CdCl2-HCl-H2O的相平衡.物理化学学报,2005,21(2):128-131Phase Equilibrium of the System TbCl3-CdCl2-HCl-H2O at : The equilibrium solubilities of the quaternary system TbCl3-CdCl2-HCl-H2O was determined at and the corresponding equilibrium diagram was systems is complicated with one new compounds 4CdCl2· TbCl3·14H2O. Keywords: quanternary system, phase equilibrium, cadmium chloride, terbium chloride

1 环境中氯酚类化合物的来源

环境中氯酚类化合物的来源主要有人为源和自然源2 类。人为源主要是来自于炼油、炼焦、造纸、塑料加工等人类的生产活动向环境中排放的含有CPs 的有机化工废水。自然源主要包括2 类:① 由人类使用的一次化学物经过自然界的生物化学过程生成二次的CPs, 如农业生产过程中广泛使用的2,4- 二氯苯氧基乙酸和2,4,5- 三氯苯氧乙酸等杀虫剂通过自然界微生物的代谢作用降解生成CPs 等中间产物; ② 自然物质在某些催化作用下合成CPs, 如土壤腐殖泥层中的无机氯盐和有机化合物在过氧氯化酶的催化作用下会生成CPs,如4-CP、2,5-DCP、2,4-DCP、2,6-DCP 和2,4,5-TCP等。

2 氯酚类化合物的环境污染水平

由于氯酚类化合物是一类用途广、毒性大的持久性有机污染物(Persistent Organic Pollutants,POPs), 所以, CPs 一旦未经处理或处理不当释放到环境中, 就会污染自然生态环境, 进而威胁人类安全。目前, 关于氯酚类化合物在水体环境、沉积物和土壤环境及水生生物体内大量存在并造成污染的情况已有大量报道。

水体环境

CPs 广泛分布在水体的表面, 其含量与废水排放源有关。降水及水的流动也很大程度上影响了各种CPs 浓度的变化。有研究报道, 加拿大的Superior湖中被排入纸浆厂废水后, 其中DCP 和TCP 的浓度会迅速上升到4 mg/L 和13 mg/L; 荷兰境内河流及沿海海域中TCP、一氯酚(Mono-CP) 和DCP的浓度分别达到 mg/L、320 mg/L 和 mg/L。Gao 等研究发现我国北方的黄河、淮河、海河等水体中2,4-DCP 和2,4,6-TCP 的浓度较高, 且北方受其污染比南方严重; 而长江流域受PCP 的污染较为严重, 在 的地表水样品中能够检出, 且平均浓度达到 ng/L。我国《城市供水水质标准(CJ/T 206-2005)》中将氯酚类化合物列为非常规检验项目, 要求氯酚类总量(含2-CP、2,4-DCP 和2,4,6-TCP) 检出浓度小于 mg/L, 2,4,6-TCP 的最低检测浓度小于 mg/L, PCP 的最低检测浓度小于 mg/L。

底泥沉积物和土壤环境

CPs 的辛醇/水分配系数(Kow) 较大, 且随着苯环上氯原子个数的增多而增大, 导致其亲脂性增强。所以, 水相中CPs 易转移到底泥沉积物及土壤环境中。因此, CPs 在河流底泥中积累的量要远大于水体中的量, 在底泥沉积物中的环境污染也较为严重。此外, 底泥中CPs的滞留时间和危害程度与CPs 苯环上的氯原子取代基个数成正比。加拿大British Columbi 地区海域内排入了大量含有CPs 的生产废水, 致使海底沉积物中的TCP 和四氯酚(Tetra-CP) 的累积总浓度达96 mg/k。韩国核电站附近海域底泥中CPs 的含量高达 g/kg (干重)。希腊Thermaikos 海湾和Loudia 河沉积物中均检出了2,4-DCP。波兰Dzierzno Duze 水库沉积物中2,4-DCP 的浓度接近 g/kg, 2,4,6-TCP 的浓度为 g/kg。此外, 在我国长江中下游地区备受血吸虫病害威胁, 各省长期使用五氯酚钠防治血吸虫, 致使土壤和沉积物中积累了大量PCP。许士奋等检测了长江下游底泥沉积物中的CPs 含量, 发现PCP 浓度最高, 达到 g/kg, 占18种待测氯酚含量的 %, 明显高于其他氯酚在长江沉积物中的残留。此外, 张兵等测定洞庭湖区底泥沉积物中PCP 的含量也高达 mg/kg (干污泥)。有监测数据报道, 台湾高雄地区的土壤环境中2-CP 的含量为 mg/kg[22]。Apajalahti 等检测了利用CPs 防腐的木材加工厂周围的土壤样品, 结果表明样品中PCP 含量达1 g/kg。

水生生物体

污染物在生物体内的富集效果可用生物富集因子(Bioconcentration Factors, BCF) 来评价。水生植物一般需要1020 min 的时间来完全吸收CPs,对绝大多数植物来说, CPs 的吸收速率随着pH 的升高而减小, 随着温度的升高而增大。对于水生动物或微生物而言, 动物类型、化合物种类和富集条件等因素对水中或食物中CPs 的BCF 有一定影响。蛤砺对PCP 的BCF 为41  78, 河螺对2,4,6-TCP 的BCF 可达7403 020。鳟鱼、金鱼对水中2,4-DCP 的BCF 分别为10 和34, 而藻类对2,4-DCP的BCF 高达257。Kondo 等报道青鳉鱼对2,4-DCP 在其体内的BCF 因CPs 种类和浓度不同而有所差异, 例如: PCP 的累积能力较2,4- DCP 和2,4,6-TCP 更高; 当2,4-DCP 暴露浓度为 g/L和 g/L 时, 其对青鳉的BCF 值分别为340 和92; 当PCP 的暴露浓度为 g/L 和 g/L 时,其对青鳉的BCF 分别为4 900 和2 100。不同鱼类对2,4,6-TCP 的BCF 值也有所不同, 一般在250310之间浮动。王芳等对鲫鱼开展了毒性试验,其研究结果表明鲫鱼的胆、肝、肾和肌肉等器官和组织对CPs 都有明显的吸收, 其中以胆对CPs 的吸收能力最强, 其BCF 值高达2 0006 300。

3 氯酚类化合物的去除方法

目前, 处理CPs 污染物的方法主要集中在生物处理技术、物理化学法、化学还原法和化学氧化法等。

生物处理技术

CPs 的生物处理技术主要是微生物以CPs 为碳源和能源, 在新陈代谢过程中将CPs 分解去除,主要有好氧生物法、厌氧生物法、厌氧/好氧联合法等工艺。好氧法降解CPs 机理主要有2 种理论:① 氧化开环-脱氯机制:例如, 4-CP 在好氧菌Pseudomonassp. 的单氧化酶的催化作用下, 发生邻位氧化作用生成4-氯-儿茶酚, 然后4-氯-儿茶酚在1,2-双加氧酶的催化诱导下邻位开环生成氯代顺顺粘糖酸, 接着氯代顺顺粘糖酸通过内酯化作用脱去氯原子, 并被氧化成马来酰基乙酸, 进入三羧酸循环(Tricarboxylic Acid Cycle, TAC) , 最终被矿化成CO2 和H2O。② 氧化脱氯-开环机制:Flavobacterium sp. 和Rhodococcuschlorophenolicus 可在好氧条件下将CPs 苯环氧化生成氯代二酚, 接着逐步脱去氯取代基生成单氯二酚或对苯酚, 然后氧化开环, 进一步被矿化成CO2和H2O, PCP 被好氧菌Flavobacterium sp。此外, 好氧微生物在有氧条件下可成功处理含CPs 浓度达 g/L 的工业废水。

微生物降解PCP 的反应机理主要是厌氧微生物在无氧条件下, 发生还原脱氯及厌氧发酵, 其主要厌氧降解的途径包括前端还原脱氯、后续厌氧发酵,即PCP 在厌氧条件下还原脱氯生成低氯酚和苯酚。然后, 苯酚在被产乙酸菌的作用下转化为乙酸, 乙酸在产甲烷菌的作用下最终转化成甲烷与CO2 。周岳溪等利用升流式厌氧污泥床反应器(UASB)在中温条件下处理PCP 废水发现, PCP 在厌氧条件下经间位脱氯生成2,3,4,6-Tetra-CP, 接着间位脱氯生成2,4,6-TCP, 继续邻位脱氯生成2,4-DCP, 接着对位脱氯生成2-Mono-CP, 最后矿化生成CH4 和CO2。Armenante 等研究了厌氧/好氧组合工艺处理2,4,6-TCP 废水, 结果指出: 在厌氧阶段,

氧微生物作用下, 以甲酸、乙酸和琥珀酸为电子供体, 使2,4,6-TCP 还原脱氯生成2,4-DCP 和4-CP; 在好氧阶段, 好氧微生物在有氧条件下将脱氯产物2,4-DCP 和4-CP 完全降解。Arora 等分别研究了CPs 在好氧和厌氧条件下的降解机理, 指出: 在好氧条件下, CPS 在细菌作用下形成对应的氯邻苯酚或(氯) 对苯二酚, 进而进入三酸羧酸循环; 在厌氧条件下, CPs 通过还原脱氯作用形成苯酚, 进一步转化为苯甲酸, 最终矿化为CO2。

物理化学法

物理化学法用于CPs 的去除, 主要是基于吸附材料的吸附去除。Hameed 等制备了椰壳活性炭用于去除2,4,6-TCP, 研究发现其吸附等温线符合Langmuir 模型, 在30 ±C 条件下最大单层吸附容量达到 mg/g。Ren 等通过磷酸活化香蒲纤维前体制备了具有比表面积大( m2/g) 和多种功能团(羟基、内酯、羧基等) 的活性炭吸附材料,可有效去除水中2,4-DCP 和2,4,6-TCP。Nourmoradi等通过阳离子表面活性剂十六烷基三甲基溴化铵(HDTMA) 和十四烷基三甲基溴化铵(TTAB) 修饰蒙脱土(Mt) 用于水中4-CP 的吸附去除, 其研究表明HDTMA-Mt 和TTAB-Mt 的吸附容量分别为 mg/g 和 mg/g, 相比之下, HDTMA-Mt 更有利于水中4-CP 的去除。Mubarik 等利用甘蔗渣制备了具有较大比表面积的圆柱形多孔结构的生物炭材料用于2,4,6-TCP 的吸附去除, 结果表明, 在多种有机污染物共存条件下, 生物炭也可有效去除2,4,6-TCP, 且最大吸附容量为 mg/g。

化学还原法

化学还原法处理CPs 污染物, 主要基于零价金属体系的还原脱氯作用Morales 等利用Pd(0)/Mg(0) 双金属体系可以在常温常压条件下将异丙醇/水溶液中的4-CP,2,6-DCP、2,4,6-TCP 和PCP 完全脱氯, 尤其是化学性质极其稳定的PCP; 其研究结果表明, 利用 浓度为 g/L 的`20 目的Pd/Mg 双金属合金可在48 h 内将 mmol/L 的PCP 完全脱氯, 且产物中也仅检测到易进一步氧化降解的环己醇和环己酮。零价铁渗透氧化硅混合物对2,4,6-TCP、2,4-DCP、4-CP 等氯酚类化合物的还原脱氯效果与CPs苯环上氯取代基的个数成正比, 即脱氯效果随着氯取代基数目的增多而增强, 其产物鉴定与反应机理研究表明, 零价铁渗透氧化硅催化还原脱氯降解CPs, 主要是零价铁提供电子进攻C—Cl 键, 发生逐级脱氯, 最终生成苯酚。此外, Zhou 等对比研究了Pd/Fe 双金属纳米合金与Pt/Fe、Ni/Fe、Cu/Fe 和Co/Fe 等双金属纳米颗粒对4-CP、2,4-DCP 及2,4,6-TCP 等氯酚类化合物的还原脱氯效果, 结果表明, Pd/Fe 合金纳米颗粒的还原脱氯效果明显优于其他双金属体系, 且CPs 还原脱氯规律符合准一级动力学模型, 但是脱氯效果随苯环氯取代基个数的增多而降低, 即4-CP> 2,4-DCP >2,4,6-TCP。该研究与零价铁渗透氧化硅混合物还原降解CPs 脱氯效果相反。

4 总结与展望

目前, 关于CPs 污染物的降解和去除技术研究取得了显著的成果, 但是每种技术都有其自身的优势和缺陷。生物法的投资和运行成本相对较省, 但是需要特定种群驯化, 且处理周期相对较长; 此外,CPs 的毒性相对较大, 对微生物的生长代谢可能产生不良影响。物理化学吸附法用时短, 处理效果好,但吸附仅是发生了污染物的相转移过程, 没有从根本上消除污染物; 同时, 吸附后的固体吸附剂材料无论再生还是处理处置都会在一定程度上造成环境的二次污染; 再者, 常用吸附材料活性炭可有效吸附去除水中CPs, 但是吸附后活性炭的再生相对比较困难, 这将间接增加废水的处理成本。氯代物的毒性随着氯原子数目的增多而增强, 化学还原脱氯可实现CPs 的有效脱氯脱毒, 但是污染物无害化处理的终极目标是实现其矿化, 而化学还原脱氯只停留在脱氯的环节, 不能实现CPs 的开环和矿化。基于自由基反应的AOPs 具有氧化效率高、反应速率快、反应条件温和等优点, 在有机污染物降解尤其是CPs 污染物降解和去除方面得到了快速发展, 但这些常用的AOPs 都有一定局限性, 如O3 氧化技术需要现场制备氧化剂O3, 且产率较低, 这将进一步增加能耗, 间接增加运行成本; H2O2、过硫酸盐等氧化剂的投入也需要较高的成本, 且过硫酸盐经氧化还原过程转化为硫酸盐, 增加了体系的离子强度和盐度, 可能会对后续处理工艺产生不良影响; 钴、镍、银等金属离子催化剂, 为有毒重金属, 将其引入反应体系势必会增加环境风险或造成二次污染; 自由基反应降解CPs 过程中可能还会生成毒性更强的'多氯代二次污染物等。因此, 需要研发绿色、高效、廉价的单元处理技术或联合工艺实现氯酚类污染物的无害化处理。例如: 培育驯化耐高毒性、反应高效菌群; 研发可再生吸附剂; 将化学还原脱氯与高级氧化技术耦合, 形成分段式高级还原-氧化技术, 分步实现还原脱氯和氧化矿化, 避免多氯代二次污染的产生; 耦合生物还原脱氯与高级氧化技术, 实现CPs污染物的高效化、无害化处理。

研究氯化物性质论文题目

1 环境中氯酚类化合物的来源

环境中氯酚类化合物的来源主要有人为源和自然源2 类。人为源主要是来自于炼油、炼焦、造纸、塑料加工等人类的生产活动向环境中排放的含有CPs 的有机化工废水。自然源主要包括2 类:① 由人类使用的一次化学物经过自然界的生物化学过程生成二次的CPs, 如农业生产过程中广泛使用的2,4- 二氯苯氧基乙酸和2,4,5- 三氯苯氧乙酸等杀虫剂通过自然界微生物的代谢作用降解生成CPs 等中间产物; ② 自然物质在某些催化作用下合成CPs, 如土壤腐殖泥层中的无机氯盐和有机化合物在过氧氯化酶的催化作用下会生成CPs,如4-CP、2,5-DCP、2,4-DCP、2,6-DCP 和2,4,5-TCP等。

2 氯酚类化合物的环境污染水平

由于氯酚类化合物是一类用途广、毒性大的持久性有机污染物(Persistent Organic Pollutants,POPs), 所以, CPs 一旦未经处理或处理不当释放到环境中, 就会污染自然生态环境, 进而威胁人类安全。目前, 关于氯酚类化合物在水体环境、沉积物和土壤环境及水生生物体内大量存在并造成污染的情况已有大量报道。

水体环境

CPs 广泛分布在水体的表面, 其含量与废水排放源有关。降水及水的流动也很大程度上影响了各种CPs 浓度的变化。有研究报道, 加拿大的Superior湖中被排入纸浆厂废水后, 其中DCP 和TCP 的浓度会迅速上升到4 mg/L 和13 mg/L; 荷兰境内河流及沿海海域中TCP、一氯酚(Mono-CP) 和DCP的浓度分别达到 mg/L、320 mg/L 和 mg/L。Gao 等研究发现我国北方的黄河、淮河、海河等水体中2,4-DCP 和2,4,6-TCP 的浓度较高, 且北方受其污染比南方严重; 而长江流域受PCP 的污染较为严重, 在 的地表水样品中能够检出, 且平均浓度达到 ng/L。我国《城市供水水质标准(CJ/T 206-2005)》中将氯酚类化合物列为非常规检验项目, 要求氯酚类总量(含2-CP、2,4-DCP 和2,4,6-TCP) 检出浓度小于 mg/L, 2,4,6-TCP 的最低检测浓度小于 mg/L, PCP 的最低检测浓度小于 mg/L。

底泥沉积物和土壤环境

CPs 的辛醇/水分配系数(Kow) 较大, 且随着苯环上氯原子个数的增多而增大, 导致其亲脂性增强。所以, 水相中CPs 易转移到底泥沉积物及土壤环境中。因此, CPs 在河流底泥中积累的量要远大于水体中的量, 在底泥沉积物中的环境污染也较为严重。此外, 底泥中CPs的滞留时间和危害程度与CPs 苯环上的氯原子取代基个数成正比。加拿大British Columbi 地区海域内排入了大量含有CPs 的生产废水, 致使海底沉积物中的TCP 和四氯酚(Tetra-CP) 的累积总浓度达96 mg/k。韩国核电站附近海域底泥中CPs 的含量高达 g/kg (干重)。希腊Thermaikos 海湾和Loudia 河沉积物中均检出了2,4-DCP。波兰Dzierzno Duze 水库沉积物中2,4-DCP 的浓度接近 g/kg, 2,4,6-TCP 的浓度为 g/kg。此外, 在我国长江中下游地区备受血吸虫病害威胁, 各省长期使用五氯酚钠防治血吸虫, 致使土壤和沉积物中积累了大量PCP。许士奋等检测了长江下游底泥沉积物中的CPs 含量, 发现PCP 浓度最高, 达到 g/kg, 占18种待测氯酚含量的 %, 明显高于其他氯酚在长江沉积物中的残留。此外, 张兵等测定洞庭湖区底泥沉积物中PCP 的含量也高达 mg/kg (干污泥)。有监测数据报道, 台湾高雄地区的土壤环境中2-CP 的含量为 mg/kg[22]。Apajalahti 等检测了利用CPs 防腐的木材加工厂周围的土壤样品, 结果表明样品中PCP 含量达1 g/kg。

水生生物体

污染物在生物体内的富集效果可用生物富集因子(Bioconcentration Factors, BCF) 来评价。水生植物一般需要1020 min 的时间来完全吸收CPs,对绝大多数植物来说, CPs 的吸收速率随着pH 的升高而减小, 随着温度的升高而增大。对于水生动物或微生物而言, 动物类型、化合物种类和富集条件等因素对水中或食物中CPs 的BCF 有一定影响。蛤砺对PCP 的BCF 为41  78, 河螺对2,4,6-TCP 的BCF 可达7403 020。鳟鱼、金鱼对水中2,4-DCP 的BCF 分别为10 和34, 而藻类对2,4-DCP的BCF 高达257。Kondo 等报道青鳉鱼对2,4-DCP 在其体内的BCF 因CPs 种类和浓度不同而有所差异, 例如: PCP 的累积能力较2,4- DCP 和2,4,6-TCP 更高; 当2,4-DCP 暴露浓度为 g/L和 g/L 时, 其对青鳉的BCF 值分别为340 和92; 当PCP 的暴露浓度为 g/L 和 g/L 时,其对青鳉的BCF 分别为4 900 和2 100。不同鱼类对2,4,6-TCP 的BCF 值也有所不同, 一般在250310之间浮动。王芳等对鲫鱼开展了毒性试验,其研究结果表明鲫鱼的胆、肝、肾和肌肉等器官和组织对CPs 都有明显的吸收, 其中以胆对CPs 的吸收能力最强, 其BCF 值高达2 0006 300。

3 氯酚类化合物的去除方法

目前, 处理CPs 污染物的方法主要集中在生物处理技术、物理化学法、化学还原法和化学氧化法等。

生物处理技术

CPs 的生物处理技术主要是微生物以CPs 为碳源和能源, 在新陈代谢过程中将CPs 分解去除,主要有好氧生物法、厌氧生物法、厌氧/好氧联合法等工艺。好氧法降解CPs 机理主要有2 种理论:① 氧化开环-脱氯机制:例如, 4-CP 在好氧菌Pseudomonassp. 的单氧化酶的催化作用下, 发生邻位氧化作用生成4-氯-儿茶酚, 然后4-氯-儿茶酚在1,2-双加氧酶的催化诱导下邻位开环生成氯代顺顺粘糖酸, 接着氯代顺顺粘糖酸通过内酯化作用脱去氯原子, 并被氧化成马来酰基乙酸, 进入三羧酸循环(Tricarboxylic Acid Cycle, TAC) , 最终被矿化成CO2 和H2O。② 氧化脱氯-开环机制:Flavobacterium sp. 和Rhodococcuschlorophenolicus 可在好氧条件下将CPs 苯环氧化生成氯代二酚, 接着逐步脱去氯取代基生成单氯二酚或对苯酚, 然后氧化开环, 进一步被矿化成CO2和H2O, PCP 被好氧菌Flavobacterium sp。此外, 好氧微生物在有氧条件下可成功处理含CPs 浓度达 g/L 的工业废水。

微生物降解PCP 的反应机理主要是厌氧微生物在无氧条件下, 发生还原脱氯及厌氧发酵, 其主要厌氧降解的途径包括前端还原脱氯、后续厌氧发酵,即PCP 在厌氧条件下还原脱氯生成低氯酚和苯酚。然后, 苯酚在被产乙酸菌的作用下转化为乙酸, 乙酸在产甲烷菌的作用下最终转化成甲烷与CO2 。周岳溪等利用升流式厌氧污泥床反应器(UASB)在中温条件下处理PCP 废水发现, PCP 在厌氧条件下经间位脱氯生成2,3,4,6-Tetra-CP, 接着间位脱氯生成2,4,6-TCP, 继续邻位脱氯生成2,4-DCP, 接着对位脱氯生成2-Mono-CP, 最后矿化生成CH4 和CO2。Armenante 等研究了厌氧/好氧组合工艺处理2,4,6-TCP 废水, 结果指出: 在厌氧阶段,

氧微生物作用下, 以甲酸、乙酸和琥珀酸为电子供体, 使2,4,6-TCP 还原脱氯生成2,4-DCP 和4-CP; 在好氧阶段, 好氧微生物在有氧条件下将脱氯产物2,4-DCP 和4-CP 完全降解。Arora 等分别研究了CPs 在好氧和厌氧条件下的降解机理, 指出: 在好氧条件下, CPS 在细菌作用下形成对应的氯邻苯酚或(氯) 对苯二酚, 进而进入三酸羧酸循环; 在厌氧条件下, CPs 通过还原脱氯作用形成苯酚, 进一步转化为苯甲酸, 最终矿化为CO2。

物理化学法

物理化学法用于CPs 的去除, 主要是基于吸附材料的吸附去除。Hameed 等制备了椰壳活性炭用于去除2,4,6-TCP, 研究发现其吸附等温线符合Langmuir 模型, 在30 ±C 条件下最大单层吸附容量达到 mg/g。Ren 等通过磷酸活化香蒲纤维前体制备了具有比表面积大( m2/g) 和多种功能团(羟基、内酯、羧基等) 的活性炭吸附材料,可有效去除水中2,4-DCP 和2,4,6-TCP。Nourmoradi等通过阳离子表面活性剂十六烷基三甲基溴化铵(HDTMA) 和十四烷基三甲基溴化铵(TTAB) 修饰蒙脱土(Mt) 用于水中4-CP 的吸附去除, 其研究表明HDTMA-Mt 和TTAB-Mt 的吸附容量分别为 mg/g 和 mg/g, 相比之下, HDTMA-Mt 更有利于水中4-CP 的去除。Mubarik 等利用甘蔗渣制备了具有较大比表面积的圆柱形多孔结构的生物炭材料用于2,4,6-TCP 的吸附去除, 结果表明, 在多种有机污染物共存条件下, 生物炭也可有效去除2,4,6-TCP, 且最大吸附容量为 mg/g。

化学还原法

化学还原法处理CPs 污染物, 主要基于零价金属体系的还原脱氯作用Morales 等利用Pd(0)/Mg(0) 双金属体系可以在常温常压条件下将异丙醇/水溶液中的4-CP,2,6-DCP、2,4,6-TCP 和PCP 完全脱氯, 尤其是化学性质极其稳定的PCP; 其研究结果表明, 利用 浓度为 g/L 的`20 目的Pd/Mg 双金属合金可在48 h 内将 mmol/L 的PCP 完全脱氯, 且产物中也仅检测到易进一步氧化降解的环己醇和环己酮。零价铁渗透氧化硅混合物对2,4,6-TCP、2,4-DCP、4-CP 等氯酚类化合物的还原脱氯效果与CPs苯环上氯取代基的个数成正比, 即脱氯效果随着氯取代基数目的增多而增强, 其产物鉴定与反应机理研究表明, 零价铁渗透氧化硅催化还原脱氯降解CPs, 主要是零价铁提供电子进攻C—Cl 键, 发生逐级脱氯, 最终生成苯酚。此外, Zhou 等对比研究了Pd/Fe 双金属纳米合金与Pt/Fe、Ni/Fe、Cu/Fe 和Co/Fe 等双金属纳米颗粒对4-CP、2,4-DCP 及2,4,6-TCP 等氯酚类化合物的还原脱氯效果, 结果表明, Pd/Fe 合金纳米颗粒的还原脱氯效果明显优于其他双金属体系, 且CPs 还原脱氯规律符合准一级动力学模型, 但是脱氯效果随苯环氯取代基个数的增多而降低, 即4-CP> 2,4-DCP >2,4,6-TCP。该研究与零价铁渗透氧化硅混合物还原降解CPs 脱氯效果相反。

4 总结与展望

目前, 关于CPs 污染物的降解和去除技术研究取得了显著的成果, 但是每种技术都有其自身的优势和缺陷。生物法的投资和运行成本相对较省, 但是需要特定种群驯化, 且处理周期相对较长; 此外,CPs 的毒性相对较大, 对微生物的生长代谢可能产生不良影响。物理化学吸附法用时短, 处理效果好,但吸附仅是发生了污染物的相转移过程, 没有从根本上消除污染物; 同时, 吸附后的固体吸附剂材料无论再生还是处理处置都会在一定程度上造成环境的二次污染; 再者, 常用吸附材料活性炭可有效吸附去除水中CPs, 但是吸附后活性炭的再生相对比较困难, 这将间接增加废水的处理成本。氯代物的毒性随着氯原子数目的增多而增强, 化学还原脱氯可实现CPs 的有效脱氯脱毒, 但是污染物无害化处理的终极目标是实现其矿化, 而化学还原脱氯只停留在脱氯的环节, 不能实现CPs 的开环和矿化。基于自由基反应的AOPs 具有氧化效率高、反应速率快、反应条件温和等优点, 在有机污染物降解尤其是CPs 污染物降解和去除方面得到了快速发展, 但这些常用的AOPs 都有一定局限性, 如O3 氧化技术需要现场制备氧化剂O3, 且产率较低, 这将进一步增加能耗, 间接增加运行成本; H2O2、过硫酸盐等氧化剂的投入也需要较高的成本, 且过硫酸盐经氧化还原过程转化为硫酸盐, 增加了体系的离子强度和盐度, 可能会对后续处理工艺产生不良影响; 钴、镍、银等金属离子催化剂, 为有毒重金属, 将其引入反应体系势必会增加环境风险或造成二次污染; 自由基反应降解CPs 过程中可能还会生成毒性更强的'多氯代二次污染物等。因此, 需要研发绿色、高效、廉价的单元处理技术或联合工艺实现氯酚类污染物的无害化处理。例如: 培育驯化耐高毒性、反应高效菌群; 研发可再生吸附剂; 将化学还原脱氯与高级氧化技术耦合, 形成分段式高级还原-氧化技术, 分步实现还原脱氯和氧化矿化, 避免多氯代二次污染的产生; 耦合生物还原脱氯与高级氧化技术, 实现CPs污染物的高效化、无害化处理。

ML28-1 杯芳烃化合物的合成及其在氟化反应中的相转移催化作用ML28-2 高效液相色谱分离硝基甲苯同分异构体ML28-3 甲烷部分氧化反应的密度泛函研究ML28-4 硝基吡啶衍生物的结构及其光化学的研究ML28-5 酰胺衍生的P,O配体参与的Suzuki偶联反应及其在有机合成中的应用ML28-6 磺酰亚胺的新型加成反应的研究ML28-7 纯水相Reformatsky反应的研究ML28-8 一个合成邻位氨基醇化合物的绿色新反应ML28-9 恶二唑类双偶氮化合物的合成与光电性能研究ML28-10 CO气相催化偶联制草酸二乙酯的宏观动力学研究ML28-11 三芳胺类空穴传输材料及其中间体的合成研究ML28-12 光敏磷脂探针的合成、表征和光化学性质研究ML28-13 脱氢丙氨酸衍生物的合成及其Michael加成反应研究ML28-14 5-(4-硝基苯基)-10,15,20-三苯基卟啉的亲核反应研究ML28-15 醇烯法合成异丙醚的研究ML28-16 手性螺硼酸酯催化的前手性亚胺的不对称硼烷还原反应研究ML28-17 甾类及相关化合物的结构与生物活性关系研究ML28-18 金属酞菁衍生物的合成与其非线性光学性能的研究ML28-19 新型手性氨基烷基酚的合成及其不对称诱导ML28-20 水滑石类化合物催化尿素醇解法合成有机碳酸酯研究ML28-21 膜催化氧化正丁烷制顺酐ML28-22 甲醇选择性催化氧化制早酸甲酯催化剂的研制与反应机理研究ML28-23 甲酸甲酯水解制甲酸及其动力学的研究ML28-24 催化甲苯与甲醇侧链烷基化反应制取苯乙烯和乙苯的研究ML28-25 烯胺与芳基重氮乙酸酯的新反应研究 ML28-26 核酸、蛋白质相互作用研究及毛细管电泳电化学发光的应用ML28-27 H-磷酸酯在合成苄基膦酸和肽衍生物中的应用ML28-28 微波辐射下三价锰离子促进的2-取代苯并噻唑的合成研究ML28-29 铜酞菁—苝二酰亚胺分子体系的光电转换特性研究ML28-30 新型膦配体的合成及烯烃氢甲酰化反应研究ML28-31 肼与羰基化合物的反应及其机理研究ML28-32 离子液体条件下杂环化合物的合成研究ML28-33 超声波辐射、离子液体以及无溶剂合成技术在有机化学反应中的应用研究ML28-34 有机含氮小分子催化剂的设计、合成及在不对称反应中的应用ML28-35 金属参与的不对称有机化学反应研究ML28-36 黄酮及噻唑类衍生物的合成研究ML28-37 钐试剂产生卡宾的新方法及其在有机合成中的应用ML28-38 琥珀酸酯类内给电子体化合物的合成与性能研究ML28-39 3-甲基-4-芳基-5-(2-吡啶基)-1,2,4-三唑铜(II)配合物的合成、晶体结构及表征ML28-40 直接法合成二甲基二氯硅烷的实验研究ML28-41 中性条件下傅氏烷基化反应的初步探索IIβ-溴代醚新合成方法的初步探索ML28-42 几种氧化苦参jian类似物的合成ML28-43 环丙烷和环丙烯类化合物的合成研究ML28-44 基于甜菜碱的超分子设计与研究ML28-45 新型C2轴对称缩醛化合物合成研究ML28-46 环状酰亚胺光化学性质研究及消毒剂溴氯甘脲的制备ML28-47 蛋白质吸附的分子动力学模拟ML28-48 富硫功能化合物的分子设计与合成ML28-49 ABEEM-σπ模型在Diels-Alder反应中的应用ML28-50 快速确定丙氨酸-α-多肽构象稳定性的新方法ML28-51 SmI2催化合成含氮杂环化合物的研究及负载化稀土催化剂的探索ML28-52 新型金属卟啉化合物的合成及用作NO供体研究ML28-53 磁性微球载体的合成及其对酶的固定化研究ML28-54 甾体—核苷缀合物的合成及其性质研究ML28-55 非键作用和库仑模型预测甘氨酸-α-多肽构象稳定性ML28-56 多酸基有机-无机杂化材料的合成和结构表征ML28-57 5-芳基-2-呋喃甲醛-N-芳氧乙酰腙类化合物的合成、表征及生物活性研究ML28-58 氟喹诺酮类化合物的合成、表征及其生物活性研究ML28-59 手性有机小分子催化剂催化的Baylis-Hillman反应和直接不对称Aldol反应ML28-60 多核铁配合物通过水解途径识别蛋白质a螺旋ML28-61 一种简洁地获取结构参数的方法及应用ML28-62 水杨酸甲酯与硝酸钇的反应性研究及其应用ML28-63 脯氨酸及其衍生物催化丙酮与醛的不对称直接羟醛缩合反应的量子化学研究ML28-64 新型荧光分子材料的合成及其发光性能研究ML28-65 枸橼酸西地那非中间体1-甲基-3-丙基-4-硝基吡唑-5-羧酸的合成研究ML28-66 具有生物活性的含硅混合二烃基锡化合物的研究ML28-67 直接法合成三乙氧基硅烷的研究ML28-68 具有生物活性的含硅混合三烃基锡化合物的研究ML28-69 过氧钒有机配合物的合成及其对水中有机污染物氧化降解的催化性能研究ML28-70 查耳酮化合物的合成与晶体化学研究ML28-71 二唑衍生物的合成研究ML28-72 2-噻吩甲酸-2,2’-联吡啶二元、三元稀土配合物的合成、表征及光致发光ML28-73 3’,5’-二硫代脱氧核苷的合成及其聚合性质的研究ML28-74 β-烷硫基丁醇和丁硫醇类化合物及其衍生物的合成研究ML28-75 新型功能性单体丙烯酰氧乙基三甲基氯化铵合成与研究ML28-76 5-取代吲哚衍生物结构和性能的量子化学研究ML28-77 新型水溶性手性胺膦配体的合成和在芳香酮不对称转移氢化中的应用ML28-78 大豆分离蛋白的接枝改性及其溶液行为研究ML28-79 N-(4-乙烯基苄基)-1-氮杂苯并-34-冠-11的合成和其自由基聚合反应的研究ML28-80 稀土固体超强酸催化合成酰基二茂铁ML28-81 硒(硫)杂环化合物与金属离子的合成与表征ML28-82 新型二阶非线性光学发色团分子的设计、合成与性能研究ML28-83 对△~4-烯-3-酮结构的甾体选择性脱氢生成△~(4,6)-二烯-3-酮结构的研究ML28-84 对苯基苯甲酸稀土二元、三元配合物的合成、表征及荧光性能研究ML28-85 D-π-A共轭结构有机分子的设计合成及理论研究ML28-86 羧酸酯一步法嵌入式烷氧基化反应研究ML28-87 分子内电荷转移化合物溶液及超微粒分散体系的光学性质研究ML28-88 手性氨基烷基酚的合成ML28-89 酪氨酸酶的模拟及酚的选择性邻羟化反应研究ML28-90 单分子膜自组装结构与性质的研究ML28-91 氯苯三价阳离子离解势能面的理论研究ML28-92 香豆素类化合物的合成与晶体化学研究ML28-93 离子液体的合成及离子液体中的不对称直接羟醛缩合反应研究ML28-94 五元含氮杂环化合物的合成研究ML28-95 ONOO~-对胰岛素的硝化和一些因素对硝化影响的体外研究ML28-96 酶解多肽一级序列分析与反应过程建模及结构变化初探ML28-97 一系列二茂铁二取代物的合成和表征ML28-98 N2O4-N2O5-HNO3分析和相平衡及硝化环氧丙烷研究ML28-99 光催化甲烷和二氧化碳直接合成乙酸的研究ML28-100 N-取代-4-哌啶酮衍生物的合成研究ML28-101 电子自旋标记方法对天青蛋白特征分析ML28-102 材料中蛋白质含量测定及蛋白质模体分析ML28-103 具有不同取代基的偶氮芳烃化合物的合成及其性能研究ML28-104 非光气法合成六亚甲基二异氰酸酯(HDI)ML28-105 邻苯二甲酸的溶解度测定及其神经网络模拟ML28-106 甲壳多糖衍生物的合成及其应用研究ML28-107 吲哚类化合物色谱容量因子构致关系ab initio方法研究ML28-108 全氯代富勒烯碎片的亲核取代反应初探ML28-109 自催化重组藻胆蛋白结构与功能的关系ML28-110 二茂铁衍生的硫膦配体的合成及在喹啉不对称氢化中的应用ML28-111 离子交换电色谱纯化蛋白质的研究ML28-112 氨基酸五配位磷化合物的合成、反应机理及其性质研究ML28-113 手性二茂铁配体的合成及其在碳—碳键形成反应中的应用研究ML28-114 水溶性氨基卟啉和磺酸卟啉的合成研究ML28-115 金属卟啉催化空气氧化对二甲苯制备对甲基苯甲酸和对苯二甲酸ML28-116 简单金属卟啉催化空气氧化环己烷和环己酮制备己二酸的选择性研究ML28-117 四苯基卟啉锌掺杂8-羟基喹啉铝与四苯基联苯二胺的电致发光性能研究ML28-118 可降解聚乳酸/羟基磷灰石有机无机杂化材料的制备及性能研究ML28-119 大豆分离蛋白接枝改性及应用研究ML28-120 谷氨酸和丙氨酸在Al2O3上的吸附和热缩合机理的研究ML28-121 常压非热平衡等离子体用于甲烷转化的研究ML28-122 纳米管/纳米粒子杂化海藻酸凝胶固定化醇脱氢酶ML28-123 蛋白质在晶体界面上吸附的分子动力学模拟ML28-124 微乳条件下氨肟化反应的探索性研究ML28-125 微波辅助串联Wittig和Diels-Alder反应的研究ML28-126 谷氨酸和丙氨酸在Al2O3上的吸附和热缩合机理的研究ML28-127 3-乙基-4-苯基-5-(2-吡啶基)-1,2,4-三唑配合物的合成、晶体结构及表征ML28-128 水相中‘一锅法’Wittig反应的研究和手性P,O-配体的合成及其在不对称烯丙基烷基化反应中的应用ML28-129 具有生物活性的1,2,4-恶二唑类衍生物的合成研究ML28-130 树枝状分子复合二氧化硅载体的合成及其脂肪酶的固定化研究ML28-131 PhSeCF2TMS的合成及转化ML28-132 离子液体中脂肪酶催化(±)-薄荷醇拆分的研究ML28-133 脂肪胺取代蒽醌衍生物及其前体化合物合成ML28-134 萘酰亚胺类一氧化氮荧光探针的设计、合成及光谱研究ML28-135 微波条件下哌啶催化合成取代的2-氨基-2-苯并吡喃的研究ML28-136 镍催化的有机硼酸与α,β-不饱和羰基化合物的共轭加成反应研究ML28-137 茚满二酮类光致变色化合物的制备与表征ML28-138 新型手性螺环缩醛(酮)化合物的合成ML28-139 芳醛的合成及凝胶因子的设计及合成ML28-140 固定化酶柱与固定化菌体柱耦联—高效拆分乙酰-DL-蛋氨酸ML28-141 苯酚和草酸二甲酯酯交换反应产品的减压歧化反应研究ML28-142 有机物临界性质的定量构性研究ML28-143 3-噻吩丙二酸的合成及卤代芳烃亲核取代反应ML28-144 α,β-二芳基丙烯腈类发光材料的合成及发光性质的研究ML28-145 L-乳醛参与的Wittig及Wittig-Horner反应立体选择性的研究ML28-146 亚砜为催化剂和酰亚胺氯为氯化剂的醇的氯代反应的初步研究ML28-147 功能性离子液的合成及在有机反应中的应用ML28-148 DMSO催化三聚氯氰转化苄醇为苄氯的新反应的初步研究ML28-149 气相色谱研究β-二酮酯化合物的互变异构ML28-150 二元烃的混合物过热极限的测定与研究ML28-151 芳杂环取代咪唑化合物的合成及洛汾碱类过氧化物化学发光性能测定ML28-152 卤代苯基取代的咪唑衍生物的合成及其荧光性能的研究ML28-153 取代并四苯衍生物的合成及其应用ML28-154 苯乙炔基取代的杂环及稠环化合物的合成ML28-155 吸收光谱在有机发光材料研发材料中的应用ML28-156 水相中‘一锅法’Wittig反应的研究和手性P,O-配体的合成及其在不对称烯丙基烷基化反应中的应用ML28-157 苯并噻吩-3-甲醛的合成研究ML28-158 微波辅助串联Wittig和Diels-Alder反应的研究ML28-159 超声辐射下过渡金属参与的药物合成反应研究ML28-160 呋喃酮关键中间体—3,4-二羟基-2,5-己二酮的合成研究ML28-161 树枝状分子复合二氧化硅载体的合成及其脂肪酶的固定化研究ML28-162 吡咯双希夫碱及其配合物的制备与表征ML28-163 负载型Lewis酸催化剂的制备及催化合成2,6-二甲基萘的研究ML28-164 PhSeCF2TMS的合成及转化ML28-165 纳米管/纳米粒子杂化海藻酸凝胶固定化醇脱氢酶ML28-166 多取代β-CD衍生物的合成及其对苯环类客体分子识别ML28-167 多取代_CD衍生物的合成及其对苯环类客体分子识别ML28-168 柿子皮中类胡萝卜素化合物的分离鉴定及稳定性研究ML28-169 毛细管电泳研究致癌物3-氯-1,2-丙二醇ML28-170 超临界水氧化苯酚体系的分子动力学模拟ML28-171 甲烷和丙烷无氧芳构化反应研究ML28-172 2-取代咪唑配合物的合成、晶体结构及表征ML28-173 气相色谱研究β-二酮酯化合物的互变异构ML28-174 DMSO催化三聚氯氰转化苄醇为苄氯的新反应的初步研究ML28-175 二元烃的混合物过热极限的测定与研究ML28-176 氨基酸在多羟基化合物溶液中的热力学研究ML28-177 分子印迹膜分离水溶液中苯丙氨酸异构体研究ML28-178 杯[4]芳烃酯的合成及中性条件下对醇的酯化反应研究ML28-179 亚砜为催化剂和酰亚胺氯为氯化剂的醇的氯代反应的初步研究ML28-180 双氨基甲酸酯化合物的合成及分子自组装研究ML28-181 由芳基甲基酮合成对应的半缩水合物的新方法ML28-182 取代芳烃的选择性卤代反应研究ML28-183 吡啶脲基化合物的合成、分子识别及配位化学研究ML28-184 丙烯(氨)氧化原位漫反射红外光谱研究ML28-185 嘧啶苄胺二苯醚类先导结构的发现和氢化铝锂驱动下邻位嘧啶参与的苯甲酰胺还原重排反应的机理研究ML28-186 酰化酶催化的Markovnikov加成与氮杂环衍生物的合成ML28-187 多组分反应合成嗪及噻嗪类化合物的研究ML28-188 脂肪酶构象刻录及催化能力考察ML28-189 L-乳醛参与的Wittig及Wittig-Horner反应立体选择性的研究ML28-190 烯基铟化合物与高碘盐偶联反应的研究及其在有机合成中的应用ML28-191 α,β-二芳基丙烯腈类发光材料的合成及发光性质的研究ML28-192 邻甲苯胺的电子转移机理及组分协同效应研究ML28-193 负载型非晶态Ni-B及Ni-B-Mo合金催化剂催化糠醛液相加氢制糠醇的研究ML28-194 含吡啶环套索冠醚及配合物的合成与性能研究ML28-195 芳烃侧链分子氧选择性氧化反应研究ML28-196 多组分复合氧化物对异丁烯制甲基丙烯醛氧化反应的催化性能研究ML28-197 多孔甲酸盐[M3(HCOO)6]及其客体包合物的合成、结构和性质ML28-198 纳米修饰电极的制备及其应用于蛋白质电化学的研究ML28-199 对于几种蛋白质模型分子的焓相互作用的研究ML28-200 氨基酸、酰胺、多羟基醇化合物相互作用的热力学研究......

研究物质性质的论文

材料学是学生接触材料领域、定位未来方向的入门课程,学习和掌握该课程内容意义至关重要。下文是我为大家整理的材料学方面论文的 范文 ,欢迎大家阅读参考!

浅析高分子材料成型加工技术

摘要:近些年来,国防尖端工业和航空工业等特殊领域的发展对高分子材料成型的加工技术要求更高,更精细。在此背景下,理清高分子材料加工技术的发展现状与发展趋势,探讨高分子材料的加工成型的 方法 ,对促进我国高新技术及产业的发展具有重要的意义。

关键词:高分子材料加工方法成型技术

一、前言

近些年来,国防尖端工业和航空工业等特殊领域的发展要求更高性能的聚合物材料,开发研制满足特定要求的高聚合物迫在眉睫[1]。在此背景下,理清高分子材料加工技术的发展现状与发展趋势,探讨高分子材料的加工成型的方法,对促进我国高新技术及产业的发展具有重要的意义。

二、高分子材料成型成型加工技术的相关定义

1.高分子材料

高分子材料是指由相对分子质量较高的化合物为基础构成的材料,其一般基本成分是聚合物或以含有聚合物的性质为主要性能特征的材料;主要是橡胶、塑料、纤维、涂料、胶黏剂和高分子基复合材料。高分子材料独特的结构和易改性与易加工特点,使它具有其他材料不可取代与不可比拟的优异性能,从而广泛运用到科学技术、国防建设和国民经济等领域,并已成为现代社会生活中衣食住行用等各方面不可缺少的材料。

2.高分子材料成型加工技术

在高分子工业的生产中分为高分子材料的制备与加工成型两个过程。高分子材料的成型加工技术就是运用各种加工方法对高分子材料赋予形状,使其成为具有使用价值的各种制品。高分子材料加工主要目的是高性能、高生产率、快捷交货和低成本;向小尺寸、轻质与薄壁方向发展是高分子材料成型技术制品方面的目标;成型加工方向是全回收、零排放、低能耗,从大规模向较短研发周期的多品种转变。判断高分子材料的成型加工技术的质量因素是加工后制品的外观性、尺寸精度、技能性中的耐化学性、耐热性等等。

三、高分子材料成型加工技术的方法

高分子材料的的成型方法有挤出成型、吹塑成型、注塑成型、压延成型、激光成型等。以下介绍的是现今高分子材料成型加工的主要技术方法。

1.挤出成型技术

挤出成型技术是指物料通过挤出机料筒和螺杆间的作用,边受热塑化,边被螺杆向前推送,连续通过机头而制成各种截面制品或半制品的一种加工方法。它的具体原理是高分子原材料自料斗进入料筒,在螺杆旋转作用下,通过料筒内壁和螺杆表面摩擦剪切作用向前输送到加料段,在此松散固体向前输送同时被压实;在压缩段,螺槽深度变浅,进一步压实,同时在料筒外加热和螺杆与料筒内壁摩擦剪切作用,料温升高开始熔融,压缩段结束;均化段使物料均匀,定温、定量、定压挤出熔体,到机头后成型,经定型得到制品。挤出成型又有共挤出技术、挤出注射组合技术、成型技术、反应挤出工艺与固态挤出工艺等。

2.注塑成型技术

注射成型技术是目前塑料加工中最普遍的采用的方法之一,可用来生产空间几何形状非常复杂的塑料制件[2]。注射成型技术根据组合材料的特征,又有以组合惰性气体为特征的气体辅助注射成型,以组合组成化学反应过程为特征的反应注射成型,以组合混合混配为特征的直接注射成型,以组合不同材料为特征的夹心成型等多种方法。

3.吹塑成型技术

吹塑技术一种发展迅速的塑料加工方法。热塑性树脂经挤出或注射成型得到的管状塑料型坯,趁热或加热到软化状态,置于对开模中,闭模后立即在型坯内通入压缩空气,使塑料型坯吹胀而紧贴在模具内壁上,经冷却脱模,即得到各种中空制品。根据型坯制作方法,吹塑可分为挤出吹塑和注射吹塑,新发展起来的有拉伸吹塑和多层吹塑。

四、高分子材料成型加工技术的发展新趋势

目前,高分子加工成型技术正在快速地进步,它的发展总方向是高度集成化、高度产量、高度精密化,不断实现对加工制品材料的聚集态、组织形态与相形态等的控制,最大程度地达到制品高性能的目的。具体的创新技术之处主要体现在以下几项新技术上。

1.聚合物动态反应加工技术

聚合物动态反应加工技术及设备与传统技术无论是在反应加工原理还是设备的结构上都完全不同,该技术是将电磁场引起的机械振动场引入聚合物反应挤出全过程,达到控制化学反应过程、反应生成物的凝聚态结构和反应制品的物理化学性能的目的[3]。这项技术解决振动力场下聚合反应加工过程中质量、动量和能量传递与平衡的难点,从技术上解决了设备结构集化的问题。

2.热塑性弹性体动态全硫化制备技术

这项技术引入振动立场到混炼挤出的全过程,实现混炼过程中橡胶相动态全硫化,控制硫化反直的进程,防止共混加工过程共混物相态发生发转。此技术非常有意义,研制发明出新的热塑性弹性体动态硫化技术与设备,能有效地提高我国TPV技术的水平。

3.信息存储光盘盘基直接合成反应成型技术

此技术是将盘级PC树脂生产、中间储运与光盘盘基成型三个过程融合为一体,联系动态连续反应成型技术,研制开发精密光盘注射成型装备,达到有效提高产品质量、节约能源,降低消耗的目的。该技术避免了传统方式中间环节多、能耗大、周期时间长、成型前处理复杂、储运过程易受污染等缺陷。

五、结语

综上所述,我国在新时期要把握高分子成型加工技术的前沿,注重培育自主的知识产权,努力打破国外技术的垄断,实现科学技术研究与产业界的良好结合的目的。这能有效地将科学研究成果转化为实际的生产力,有效地加快我国高分子材料成型加工技术及其相关产业的快速发展。

参考文献

[1] 王云飞;孙伟.浅谈高分子材料成型加工技术[J].城市建设理论研究,2012,(11): 32.

[2] 甄延波.高分子材料成型加工技术的进展[J].化工中间体,2012,(09): 25.

[3]黄贵禹.浅析高分子材料成型加工技术[J].东方 企业 文化 ,2011,(16): 97.

浅析高分子材料成型

摘要:我国的高分子材料成型技术在工业上取得了飞速的发展,本文主要阐述了高分子材料成型的原理以及高分子材料成型的加工技术。

关键词:高分子材料;成型;技术

一、前言

高分子材料是指以高分子化合物为基体组分的材料。高分子材料按来源可分为天然高分子材料、合成高分子材料;按化学组成分类可分为有机高分子材料、无机高分子材料;按性能可分为通用高分子材料、新型高分子材料。高分子材料比传统材料发展迅速的主要原因是原料丰富、制造方便、加工容易、品种繁多、形态多样、性能优异以及在生产和应用领域中所需的投资低,经济效益比较显著。高分子反应加工分为反应挤出和反应注射成型两个部分,目前我国普遍采用的设备包括螺杆挤出机和螺杆注射机。现阶段,我国的高分子材料成型也取得了较好的成绩。

二、高分子材料成型的原理

高分子材料的合成和制备一般都是由几个化工单元操作组成的,高分子反应加工把多个单元操作熔为一体,有关能量的传递和平衡,物料的输运和平衡问题,与一般单个化工单元操作完全不同。传统聚合过程解决传热和传质问题主要是利用溶剂和缓慢反应来进行的,但是在聚合反应加工过程中,物料的温度在数分钟内就能达到400℃~800℃,此时对于反应过程中产生的热,如果不能进行脱除的话,那么降解和炭化将会发生在物料中。传统的加工过程是通过设备给聚合物加热,而需要快速将聚合生成的热量通过设备移去是聚合反应加工所进行的,由此可见,必须从化学和热物理两个方面开展相应的基础研究。

高分子材料的物理机械性能、热性能、加工性能等均取决于其化学结构、分子结构和凝聚态的形态结构,而加工工艺与高分子材料的形态结构关系是非常密切的。

流变学,指从应力、应变、温度和时间等方面来研究物质变形和(或)流动的物理力学。它是力学的一个新分支,它主要研究物理材料在应力、应变、温度湿度、辐射等条件下与时间因素有关的变形和流动的规律。高分子材料成型加工成制备的理论基础是高分子材料流变学。高分子材料的自身的规律和特点是伴随化学反应的高分子材料的流变性质而产生的。

三、高分子材料成型的加工技术

(一)聚合物动态反应加工技术及设备

目前国外已经研发出可以解决其他挤出机作为反应器所存在的问题,即连续反应和混炼的十螺杆挤出机。在我国高分子材料成型加工工业的发展中占有极其重要的地位,但是我国的高分子材料成型的加工技术的开发目前还处于初步阶段。缩聚反应器的反应挤出设备就是指交换法聚碳酸酯连续化生产和尼龙生产中的比较关键的技术,除此之外,我国每年还有数以千万吨的改性聚合物生产,反应挤出技术及设备也是其关键技术。

采用传统的加工设备存在一些问题,例如传热、化学反应过程难以控制等,另外投资费用大、噪音大等问题。无论是在反应加工原理还是设备的结构上,聚合物动态反应加工技术及设备与传统技术都完全不同,将聚合物反应挤出全过程引入到电磁场引起的机械振动场,从而达到控制化学反应过程、反应制品的物理化学性能以及反应生产物的凝聚态结构的目的,这就是聚合物动态反应加工技术及设备。高分子材料成型加工是高能耗过程作业,无论是挤出、注射还是中空吹塑成型塑料原理都必须经过熔融塑化及输送这一基本和共性的过程,目前普遍采用的设备包括螺杆挤出机和螺杆注射机等。该技术使得控制聚合物单体及停留时间分布不可控的问题得到了解决,而且也使得振动立场作用下聚合物反应加工过程中的质量、动量以及能量传递和平衡问题得到了解决,同时也使得设备结构集成化问题得到了解决。新设备的优点很多,例如:体积重量小、适应性好、噪音低、可靠性高等等,而这些技术是传统技术和设备是比不了的。

(二)以动态反应加工设备为基础的新材料制备新技术

此技术的研究实现,加强了我国在该领域内的发言权。以动态反应技术为基础方向,进行深入的研究,从而产生了新的材料制备技术。我们以存储光盘盘基为基础原型,以反应成型技术直接作用于其上。通过对这些技术的研究改进,改变了传统技术中多环节、消耗大、复杂度高、周期长、而且环境污染比较严重等诸多不利因素。通过学习研究,可以把制作光盘的PC树脂原料工业、中途存放、盘基成型工业串联于一体,提高了工业生产效率、减少了资源浪费、能够完全有效的进行控制,而且产品的质量有大幅度的提高。

聚合物/无机物复合材料物理场强化制备新技术。研究表明,对无粒子进行适当的处理,可以得到一些好的效果,比如说利用聚合物进行原位表面改性处理、原位包覆、强制分散等处理后,就可以使我们复合材料成型。

热塑性弹性体动态全硫化制备技术。此技术将混炼引入到振动力场挤出全过程,为实现混炼过程中橡胶相动态全硫化,对硫化反直进程进行控制,从而使得共混加工过程共混物相态反转问题得到了解决。实现自主知识产权的热塑性弹性体动态硫化技术与设备研制开发出来,促进我国TPV技术水平的提高。

四、结语

我国必须根据自身的实际情况来发展高分子材料成型加工技术及设备,把握技术前沿,不断地培育自主知识产权,从而使得我国高分子材料成型技术及其产业发展不断加快。

参考文献:

[1] 黄汉雄. 高分子材料成型加工装备及技术的进展、趋势与对策(下)[J]. 橡塑技术与装备, 2006, (06) :13-18

[2] 黄汉雄. 高分子材料成型加工装备及技术的进展、趋势与对策(上)[J]. 橡塑技术与装备, 2006, (05) :17-27

[3] 王玉东, 付鹏, 李晓光, 赵清香, 刘民英. 尼龙612等温结晶的球晶形态与生成条件[J]. 高分子材料科学与工程, 2009, (09):76-79

[4] 吴刚. 高分子材料成型加工技术的进展[J]. 广东化工, 2008, (09) :8-12

论文题目是啥啊?压根不知道

力学是力与运动的科学,它既是一门基础科学, 又是一门应用众多且广泛的科学。下文是我为大家整理的关于物理学力学论文的范文,欢迎大家阅读参考!

浅析物理力学的产生及其发展

摘 要:物理力学主要是研究宏观力学的微观理论学科。研究物理力学的主要目的是通过理解微观粒子性质的相互作用,找出介质的力学性质计算方法,进而使解决力学问题建立在微观分析的基础上。本文主要探讨了物理力学的产生和发展,为有关物理力学问题的解决提供理论基础。

关键词:物理力学;产生;发展

一、物理力学发展需要解决的问题分析

在物理力学的发展过程中,我们需要解决两方面的问题,一个是关于物性的问题,另一个是有关运动规律的问题。物理力学主要通过物性及其运动规律这两个方面的微观化而成为解决问题、建立微观分析的基础。关于物性的参数主要表现为运动方程组中的系数,例如弹性系数、热导率、粘性系数、声速、比热等。为了求解运动的方程组,需要知道它们相关的数值。

在传统力学中,物性参数的数值是需要试验测定的。而在我们研究的物理力学中,是通过微观的分析以及对宏观数据分析相结合的方法计算参数的数值。我们研究物理力学,不仅是为了能够找出物质性质的微观规律,而且还需要找能够预见新物质性质的方法。

针对物理力学发展中的相关问题,先了解一下有关激波结构问题的例子。物态在激波前后会有很大的变化,在波阵面一定的厚度之内,物质是处在远离平衡的状态的。这时,对于宏观物态的参数已经不适用了。因此,我们需要从分子运用的这一个角度进行描述。像从波尔兹曼方程的角度出发,进而直接进行求解。

在上世纪60年代,一对无内部自由度的影响激波结构的问题得到了进一步发展。其发展主要得力于计算机技术的发展,从而能够使波尔兹曼方程进而得到模型数学方程,求精确解。另外,还能够实现激波管与稀薄气体风洞在较高区域的分辨率的相关方面的测量。虽然对于这些问题的处理都是初步的,但是从物理力学微观运动规律上看,确是一个非常大的进步。

还有一个相似的例子就是对爆震波反应区结构方面的研究。对于这方面的研究是比激波结构更加复杂的,解决问题的困难在于理论的复杂性,也有实验经验的不足等原因。分子气体的动力激光器中非平衡流方面的问题,主要是因为分子内部自由度性质在不断膨胀的气流中产生的自身不平衡现象。在这种迅速膨胀的气流中,分子振动的自由度两方面是不平衡的,不能够采用统一的温度对其进行描述。因此,这也是一个远离平衡的问题。

二、新技术不断推动物理力学的发展

物理力学的产生及其发展即是力学学科发展的重要趋势,也是促进现代工程技术发展的重要手段。自上世纪40年代至今,由于尖端的技术以及基础科学的不断发展与进步,力学面临着大量的超高温和超高压等特殊条件下的问题。我国著名的力学家钱学森在上世纪50年代初提出应该建立物理力学这门学科,其真知灼见把握了力学发展的大趋势,并且预见了今后突飞猛进的结果。

人类社会科学技术的不断发展,给物理力学的研究提供了更多的条件。纵观近五十年间的物理力学的发展,值得一提的是液体理论的重大进步。1972年,麦克唐纳等人计算出等压线结果和多种液体实测数据等,促进了对液体理论的研究。1997年,威尔逊提出了采用重正化群理论解决临界现象,取得了重大的进展。近20年来,对于耗散结构理论是非平衡系统的研究也取得了突破性的进展。上世纪50年代之后,原子分子物理学才重新被重视,尤其是计算机的不断应用大大地促进了这门学科的发展。其他的像分子束技术、光散射技术、中子衍射技术等都成为了研究固体以及液体微观结构的有效手段。另外,高压技术能够产生千万大气压以上的高压条件,高倍电子显微镜能够用来观测原子尺的现象等。新技术以及新发明都为进一步研究物理力学提供了有利的条件。

本文对物理力学的产生及其发展进行了相关的探讨。通过本文的研究,我们了解到,在对物理力学进行研究时,我们应该明确物理力学研究的目的,还应该充分采用新技术、新发明,将其不断应用到研究中。只要我们不断探索和实践,一定能够进一步促进物理力学的发展。

参考文献:

[1]范继美.理论力学与普通物理力学的关系[J].云南师范大学学报(自然科学版),2009,(02).

[2]钱学森.从原子分子物理出发,经由物理力学的思路和方法搞发明创造[J].原子与分子物理学报,2007,(02).

[3]干洪.力学学科的发展现状与21世纪展望[J].安徽建筑工业学院学报(自然科学版),2001,(02)。

[4]陈卫平.现代力学发展趋势及研究课题[J].台州师专学报,2007,(06).

浅析力学在机械中的应用

[摘 要]力学是力与运动的科学,它既是一门基础科学, 又是一门应用众多且广泛的科学。本文立足于力学,简要论述了力学的内涵及其发展历程,并对力学在机械中的应用进行了较为深入的探讨与分析。

[关键词]力学 弹性力学 断裂力学 工程力学 机械

力学是力与运动的科学,它的研究对象主要是物质的宏观机械运动,它既是一门基础科学,又是一门应用众多且广泛的科学。力学与天文学和微积分学几乎同时诞生,在经典物理的发展中起关键作用,推动了地球科学的发展进步,如大气物理、海洋科学等,同时力学也在机械中起着越来越重要的作用,且应用广泛。

一、力学

力学是一门独立的基础学科,主要研究能量和力以及它们与固体、液体及气体的平衡、变形或运动的关系,可粗分为静力学、运动学和动力学三部分。

力学的发展历史悠久,古希腊时代力学附属于自然哲学,后来成为物理学的一个大分支,1687年,牛顿三大定律的提出标志着力学作为一门独立的学科开始形成。此后,随着资本主义生产的发展,到18世纪末,以动力学和运动学为主要特征的经典力学日益完善。19世纪,大机器生产促进了力学在工程技术和应用方面的发展,推动了结构力学、弹性固体力学和流体力学等主要分支的建立。19世纪末,力学已是一门相当发展并自成体系的独立学科。

二、力学在机械中的应用

力学在机械中的应用广泛,其典型应用主要有以下几种:

1.弹性力学在机械设计中的应用

弹性力学也称弹性理论,是固体力学的重要分支,主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而解决结构或机械设计中所提出的强度和刚度问题。机械运动当中,许多机械运转速度较高、承载很大,机械的弹性变形对系统的影响不容忽视,必须将机械系统按弹性系统进行分析和设计。由此可见,弹性力学在机械设计中应用广泛。一般情况下,弹性力学在凸轮机构设计、齿轮机构设计、轴设计中应用较为广泛。

齿轮机构在设计时运用了弹性力学的知识,渐开线作为齿廓曲线存在诸多优点,但用弹性力学知识加以分析便可得出它存在的一些固有缺陷,即当两齿轮啮合传动时,根据弹性力学中的赫兹公式分析可得,在其它条件相同的情况下,要想降低两齿轮在接触处的最大接触力,就必须增大两轮齿廓在接触点处的综合曲率半径,对于渐开线齿轮传动来说,由于要增大两轮齿廓在接触点处的综合曲率半径,就需要增大齿轮机构的尺寸,而两轮齿廓在接触点处的综合曲率半径增大的范围是有限的,所以难以进一步达到齿轮机构尺寸小、而承载能力大幅度提高的目的。同时,弹性力学在轴设计中也有众多应用。为避免共振现象,对高转速的轴,如汽轮机主轴、发动机曲轴等设计时振动计算尤其重要,此时必须运用弹性力学知识。

2.断裂力学在机械工程中的应用

断裂力学,是固体力学的一门新分支,主要研究含裂纹构件的强度与寿命,是结构损伤容限设计的理论基础。断裂力学主要可分为线弹性断裂力学与弹塑性断裂力学两大类,前者适用于裂纹尖端附近小范围屈服的情况;而后者适用于裂纹尖端附近大范围屈服的情况。断裂力学发展迅速,在机械工程中应用广泛,并占据重要地位。断裂力学在机械工程中的有效应用,不仅可以提高机械的性能与功效,更能防止工程设备发生灾难性的断裂事故,以确保机械、设备的安全可靠与良好运行。

首先,我国在采用断裂力学方法制订结构缺陷评定标准及安全设计规范方面已取得了较好的成绩,如压力容器、小型但用量大的液化石油气钢瓶及汽轮一发电机组等。

其次,概率断裂力学在可靠性设计中应用较多。概率断裂力学在可靠性设计中的广泛应用推动了可靠性设计的快速发展。运用参量的分布及安全余度来反映常规设计中不能准确反映的客观实际和常规设计安全评定中用安全系数不能准确反映的真实安全性。由于安全余度考虑了应力和强度的二阶矩,较好地反映了结构可靠度的实质,既考虑了变异特性又考虑了平均值,因而与失效分布有较直接的关系,使安全设计更可靠。国外已较完整地应用于飞机结构,如概率损伤容限分析、飞机结构可靠性和事故分析、飞机结构的耐久性分析等方面。我国在这方面开展的典型性研究则是海洋石油平台导管架焊接管节点的疲劳强度分析。

再者,可用断裂力学方法进行机械产品的失效分析。失效分析是指事故或故障发生后所进行的检侧和分析,目的在于找到失效的部位、失效原因和机理,从而掌握产品应当改进的方向及修复的方法,防止同类问题再次发生,以推进技术不断前进。因此,失效分析技术受到了社会各界的重视。断裂力学在机械产品失效分析中具有着重要作用。机械产品的主要失效模式有: 断裂、蠕变、疲劳、腐蚀、磨损及热损伤等,它们都可以借助断裂力学方法及断裂分析技术予以解决,断裂力学方法是失效分析的有力工具。

最后,运用断裂力学可以指导改进工艺及合理选材,如模具、焊接工艺等方面,可以减少工人的劳动量。

3.工程力学在机械修理中的应用

工程力学涉及众多的力学学科分支与广泛的工程技术领域,是一门理论性较强、与工程技术联系极为密切的技术基础学科,工程力学的定理、定律和结论广泛应用于各行各业的工程技术中,是解决工程实际问题的重要基础。处理机械工程出现的大量破坏问题,绝大多数是根据力学方面的知识作出判断和分析的。例如,汽车修理中汽车零部件的破坏分析与修理也是如此,其中,判断汽车半轴套管断裂的原因与确定修复方案等,全部流程无一不体现着工程力学知识在汽修中的应用。

三、结语

当今社会,科学技术迅猛发展,作为一门基础学科,力学也一定会得到进一步的发展与进步,且在机械中获得更广更深的应用。

参考文献

[1]林同骥,浦群.现代力学的发展[J].力学进展,1990,(1).

[2]李彦军.工程力学在汽修中的应用与对策[J].科技向导,2012,(32).

[3]侯岩滨.弹性力学在机械设计中的应用[J].辽宁师专学报,2005,(1).

[4]吴清可,刘元杰,张毓槐.断裂力学在机械工程中的应用[J].机械强度,1988,(6).

"化学改变了世界化学是研究物质的性质、组成、结构、变化和应用的科学。世界是由物质组成的,化学则是人类用以认识和改造物质世界的主要方法和手段之一,它是一门历史悠久而又富有活力的学科,它的成就是社会文明的重要标志。化学是研究物质的性质、组成、结构、变化和应用的科学。世界是由物质组成的,化学则是人类用以认识和改造物质世界的主要方法和手段之一,它是一门历史悠久而又富有活力的学科,它的成就是社会文明的重要标志。从开始用火的原始社会,到使用各种人造物质的现代社会,人类都在享用化学成果。人类的生活能够不断提高和改善,化学的贡献在其中起了重要的作用。 化学是重要的基础科学之一,在与物理学、生物学、自然地理学天文学等学科的相互渗透中,得到了迅速的发展,也推动了其他学科和技术的发展。例如,核酸化学的研究成果使今天的生物学从细胞水平提高到分子水平,建立了分子生物学;对地球、月球和其他星体的化学成分的分析,得出了元素分布的规律,发现了星际空间有简单化和物的存在,为天体演化和现代宇宙学提供了实验数据,还丰富了自然辩证法的内容。

质性研究和量化研究的论文

都可以,看您擅长那个方面虽然您打算做量化研究,但在前期打基础时最好看一些比较经典的关于质性研究的论文,这样在前期时你可以将质性研究和量化研究进行对比,总结出相同点和相似点,这样更有利于您开展后续的量化研究。定量研究一般是为了对特定研究对象的总体得出统计结果而进行的。定性研究具有探索性、诊断性和预测性等特点,它并不追求精确的结论,而只是了解问题之所在,摸清情况,得出感性认识。定性研究的主要方法包括:与几个人面谈的小组访问,要求详细回答的深度访问,以及各种投影技术等。在定量研究中,信息都是用某种数字来表示的。在对这些数字进行处理、分析时,首先要明确这些信息资料是依据何种尺度进行测定、加工的,史蒂文斯()将尺度分为四种类型,即名义尺度、顺序尺度、间距尺度和比例尺度。

定性研究(Qualitative Analysis)定性研究,“Qualitative Analysis"基于对所研究对象的深入分析或了解。通常情况下,当样本规模比较小,但是需要对所研究问题需要有全面、详细和丰富的描述时,会采用定性研究。比如,采用案例分析(case study)时,重点是用语言文字详细描述你的研究、访谈和选择案例的过程如何展开。定性研究(Qualitative Analysis)经常使用灵活的数据收集方法,需要表达出从参与者的角度来理解问题,并强调时间发生的背景和意义。定性研究(Qualitative Analysis)常用的数据收集方法为:participant observation, focus group, qualitative interviews, discourse analysis, documentary analysis, and visuamethods。其中最常用的方法是访谈(Qualitative Interviews)。定性访谈的重点就是研究者通过一系列诱导式的提问从被采访者中获得他们经验的深入理解。定性研究(Qualitative Analysis)通常在社科类英文论文中用到,因为社会科学中的硏究很多情况下只能靠客观观察,并且硏究的可重复性很低,所以我们常常使用归纳法来得出结论。定性研究(Qualitative Analysis)的目的就是用定性的资料来说明、解释或者预测真实世界的现象。这种方法获得的资料比较丰富,另外一个优点是给研究者较大的诠释空间,来弥补定量研究的不足。定性研究(Qualitative Analysis)也有它的缺点。首先就是人力成本比较高,因为要通过直接观察和访谈来收集数据。第二,因为被观察对象通常是一个特定的群体,而且数据的收集都是基于研究人员的个人观察,所以结论的客观性很难保证,同时也很难推广到更加广泛的场合。定量研究(Quantitative Analysis)与定性研究(Qualitative Analysis)的归纳法不同,定量研究(Quantitative Analysis)使用Deductive(演绎)法来得出结论。演绎法就是通过使用现有的文献和理论来形成假设或者命题,再通过收集适当的数据,分析数据来检验这些假设或命题。如果分析结果一致,那就说明假设成立。定量研究(Quantitative Analysis)通常采用科学的方法,其中包括变量的实验控制和操作、收集经验数据、数据建模与分析等等。在商科毕业论文中,通常采用的定量分析为问卷调查(questionnaire survey)。在问卷调查中,研究者运用统一设计好的问卷,向选定的样本了解情况或者征询意见。问卷调查的好处是能够同时对大批目标用于进行测验,用时短,数据大。问卷通常由开放式问题和封闭式问题组成。由此可见,定量研究(Quantitative Analysis)的核心就是定量数据的收集以及分析。通过分析数据得出的结果往往具有可靠性和有效性的优势,并且可以建立研究问题与数据之间的因果关系。定量研究(Quantitative Analysis)方法的优点是可以相当快地收集和分析数据,研究结果也更为可靠客观。如果调查样本是有效的随机样本,那么我们可以把研究结果推广到整个人群。而它的缺点是数据不如定性研究来的详细,大规模的定量研究(Quantitative Analysis)成本也会非常昂贵。定性研究(Qualitative Analysis)和定量研究(Quantitative Analysis)的区别通过上面的详细介绍,大家可以了解到这两种研究方法之间存在着很大的区别:依据不同。定量研究(Quantitative Analysis)的依据来源于现实资料数据,而定性研究(Qualitative Analysis)的依据来源于大量的历史事实和生活经验。研究手段不同。定量研究(Quantitative Analysis)主要运用统计分析和建立模型等方法,而定性研究(Qualitative Analysis)主要运用逻辑推理、历史比较等方法。学科基础不同。定量研究(Quantitative Analysis)以概率论、统计学为接触,而定性研究(Qualitative Analysis)则以逻辑学为基础。结论的表述形式不同。定量研究(Quantitative Analysis)主要以数据、模式、图形等来表达,而定性研究(Qualitative Analysis)结论多以文字描述为主。

硫化物电解质稳定性研究论文

随着不可再生能源的逐渐减少和全球变暖趋势不断严峻,可再生的绿色能源越来越受到人们的关注和青睐。超级电容器作为一种介于传统电容器(高功率密度)和电池(高能量密度)之间的新型元器件,具有寿命长、安全、适应性强、稳定性好、环境友好等优点,在未来的能源领域研究中是一种不可缺少的新型储能装置[1-3]。为解决能源利用方面的各种问题以及满足现代生活的需求,人们对储能设备的要求也越来越高。电极材料的选择很大程度决定超级电容器的性能[4],电极材料一般分为双电层材料和赝电容材料两种。双电层超级电容器的主要电极材料是碳基材料,如碳纳米管[5-6]、纳米级炭[7-8]、石墨烯等[9-10]。赝电容材料主要是过渡金属硫化物[11-12]、过渡金属氧化物[13]、氢氧化物[14-15]、导电聚合物[16-18]等。其中,过渡金属硫化物具有类金属导电性和较高的理论比电容,被广泛用做电极材料。因其具有超快的载流子迁移率,与二维材料能产生良好的相互作用和非线性光学特性,在动态半导体元件、发光二极管和太阳能光电板的制造等领域大受欢迎[19-20]。本文综述近年来过渡金属硫化物与石墨烯及其衍生物、导电聚合物在超级电容器领域中的研究进展。1过渡金属硫化物单过渡金属硫化物相比于金属氧化物、纯硫电极,过渡金属硫化物(transition metal sulfides,TMSs)具有更高的电化学活性和循环稳定性,常见的过渡金属有Fe、Co、Ni、Cu、Mo和W等。过渡金属硫化物根据结构特点可划分为层状结构和非层状结构,如纳米管[21]、纳米线[22]、纳米棒[23]、纳米片[24-25]和类富勒烯的纳米颗粒[26]等。在硫族元素中,其带隙取决于过渡金属硫化物材料的厚度,即原子层数。一般原子层数越小,带隙越大,其电学性能、光学性能亦变化显著。例如,二硫化钼(MoS2)的带隙,可以从 eV(本体材料)提升到 eV(单层)。单层TMSs薄膜是直接带隙的半导体材料,其带隙宽度为~ eV,与硅材料的带隙宽度( eV)相当。在未来,TMSs材料在电子元器件中的应用有可能取代传统的硅材料[27-29]。通过调控TMSs的原子层数,可有效改变TMSs的带隙,同时亦能形成异质结电子结构,该类结构具有理论比容量高、超薄厚度,与其他二维材料相容性好的特性,在光电子、磁学领域越来越受到研究人员的青睐。目前为止,被广泛研究的TMSs材料中,过渡金属二硫化物(transition metal dichalcogenides,TMDs)受到极大关注。TMDs的晶体结构如图1所示,通过层与层之间的范德华力,形成X-M-X(MX2)层堆叠结构。例如MoS2[30]、二硫化钨(WS2)[31]、硫化锡(SnS2)[32]等二维过渡金属层状材料,可以沿其层间方向剥离成单层。图1典型的MX2晶体结构Fig. 1Typical crystal structure of MX2除常见的单过渡金属硫化物外,类似的二维材料同样值得深入研究与探讨。Mark等[33]通过超声制备不同层厚的MoS2、WS2、二硫化钛(TiS2)、二硒化钼(MoSe2)溶剂稳定分散体。在未添加导电物质和聚合物黏结剂的情况下制成超级电容器的电极,并组装成对称的硬币电池器件,通过电化学测试分析硬币电池的频率响应。研究发现,被广泛研究的MoS2的储能性能是TiS2的1/2,不及WS2或MoSe2。这种材料可以使用水溶液电解质,剥离过程中残留的N-甲基吡咯烷酮分子可形成保护层,保护TiS2不被氧化[34]。这表明,被认为不稳定的各种二维材料进行水电化学是可实施的。过渡金属电极材料已经发展数十年,但其存在能量密度低[35]、在电化学循环过程中容易产生穿梭效应和体积变化导致材料的稳定性降低[36]、机械性能差[37]、材料界面内阻高等问题[38]。目前主要的解决方法是引入过渡金属,设计和合成具有比表面积大或多孔结构的过渡金属基电极材料,研究其它TMSs材料在超薄电子器件上的应用。双过渡金属硫化物目前,由于很难突破单一相TMSs的理论容量上限,研究人员把目光转向双过渡金属硫化物材料[38-40]。这方面的研究集中在构建不同微观结构和与其他活性材料复合两个方面,相比于单过渡金属硫化物,双过渡金属硫化物材料更能满足超级电容器在储能的需求,因此被广泛应用于超级电容器电极材料。镍钴硫化物体系为当前报道最多的双过渡金属硫化物材料,Ni、Co离子协同作用,为反应提供更多的活性位点,具有更优越的氧化还原性能和较高的导电率。Chen等[41]研究了微观状态下不同Ni/Co摩尔比的镍钴硫化物,发现不同Ni/Co摩尔比的硫化物样品除纳米尺寸有微小变化外,其结构和形貌并无太大差别,多孔且松散。这种多孔结构能够提供更多的电活性中心,更能促进与电解质的充分接触,电子更容易传输。其中的比表面积最大,在1 A/g处的比电容最高可达1 093 F/g。此外,与还原氧化石墨烯(reduced graphene oxide,rGO)组装的非对称超级电容器的能量密度最高达 (W·h)/kg,功率密度最高达 kW/kg,并在5 000次循环后仍能保持的初始比电容。Cai等[42]采用溶剂热沉积法制备了石墨烯纤维/NiCo2S4(graphene oxide fiber/NiCo2S4,GF/NiCo2S4)非对称超级电容器材料,其制备的石墨烯纤维可达 g/cm3轻量级、39 S/cm的高导电性和221 MPa的机械强度,以石墨烯纤维为底衬,用NiCo2S4纳米颗粒包裹石墨烯纤维,形成GF/NiCo2S4材料,与纯石墨烯纤维相比,GF/NiCo2S4材料的能量密度高达 (mW·h)/cm3,最大功率密度为1 600 mW/cm3,优于薄膜锂电池。过渡金属硫化物通过结构设计与其他材料复合,导电性与电化学性能得到了提高,但仍有可改进的空间,如研究材料的反应参数,探索材料自身导电性与微观结构的关系,深入了解氧化还原过程与微观结构、晶型的关系,以及确定复合材料中各组分对氧化还原过程的影响等。2过渡金属硫化物与其他材料复合与常见碳基材料的复合碳基材料是指以碳为基体的材料,具有结构多样化、比表面积大、比重小等特点,常被作为航天航空、能量储存、机械工程等领域的研究对象。常见应用在储能方面的碳基材料有碳纳米管、碳纤维、富勒烯、石墨烯等。与石墨烯及其衍生物复合石墨烯是理论比表面积高达2 630 m2/g的超轻材料,在新能源电池、传感器、航空航天等方面具有非常优异的性能。在实际应用中研究人员通过调控得到的不同结构或性能的石墨烯及其衍生物已达到理想的应用价值。Peng等[43]利用一种新方法制备出高密度的石墨烯片(high density graphene film,HDGF)。通过将氧化石墨烯(graphene oxide,GO)薄膜粉碎成小块,破坏其连续性,使HDGF有更多的石墨烯边缘,为离子传输提供了捷径,可有效促进离子在电极材料上的快速扩散。Huang等[44]将石墨烯与TMSs进行复合,利用乙二醇辅助的简单溶剂热路线制备rGO包覆硫化铜(CuS)空心球。实验得到含有均匀空心球的CuS样品,直径约265 nm,在1 A/g电流密度下,CuS/rGO电极的比电容高达2 F/g。循环1 200次后,比电容能够保持原始电容的。这种优异的性能主要归结于CuS的空心球结构与rGO的高电导率之间的协同效应。De等[45]设计了一种基于碳点(carbon dot,CD)负载CuS修饰的GO水凝胶的三维多孔结构。利用水热反应制备CD包覆CuS(CuS@CD)修饰的GO水凝胶(CuS@CD-GO水凝胶),CD作为CuS纳米粒子的稳定剂,有助于在三维水凝胶结构中CuS与GO结合,可有效克服充放电过程中rGO结构变化和聚集问题,极大地提高了电导率。利用CuS@CD-GO水凝胶作为正极,rGO作为负极组装成非对称超级电容器,在1 A/g的电流密度下CuS@CD-GO水凝胶达到了920 F/g的比电容,其能量密度最高可达28 (W·h)/kg,且在5 000次循环后能保持原始比电容的90%。这种独特的复合方法能够有效提高电导率、增大比表面积、增大电极与电解质接触面积,使材料拥有更好的机械性能、电化学性能,为超级电容器的应用提供一个新的设计思路。与碳纳米管复合Lu等[46]采用一步溶剂热法制备了具有连续导电网络碳纳米管(carbon nanotubes,CNTs)笼封装的二硫化铁(FeS2)微米球(FeS2@CNTs)。如图2所示,碳纳米管笼作为机械缓冲层和聚硫捕集器,使其在超长循环过程中能够保持电化学活性。研究结果表明,FeS2@CNTs的颗粒表面具有30 nm厚的CNTs,应力的均匀分布和碳纳米管构建的三维骨架保证了材料的结构稳定性。此外,内部CNTs形成导电网络、外部CNTs形成笼,有效抑制了多硫化物的溶解和穿梭效应。因此,提高化学稳定性和改善结构完整性是延长FeS2@CNTs复合材料循环寿命的关键。TMSs与碳纳米管的有效结合,可制备出高性能超级电容器。Wang等[47]设计和合成了由Ni泡沫支撑的3D网络CNTs-Ni3S2-CNTs。内部CNTs提供更多的电沉积位点,而外部高电导率CNTs提供通路进行电子传输,提高电容量。将CNTs-Ni3S2-CNTs作为正极,活性炭作为负极,组装成非对称超级电容器。其功率密度达到2 416 W/kg,高能量密度达到 (W·h)/kg,在10 000次循环后电容保持率高达。与石墨烯或碳纳米管等碳材料复合,既可改变金属硫化物材料内部结构缺陷,增强材料力学性能,又能提高材料表面利用率,增加电子传输通路,提高复合材料电学性能。与高分子材料复合纯金属硫化物制成的电极通常具有腐蚀性,体积变化大,循环稳定性差,导电率低,使其在超级电容器中的应用受到了限制。合理地利用混合结构的组装,开发增强电化学性能的材料有利于超级电容器未来的发展。例如在导电衬底材料(如泡沫镍和碳布)引入其他组分来构建异质结构提高电极材料的比电容。Niaz等[48]以层状MoS2作为二维导电骨架,以水热法合成了硫化钼/聚吡咯(MoS2/PPy)纳米复合材料,利用MoS2与PPy之间的相互作用,改善复合材料的结构与性能,提高电极材料的稳定性,增加电子/离子的迁移率。Liu等[49]通过模板法,利用金属-有机骨架制备Cu9S8@C陶瓷材料,再利用电化学沉积在碳纤维布(carbon cloth,CC)上制备PPy/Cu9S8@C-CC纳米复合电极。Wang等[50]制备出一种高稳定性的柔性非对称碳纤维/Ni3S2/聚苯胺(carbon fiber/Ni3S2/polyaniline,CF/Ni3S2@PANI)电极,先利用CF沉积Ni3S2纳米片,再原位聚合PANI,使PANI与Ni3S2形成高度稳定的N-Ni键,PANI作为Ni3S2的涂层,同时兼具保护和导电的作用。CF/Ni3S2电极材料的比电容为318 F/g,而CF/Ni3S2@PANI电极材料的比电容可达到 F/g,并组装成不对称的超级电容器,可弯曲成不同角度并不减弱其性能,达到850 W/kg的功率密度和 (W·h)/kg的能量密度。Liu等[51]采用水热法和恒电位沉积法,设计出一种核/壳异质结构的NiCo2S4@PANI/CF电极材料。如图3所示,利用核/壳异质结构提供更多的活性位点,加快复合材料的电子传输,提高了核心NiCo2S4纳米线的结构稳定性。实验结果显示,复合材料在2 mA/cm2下具有 F/cm2(1 823 F/g)的高比面积电容,以及在5 000次循环后能够保持的电容保持率。将其组装成不对称超级电容器时具有 W/kg的功率密度和 (W·h)/kg的高能量密度,核/壳异质结

在不同的固态电池中,硫化物固态电池尤其有前景。在不同的固态电池中,硫化物固态电池尤其有前景,因为它们具有与液态电解质相当的高离子电导率和硫化物固态电解质的良好成型性。当与高镍层状正极材料和高能负极材料如Si或金属Li,ASSB在电池级可以表现出超过500kWhkg-1的比能量。全固态电池(ASSB)通常按固态电解质的类型分类,例如氧化物、硫化物和聚合物等。

虽然采用钠离子的全固体电池也已经逐渐展开研究,但采用锂离子的全固体电池的研究更加活跃。在全固体电池的研究中,如何提高表示固体电解质锂的扩散速度的锂离子导电率是个重要课题。在最近的研究中,东京工业大学、丰田汽车公司和高能加速研究机构的研发小组发现了锂离子导电率与有机电解液相当的物质。主导研究的是东京工业大学研究生院综合理工学研究科物质电子化学专业的菅野了次教授。菅野等人发表的是硫化物类固体电解质的一种——Li10GeP2S12。锂离子导电率在室温(27℃)下非常高,为×10-2S/cm。丰田试制了采用该固体电解质的全固体电池,并于2012年10月公开。丰田证实“实现了原产品5倍”的输出密度。在本届电池研讨会上,以丰田为首,出光兴产公司、三井金属矿业公司、村田制作所、三星横滨研究所及住友化学公司等也发表了论文。丰田与大阪府立大学的辰巳砂研究室报告了可提高全固体电池寿命的研究成果。通过采用7Li2O·68Li2S·25P2S5,与该公司此前推进研究的75Li2S·25P2S5相比,实现了比较高的容量维持率。双方试制了采用不同固体电解质的全固体电池,以最大4V电压进行充电后,在60℃下保存了1个月,采用7Li2O·68Li2S·25P2S5的电池的反应电阻没有升高,约为当初的倍,维持了86%的放电容量。而采用75Li2S·25P2S5的电池的反应电阻上升至当初的约倍,放电容量维持率降到72%。丰田称:“7 Li 2O·68Li2S·25P2S5耐水性高,活性物质和固体电解质界面能够稳定。因此可抑制硫化氢的产生量,为电池的长寿命化做出了贡献。”此次的实验是在60℃下实施的,由此可见,在高温时也能抑制电池劣化。负极材料采用金属磷化物固体电解质与正极材料的组合备受关注的全固体电池还提出了高容量负极候选。就金属磷化物发表演讲的是大阪府立大学和出光兴产的研发小组注。时下作为高容量负极受到关注的硅和锡虽然容量高,但与锂制成合金时体积变化较大,难以延长寿命。而金属磷化物的特点是能形成金属微粒子和Li3P。Li3P具有矩阵构造,有望抑制锂与金属微粒子的合金化反应造成的体积变化。另外,Li3P因锂离子导电性高,仅利用活性物质即可构成负极的电极部分。此次发表的论文中的负极材料采用了磷化锡(Sn4P3)。由该负极材料与Li2S-P2S5类固体电解质及锂铟合金正极构成的试验单元,即使负极电极中不含电解质和导电添加剂也能作为充电电池使用,具备950mAh/g的初期放电量(图10)。与采用Sn4P3、固体电解质和乙炔黑以40:60:6重量比混合的电极复合体的单元相比,电极单位重量的容量约为2倍。此外,观察充放电前以及初次放电后和充电后的电极发现,虽然出现了100μm级的裂纹,但Sn4P3与固体电解质之间保持了出色的接触界面。大阪府立大学认为,这要得益于Li2S-P2S5类固体电解质的柔软性。

  • 索引序列
  • 研究氯化物性质论文目的
  • 研究氯化物性质论文题目
  • 研究物质性质的论文
  • 质性研究和量化研究的论文
  • 硫化物电解质稳定性研究论文
  • 返回顶部