首页 > 学术发表知识库 > 材料科学与工程毕业论文外文翻译

材料科学与工程毕业论文外文翻译

发布时间:

材料科学与工程毕业论文外文翻译

你还想要几篇,英文文献一篇平均6页以上,还要翻译??????????

材料科学与工程专业本身对英语要求不高,只要考过专业英语拿到学分,过了四级就行。

Polymer Materials Science and Engineering; Polymer Materials Science & Engineering; Polymeric Materials Science and Engineering; Polymer Material Science and Engineering; Polymer Material Science and Technology

高分子材料与工程专业 Polymer Materials and Engineering Major 高分子材料与工程 Polymer Materials and Engineering

材料科学毕业论文外文翻译

(最好)不要某宝,不要个人,一定要选一个正规的润色机构——服务有保障,有售后,北京译顶科技做的不错,可以联系他们一下 终身满意。

你还想要几篇,英文文献一篇平均6页以上,还要翻译??????????

材料科学 Materials ScienceMaterials science or materials engineering is an interdisciplinary field involving the properties of matter and its applications to various areas of science and engineering. This science investigates the relationship between the structure of materials and their properties. It includes elements of applied physics and chemistry, as well as chemical, mechanical, civil and electrical engineering. With significant media attention to nanoscience and nanotechnology in recent years, materials science has been propelled to the forefront at many universities. It is also an important part of forensic engineering and forensic materials engineering, the study of failed products and components.HistoryThe material of choice of a given era is often its defining point; the Stone Age, Bronze Age, and Steel Age are examples of this. Materials science is one of the oldest forms of engineering and applied science, deriving from the manufacture of ceramics. Modern materials science evolved directly from metallurgy, which itself evolved from mining. A major breakthrough in the understanding of materials occurred in the late 19th century, when Willard Gibbs demonstrated that thermodynamic properties relating to atomic structure in various phases are related to the physical properties of a material. Important elements of modern materials science are a product of the space race: the understanding and engineering of the metallic alloys, and silica and carbon materials, used in the construction of space vehicles enabling the exploration of space. Materials science has driven, and been driven by, the development of revolutionary technologies such as plastics, semiconductors, and biomaterials.Before the 1960s (and in some cases decades after), many materials science departments were named metallurgy departments, from a 19th and early 20th century emphasis on metals. The field has since broadened to include every class of materials, including: ceramics, polymers, semiconductors, magnetic materials, medical implant materials and biological materials.[edit] Fundamentals of materials scienceIn materials science, rather than haphazardly looking for and discovering materials and exploiting their properties, one instead aims to understand materials fundamentally so that new materials with the desired properties can be created.The basis of all materials science involves relating the desired properties and relative performance of a material in a certain application to the structure of the atoms and phases in that material through characterization. The major determinants of the structure of a material and thus of its properties are its constituent chemical elements and the way in which it has been processed into its final form. These, taken together and related through the laws of thermodynamics, govern a material’s microstructure, and thus its properties.An old adage in materials science says: "materials are like people; it is the defects that make them interesting". The manufacture of a perfect crystal of a material is currently physically impossible. Instead materials scientists manipulate the defects in crystalline materials such as precipitates, grain boundaries (Hall-Petch relationship), interstitial atoms, vacancies or substitutional atoms, to create materials with the desired properties.Not all materials have a regular crystal structure. Polymers display varying degrees of crystallinity, and many are completely non-crystalline. Glasses, some ceramics, and many natural materials are amorphous, not possessing any long-range order in their atomic arrangements. The study of polymers combines elements of chemical and statistical thermodynamics to give thermodynamic, as well as mechanical, descriptions of physical properties.In addition to industrial interest, materials science has gradually developed into a field which provides tests for condensed matter or solid state theories. New physics emerge because of the diverse new material properties which need to be explained.[edit] Materials in industryRadical materials advances can drive the creation of new products or even new industries, but stable industries also employ materials scientists to make incremental improvements and troubleshoot issues with currently used materials. Industrial applications of materials science include materials design, cost-benefit tradeoffs in industrial production of materials, processing techniques (casting, rolling, welding, ion implantation, crystal growth, thin-film deposition, sintering, glassblowing, etc.), and analytical techniques (characterization techniques such as electron microscopy, x-ray diffraction, calorimetry, nuclear microscopy (HEFIB), Rutherford backscattering, neutron diffraction, etc.).Besides material characterisation, the material scientist/engineer also deals with the extraction of materials and their conversion into useful forms. Thus ingot casting, foundry techniques, blast furnace extraction, and electrolytic extraction are all part of the required knowledge of a metallurgist/engineer. Often the presence, absence or variation of minute quantities of secondary elements and compounds in a bulk material will have a great impact on the final properties of the materials produced, for instance, steels are classified based on 1/10th and 1/100 weight percentages of the carbon and other alloying elements they contain. Thus, the extraction and purification techniques employed in the extraction of iron in the blast furnace will have an impact of the quality of steel that may be produced.The overlap between physics and materials science has led to the offshoot field of materials physics, which is concerned with the physical properties of materials. The approach is generally more macroscopic and applied than in condensed matter physics. See important publications in materials physics for more details on this field of study.The study of metal alloys is a significant part of materials science. Of all the metallic alloys in use today, the alloys of iron (steel, stainless steel, cast iron, tool steel, alloy steels) make up the largest proportion both by quantity and commercial value. Iron alloyed with various proportions of carbon gives low, mid and high carbon steels. For the steels, the hardness and tensile strength of the steel is directly related to the amount of carbon present, with increasing carbon levels also leading to lower ductility and toughness. The addition of silicon and graphitization will produce cast irons (although some cast irons are made precisely with no graphitization). The addition of chromium, nickel and molybdenum to carbon steels (more than 10%) gives us stainless steels.Other significant metallic alloys are those of aluminium, titanium, copper and magnesium. Copper alloys have been known for a long time (since the Bronze Age), while the alloys of the other three metals have been relatively recently developed. Due to the chemical reactivity of these metals, the electrolytic extraction processes required were only developed relatively recently. The alloys of aluminium, titanium and magnesium are also known and valued for their high strength-to-weight ratios and, in the case of magnesium, their ability to provide electromagnetic shielding. These materials are ideal for situations where high strength-to-weight ratios are more important than bulk cost, such as in the aerospace industry and certain automotive engineering applications.Other than metals, polymers and ceramics are also an important part of materials science. Polymers are the raw materials (the resins) used to make what we commonly call plastics. Plastics are really the final product, created after one or more polymers or additives have been added to a resin during processing, which is then shaped into a final form. Polymers which have been around, and which are in current widespread use, include polyethylene, polypropylene, PVC, polystyrene, nylons, polyesters, acrylics, polyurethanes, and polycarbonates. Plastics are generally classified as "commodity", "specialty" and "engineering" plastics.PVC (polyvinyl-chloride) is widely used, inexpensive, and annual production quantities are large. It lends itself to an incredible array of applications, from artificial leather to electrical insulation and cabling, packaging and containers. Its fabrication and processing are simple and well-established. The versatility of PVC is due to the wide range of plasticisers and other additives that it accepts. The term "additives" in polymer science refers to the chemicals and compounds added to the polymer base to modify its material properties.Polycarbonate would be normally considered an engineering plastic (other examples include PEEK, ABS). Engineering plastics are valued for their superior strengths and other special material properties. They are usually not used for disposable applications, unlike commodity plastics.Specialty plastics are materials with unique characteristics, such as ultra-high strength, electrical conductivity, electro-fluorescence, high thermal stability, etc.It should be noted here that the dividing line between the various types of plastics is not based on material but rather on their properties and applications. For instance, polyethylene (PE) is a cheap, low friction polymer commonly used to make disposable shopping bags and trash bags, and is considered a commodity plastic, whereas Medium-Density Polyethylene MDPE is used for underground gas and water pipes, and another variety called Ultra-high Molecular Weight Polyethylene UHMWPE is an engineering plastic which is used extensively as the glide rails for industrial equipment and the low-friction socket in implanted hip joints.Another application of material science in industry is the making of composite materials. Composite materials are structured materials composed of two or more macroscopic phases. An example would be steel-reinforced concrete; another can be seen in the "plastic" casings of television sets, cell-phones and so on. These plastic casings are usually a composite material made up of a thermoplastic matrix such as acrylonitrile-butadiene-styrene (ABS) in which calcium carbonate chalk, talc, glass fibres or carbon fibres have been added for added strength, bulk, or electro-static dispersion. These additions may be referred to as reinforcing fibres, or dispersants, depending on their purpose.[edit] Classes of materials (by bond types)Materials science encompasses various classes of materials, each of which may constitute a separate field. Materials are sometimes classified by the type of bonding present between the atoms:Ionic crystals Covalent crystals Metals Intermetallics Semiconductors Polymers Composite materials Vitreous materials [edit] Sub-fields of materials scienceNanotechnology – rigorously, the study of materials where the effects of quantum confinement, the Gibbs-Thomson effect, or any other effect only present at the nanoscale is the defining property of the material; but more commonly, it is the creation and study of materials whose defining structural properties are anywhere from less than a nanometer to one hundred nanometers in scale, such as molecularly engineered materials. Microtechnology - study of materials and processes and their interaction, allowing microfabrication of structures of micrometric dimensions, such as MicroElectroMechanical Systems (MEMS). Crystallography – the study of how atoms in a solid fill space, the defects associated with crystal structures such as grain boundaries and dislocations, and the characterization of these structures and their relation to physical properties. Materials Characterization – such as diffraction with x-rays, electrons, or neutrons, and various forms of spectroscopy and chemical analysis such as Raman spectroscopy, energy-dispersive spectroscopy (EDS), chromatography, thermal analysis, electron microscope analysis, etc., in order to understand and define the properties of materials. See also List of surface analysis methods Metallurgy – the study of metals and their alloys, including their extraction, microstructure and processing. Biomaterials – materials that are derived from and/or used with biological systems. Electronic and magnetic materials – materials such as semiconductors used to create integrated circuits, storage media, sensors, and other devices. Tribology – the study of the wear of materials due to friction and other factors. Surface science/Catalysis – interactions and structures between solid-gas solid-liquid or solid-solid interfaces. Ceramography – the study of the microstructures of high-temperature materials and refractories, including structural ceramics such as RCC, polycrystalline silicon carbide and transformation toughened ceramics Some practitioners often consider rheology a sub-field of materials science, because it can cover any material that flows. However, modern rheology typically deals with non-Newtonian fluid dynamics, so it is often considered a sub-field of continuum mechanics. See also granular material.Glass Science – any non-crystalline material including inorganic glasses, vitreous metals and non-oxide glasses. Forensic engineering – the study of how products fail, and the vital role of the materials of construction Forensic materials engineering – the study of material failure, and the light it sheds on how engineers specify materials in their product [edit] Topics that form the basis of materials scienceThermodynamics, statistical mechanics, kinetics and physical chemistry, for phase stability, transformations (physical and chemical) and diagrams. Crystallography and chemical bonding, for understanding how atoms in a material are arranged. Mechanics, to understand the mechanical properties of materials and their structural applications. Solid-state physics and quantum mechanics, for the understanding of the electronic, thermal, magnetic, chemical, structural and optical properties of materials. Diffraction and wave mechanics, for the characterization of materials. Chemistry and polymer science, for the understanding of plastics, colloids, ceramics, liquid crystals, solid state chemistry, and polymers. Biology, for the integration of materials into biological systems. Continuum mechanics and statistics, for the study of fluid flows and ensemble systems. Mechanics of materials, for the study of the relation between the mechanical behavior of materials and their microstructures. 材料科学材料是人类可以利用的物质,一般是指固体。而材料科学是研究材料的制备或加工工艺、材料结构与材料性能三者之间的相互关系的科学。涉及的理论包括固体物理学,材料化学,与电子工程结合,则衍生出电子材料,与机械结合则衍生出结构材料,与生物学结合则衍生出生物材料等等。材料科学理论物理冶金学 晶体学 固体物理学 材料化学 材料热力学 材料动力学 材料计算科学[编辑] 材料的分类按化学状态分类 金属材料 无机物非金属材料 陶瓷材料 有机材料 高分子材料 按物理性质分类 高强度材料 耐高温材料 超硬材料 导电材料 绝缘材料 磁性材料 透光材料 半导体材料 按状态分类 单晶材料 多晶质材料 非晶态材料 准晶态材料 按物理效应分类 压电材料 热电材料 铁电材料 光电材料 电光材料 声光材料 磁光材料 激光材料 按用途分类 建筑材料 结构材料 研磨材料 耐火材料 耐酸材料 电工材料 电子材料 光学材料 感光材料 包装材料 按组成分类 单组分材料 复合材料 [编辑] 材料工程技术金属材料成形 机械加工 热加工 陶瓷冶金 粉末冶金 薄膜生长技术 表面处理技术 表面改性技术 表面涂覆技术 热处理 [编辑] 材料的应用结构材料 信息材料 存储材料 半导体材料 宇航材料 建筑材料 能源材料 生物材料 环境材料 储能材料和含能材料 参考

这个不用全部翻译的,只要选择自己需要的内容翻译。

翻译的外文文献可以是一篇,也可以是两篇,但英文字符要求不少于2万。选定外文文献后先给指导老师看,得到老师的确认通过后方可翻译。

翻译的外文文献应主要选自学术期刊、学术会议的文章、有关著作及其他相关材料,应与毕业论文(设计)主题相关,并在中文译文首页用“脚注”形式注明原文作者及出处,外文原文后应附中文译文。

扩展资料:

外文翻译需要注意的问题

1、外文文献的出处不要翻译成中文,且写在中文译文的右上角(不是放在页眉处);会议要求:名称、地点、年份、卷(期),等 。

2、作者姓名以及作者的工作单位也不用必须翻译。

3、abstract翻译成“摘要”,不要翻译成“文章摘要”等其他词语。

4、Key words翻译成“关键词” 。

5、introduction 翻译成“引言”(不是导言)。

6、注意排版格式,都是单排版,行距1.25,字号小4号,等(按照格式要求)。

7、各节的标号I、II等可以直接使用,不要再翻译成“第一部分”“第二部分”,等。

8、里面的图可以拷贝粘贴,但要将图标、横纵指标的英文标注翻译成中文。

9、里面的公式、表不可以拷贝粘贴,要自己重新录入、重新画表格。

参考资料:百度百科-毕业论文

毕业论文外文翻译材料批阅

这个是可以的,百度文库有现成的,这个也是允许的这只是学习的材料。先到百度文库,找一篇此类文档中文的,然后用有道翻译,或是谷歌在线翻译翻成英 文,然后把英文放上面,中文放下面。希望可以帮到你。如果要找标准的PDF格式外文文 献,可以在谷歌,用英文文献名+空格+PDF 这样比较容易找到。 第一是Google搜索,主要是英文,尤其是其学术搜索,意义大。第二,通过各大学图书馆系统,进入几个主流的出版发行集团。第三,利用网络免费储存、电子书系统。尤其是国外多。1、论文题目:要求准确、简练、醒目、新颖。2、目录:目录是论文中主要段落的简表。(短篇论文不必列目录)3、提要:是文章主要内容的摘录,要求短、精、完整。字数少可几十字,多不超过三百字为宜。4、关键词或主题词:关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。 每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。主题词是经过规范化的词,在确定主题词时,要对论文进行主题,依照标引和组配规则转换成主题词表中的规范词语。5、论文正文:(1)引言:引言又称前言、序言和导言,用在论文的开头。 引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。〈2)论文正文:正文是论文的主体,正文应包括论点、论据、 论证过程和结论。主体部分包括以下内容:a.提出-论点;b.分析问题-论据和论证;c.解决问题-论证与步骤;d.结论。6、一篇论文的参考文献是将论文在和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方式按《GB7714-87文后参考文献著录规则》进行。中文:标题--作者--出版物信息(版地、版者、版期):作者--标题--出版物信息所列参考文献的要求是:(1)所列参考文献应是正式出版物,以便读者考证。(2)所列举的参考文献要标明序号、著作或文章的标题、作者、出版物信息。一,选题要新颖。这次我的论文的成功,和高分,得到导师的赞许,都是因为我论文的选题新颖所给我带来的好处。最好涉及护理新领域,以及新进展,这样会给人耳目一新的感觉。二,大量文献做基础仔细查阅和你论文题目和研究范围相关的文献,大量的文献查阅会你的论文写作铺垫,借鉴别人的思路,和好的语言。而且在写作过程不会觉得语言平乏,当然也要自己一定的语言功底做基矗三,一气呵成做好充分的准备,不要每天写一些,每天改一些,这样会打断自己的思路,影响文章的连贯。四,尽量采用多的专业术语可能口语化的表达会给人带来亲切感,但论文是比较专业的形式,是有可能做为文献来查阅和检索的,所以论文语言的专业化,术语化会提升自己论文的水平。五,用正规格式书写参考正规的论文文献,论文格式。不要因为格式问题,而影响到你论文的质量。六,最好在计算机上完成写作过程如果有条件最好利用电脑来完成写作过程,好处以下几点:1,节省时间,无论打字的速度慢到什么程度,肯定要比手写的快。2,方便,大量的文献放在手边,一个一个查阅是很不方便的,文献都是用数据库编辑,所以都是在电脑上完成。提前先在电脑上摘要出重点,写出提纲,随时翻阅,方便写作。3,修改编辑,在电脑随时对文章进行修改编辑都是非常的方便。4,随时存档,写一段,存一段,防止突然停电,或者电脑当机。本人就是吃了这个大亏,一个晚上的劳动,差点就全没了,幸亏男友是电脑高手,帮我找回。否则就恨着电脑,哭死算了。七,成稿打印好交给导师无论你的字写的多么优美,还是按照惯例来,打印出的文字显的正规,而且交流不存在任何的问题,不会让导师因为看不懂你的龙飞凤舞,而低估你的论文。而且干净整洁,女孩子不仅注意自己的形象问题,书面的东西也反映你的修养和气质。八,听取导师意见,仔细修改导师会给你一些关于你论文建设性的意见,仔细参考,认真修改。毕竟导师是发表过多篇论文,有颇多的经验。

首先来看一下问题“英语学术文献翻译”,重点并非在于“英语”而是在于“学术文献”。因此,推荐百度、有道、谷歌这些就没有太大意义了。正是由于这些通用的翻译工具无法应对学术文献翻译,所以才寻求北京译顶科技人工翻译。

Chinese and Western cultural differences in human resources management[Abstract] With the acceleration of the process of economic globalization, Chinese and Western cultural differences in corporate human resources management has been a wider range and higher-level exchanges and integration. Multi-cultural context of coexistence to resolve the cultural differences and cultural conflicts arising from the enterprise human resources management, enterprise development. This article mainly from the cultural differences on the impact of human resources management and cultural differences in human resources management applications to discuss the proposal.[Key words] cultural differences impact on human resources management proposalsFirst, cultural differences on the impact of human resources managementWith the global economic and cultural ties in depth, in order to fierce competition in the market to obtain a competitive advantage and initiative, a growing number of companies go out of the country, the global search for the efficient allocation of resources at the same time, in Western cultural differences to corporate human resources management put forward a new topic for discussion. Enterprise human resources management to a large extent by a national culture, including values, ways of thinking and the impact of social customs and constraints. Cultural impact on business recruitment, promotion, performance appraisal methods, such as a series of human resources management policy. For example, in the design of the remuneration of transnational corporations, it is necessary to consider the views of different countries. Chinese people to increase their wages with benefits linked to the foreign public with the price index, inflation and other factors linked. Similarly, in the promotion of cadres, the Chinese people attach importance to the political quality of the qualifications and interpersonal relationships, while the volume of foreign and line only. Therefore, the human resources of transnational corporations need to enterprises as a whole, to managers of local culture and familiarity with local culture, to adapt to local culture, the condition that the selection of fusion power.Chinese and Western cultural differences for enterprise human resource management is a double-edged sword, because of cultural differences led to the management of ideas and exchanges on the differences, so that enterprises develop human resources management strategy difficult. Practice has proved that as a result of different cultural backgrounds of people values and behavior patterns of different cultural friction, is the failure of operation and management of transnational corporations and the implementation of its global strategy in trouble one of the root causes. Traditional human resources management, the members have common values, a single management of the environment, in the multi-national corporations, the members have different cultural backgrounds, management organizations difficult. Chinese and Western cultural differences but also in human resources management functions more diversified, and human resources management to promote the realization of a change in the way to improve the human resources management in the enterprise status.Second, cultural differences in human resource management application in the proposal1. Integrated corporate culture, strengthen communication, the establishment of common valuesDifferent countries have different cultural values, and as an orthodox, they have their own according to their own thinking and the concept of law, to the enterprise's human resources management has led to great difficulties. Therefore, human resource managers to find the combination of points of different cultures, absorbing the essence of both culture and give full play to the advantage of commonality and individuality of each other, in order to adopt effective measures to establish a step-by-step characteristics of the enterprises, but also to adapt to the environment of the new enterprise culture, and gradually establish a common values. And by organizing various activities, to continue to strengthen exchanges between staff and cooperation to fully understand each other's cultural backgrounds, values and so on, to enhance cross-border employees, as well as staff-to-business identity, so that their staff's personal culture can truly into the corporate culture, their own thoughts and actions with the company's purposes and business combine in order to give full play to the Chinese and Western cultural differences in human resources management in value.2. Actively engaged in cross-cultural communication and trainingMultinational corporations should be taken to strengthen the cultural communication means, such as the enterprise in favor of establishing a common language to communicate; greater use of task orders, memoranda, and other forms Checklist simple, fast and accurate transmission of information; to collect the views of staff and reasonable, so to enable the employees speak their minds; organization of Chinese and Western seminars to strengthen exchanges. At the same time, human resource managers to enhance cross-cultural training. The so-called cross-cultural training, refers to a variety of cultural backgrounds in the organization, carried out by groups aimed at eliminating or reducing a variety of cultural differences arising from a variety of obstacles, and cultural conflict in training activities. The purpose of cross-cultural training is by making employees aware of the different cultures and learn to respect each other's culture and improve the staff's sensitivity to different cultures as well as in the work of international environment and reduce cross-cultural communication as a result of misconduct brought about by the mistakes and daily work as a result of cultural differences arising from a clash of cultures. Cross-cultural training is considered by many multinational companies to reduce the cultural conflicts, to achieve effective cross-cultural management of one of the main instruments. The main content of cultural awareness, cultural sensitivity training, language learning, cross-cultural communication and conflict management, cultural adaptability training, the local environment simulation.3. The management of localization strategiesTransnational corporations localization of human resources management refers to the overseas subsidiaries of transnational corporations, whether managers or general staff, usually in the host country for recruitment, selection and appointment. The substance of the multinational corporations in the production, marketing, management, personnel and other operating aspects of all-round integration process of the host economy, but also bear the responsibility of the host country citizens, and will integrate into the corporate culture and rooted in local culture. The use of local people can be eliminated by the cultural background and language gap caused all sorts of misunderstandings, and can use them in the local good interpersonal relationships, quickly open up the market, improving the competitiveness of enterprises; is conducive to reduce the overseas dispatch of multinational corporations and transnational business operation the high cost; narrow local subsidiary and the parent company of the location of the differences between the levels; and can choose the one best suited to the posts of staff. Is also beneficial to the host country's economic security, increase job opportunities, manage change, to accelerate in line with international standards. Therefore, we should actively promote the cultivation of local talent and recruitment.III ConclusionIn short, human resource managers of multinational companies to manage staff should be in full knowledge of the corporate culture and foreign culture on the basis of thorough, systematic and comprehensive study of enterprises in the western culture of human resources management, so that the different culture to achieve the best combination to play its greatest advantage. Only to build their own cross-cultural management strategies, effective realization of enterprises in the management of the Western cultural differences in order to increase its presence in multinational operations in the likelihood of success, to enhance their competitiveness.References:[1] Song Yan: Analysis of corporate human resources, cross-cultural management. Scientific and technological information for development and economic, in 2007 the first three[2] LIU Jing-jing: On cross-cultural human resources management. Business Administration, in 2007 the first five[3] Chun-kit: a joint venture operating in the development of cross-cultural differences. Enterprise Zone, 2004 No. 11[4] Li-Jun Zhao Deng Wu Xiaodong sister: International Enterprise Human Resources Management cross-cultural adaptation research. Techno-economic, 2005 12[5] Peng ZHANG Peng-cheng: multinational cross-cultural management. Beijing Institute of Finance and Trade Management Journal, 2001 4仅供参考,请自借鉴。希望对您有帮助。补充:出处:呵呵。只能帮你这些了,还是希望对你有点帮助吧。

外文文献,就是你毕业论文中所参考到的外国相关文献。不一定要原文引用,比如你采纳了其中一个论点,或者论据都行,总的来说就是参考文献,你引用也好借鉴也好,都行。

材料科学与工程杂志

杂志有:

1、《Nature Reviews Materials》《自然评论材料》

2、《Nature Energy》《自然能量》

3、《NATURE MATERIALS》《自然材料》

4、《Nature Nanotechnology》《自然纳米技术》

5、《ADVANCED MATERIALS》《先进材料》

6、《Advanced Energy Materials》《先进能源材料》

7、《Materials Today》《今日材料》

8、《PROGRESS IN MATERIALS SCIENCE》《材料科学进展》

9、《MATERIALS SCIENCE &  ENGINEERING R-REPORTS》《材料科学与工程研究报告》

10、《INTERNATIONAL MATERIALS REVIEWS》《国际材料评论》

AFM:ADVANCED FUNCTIONAL MATERIALS;原子力显微镜

AM:Advanced Materials;先进材料

扩展资料

AFM优点:

原子力显微镜的出现无疑为纳米科技的发展起到了推动作用。以原子力显微镜为代表的扫描探针显微镜是利用一种小探针在样品表面上扫描,从而提供高放大倍率观察的一系列显微镜的总称。原子力显微镜扫描能提供各种类型样品的表面状态信息。

与常规显微镜比较,原子力显微镜的优点是在大气条件下,以高倍率观察样品表面,可用于几乎所有样品(对表面光洁度有一定要求),而不需要进行其他制样处理,就可以得到样品表面的三维形貌图象。并可对扫描所得的三维形貌图象进行粗糙度计算、厚度、步宽、方框图或颗粒度分析。具体如下:

1、高分辨力能力远远超过扫描电子显微镜(SEM),以及光学粗糙度仪。样品表面的三维数据满足了研究、生产、质量检验越来越微观化的要求。

2、非破坏性,探针与样品表面相互作用力为10-8N以下,远比以往触针式粗糙度仪压力小,因此不会损伤样品,也不存在扫描电子显微镜的电子束损伤问题。另外扫描电子显微镜要求对不导电的样品进行镀膜处理,而原子力显微镜则不需要。

3、应用范围广,可用于表面观察、尺寸测定、表面粗糙测定、颗粒度解析、突起与凹坑的统计处理、成膜条件评价、保护层的尺寸台阶测定、层间绝缘膜的平整度评价、VCD涂层评价、定向薄膜的摩擦处理过程的评价、缺陷分析等。

4、软件处理功能强,其三维图象显示其大小、视角、显示色、光泽可以自由设定。并可选用网络、等高线、线条显示。图象处理的宏管理,断面的形状与粗糙度解析,形貌解析等多种功能。

参考资料:百度百科-AFM(原子力显微镜)

ADVANCED FUNCTIONAL MATERIALS , AFM , 影响因子11.38 Advanced Materials , AM , 影响因子18.96

单位和地区不同都是有区分的,一般这些不同的话刊物这些也会随之变化的,版本也就不同 参考意见可见

sci材料类杂志推荐:

1、JOURNALOFVACUUMSCIENCE&TECHNOLOGYA

issn:0734-2101

2018-2019最新影响因子:1.833

出版地:UNITEDSTATES

出版周期:Bimonthly

审稿速度:一般,3-6周

平均录用比例:容易

2、MATERIALSSCIENCEANDTECHNOLOGY

issn:0267-0836

2018-2019最新影响因子:1.938

出版地:ENGLAND

出版周期:Monthly

审稿速度:约2.6个月

平均录用比例:容易

3、MATERIALSTRANSACTIONS

issn:1345-9678

2018-2019最新影响因子:0.764

出版地:JAPAN

出版周期:Monthly

审稿速度:约3.5个月

平均录用比例:容易

4、METALLURGICALANDMATERIALSTRANSACTIONSA-PHYSICALMETALLURGYANDMATERIALSSCIENCE

issn:1073-5623

2018-2019最新影响因子:1.985

出版地:UNITEDSTATES

出版周期:Monthly

审稿速度:约3.8个月

平均录用比例:较易

5、JournalofAlloysandCompounds《合金与化合物杂志》

投稿比例:5445

4.455%

6、MaterialsLetters《材料快报》

投稿比例:4917

4.023%

7、AppliedSurfaceScience《应用表面科学》

投稿比例:3878

3.173%

8、JournalofPhysicalChemistryC《物理化学杂志,C辑》

投稿比例:3459

2.830%

9、MaterialsScienceandEngineeringAStructuralMaterialsPropertiesMicrostructureandProcessing《材料科学与工程,A辑:结构材料》

投稿比例:3304

2.703%

10、JournalofInorganicMaterials《无机材料学报》

投稿比例:2628

2.150%

国内很多高校都比较认可sci期刊,不管是提升科研能力或者是研究生论文,选择sci论文发表的人员比较多。sci对论文的要求是比较高的,不是什么论文都能发表sci论文的,所以要提前做好准备。

材料科学与工程a期刊

sci材料类杂志推荐:

1、JOURNALOFVACUUMSCIENCE&TECHNOLOGYA

issn:0734-2101

2018-2019最新影响因子:1.833

出版地:UNITEDSTATES

出版周期:Bimonthly

审稿速度:一般,3-6周

平均录用比例:容易

2、MATERIALSSCIENCEANDTECHNOLOGY

issn:0267-0836

2018-2019最新影响因子:1.938

出版地:ENGLAND

出版周期:Monthly

审稿速度:约2.6个月

平均录用比例:容易

3、MATERIALSTRANSACTIONS

issn:1345-9678

2018-2019最新影响因子:0.764

出版地:JAPAN

出版周期:Monthly

审稿速度:约3.5个月

平均录用比例:容易

4、METALLURGICALANDMATERIALSTRANSACTIONSA-PHYSICALMETALLURGYANDMATERIALSSCIENCE

issn:1073-5623

2018-2019最新影响因子:1.985

出版地:UNITEDSTATES

出版周期:Monthly

审稿速度:约3.8个月

平均录用比例:较易

5、JournalofAlloysandCompounds《合金与化合物杂志》

投稿比例:5445

4.455%

6、MaterialsLetters《材料快报》

投稿比例:4917

4.023%

7、AppliedSurfaceScience《应用表面科学》

投稿比例:3878

3.173%

8、JournalofPhysicalChemistryC《物理化学杂志,C辑》

投稿比例:3459

2.830%

9、MaterialsScienceandEngineeringAStructuralMaterialsPropertiesMicrostructureandProcessing《材料科学与工程,A辑:结构材料》

投稿比例:3304

2.703%

10、JournalofInorganicMaterials《无机材料学报》

投稿比例:2628

2.150%

国内很多高校都比较认可sci期刊,不管是提升科研能力或者是研究生论文,选择sci论文发表的人员比较多。sci对论文的要求是比较高的,不是什么论文都能发表sci论文的,所以要提前做好准备。

材料科学与工程

materials science and engineering指的是材料科学与工程期刊,是SCI检索,影响因子 是2.567。SCI(《科学引文索引》,英文全称是Science Citation Index)是美国科学情报研究所出版的一个世界著名的期刊文献检索工具。被SCI收录可能通过直接进入SCI-E数据库检索来确定。如查某人第一作者发表的所有论文,可以直接用其姓名查找,遵照姓全称,名首字母缩写的原则。它收录全世界出版的数、理、化、农、林、医、生命科学、天文、地理、环境、材料、工程技术等自然科学各学科的核心期刊3700多种。通过其严格的选刊标准和评估程序来挑选刊源,使得SCI收录的文献能够全面覆盖全世界最重要和最有影响力的研究成果。SCI从来源期刊数量划分为SCI和SCI-E。SCI指来源刊为3700多种的SCI印刷版和SCI光盘版(SCI Compact Disc Edition, 简称SCI CDE),SCI-E(SCI Expanded)是SCI的扩展库,收录了5600多种来源期刊,可通过国际联机或因特网进行检索。

materials science and engineering 网络 材料科学与工程; 材料科学与工程专业; 材料科学和工程; 材料工程; [例句]Practical teaching system of materials science and engineering major材料科学与工程专业实践教学新体系探讨

  • 索引序列
  • 材料科学与工程毕业论文外文翻译
  • 材料科学毕业论文外文翻译
  • 毕业论文外文翻译材料批阅
  • 材料科学与工程杂志
  • 材料科学与工程a期刊
  • 返回顶部