首页 > 学术发表知识库 > 半导体论文原著英文范文

半导体论文原著英文范文

发布时间:

半导体论文原著英文范文

翻译: Power semiconductor devices and power electronics World's first semiconductor rectifier and the transistor is, when no power semiconductor or microelectronics semiconductor division. In 1958, China began the first research topic Thyristor (originally known as PNPN device). In similar time, the study of integrated circuits began gradually. From semiconductor devices to the two direction. The former became the basis for power electronics, while the latter led to the development and micro-electronics and information electronics. According to the system, power system devices are classified to the machinery, integrated circuits, electronic systems are included. As the semiconductor leader in the electronic systems, coupled with the semiconductor integrated circuits is the main body, which after a long-term evolution of integrated circuits in a number of occasions, has become almost synonymous with semiconductor devices only. At the end of the sixties and early seventies, the country has set off a "SCR" hot. The boom continued a long time, great influence, and therefore still believe that the domestic power of semiconductors is the main SCR. The late seventies, the development of a thyristor family. And called the name of a standardized "thyristor." As the technology to regulate the power switch, so the wear and tear on a small device, so as the energy trump card. Its application is to cover all fields. China was first mooted in 1979, the establishment of Power Electronics Society, IEEE slightly earlier than the establishment of the United States Institute of Power Electronics (Power Electronics Society). Power Electronics Society of China was founded, as a result of the importance of professional development is very rapid. However, because the focal point was the relationship, it does not like the United States become an independent professional institutes, and was subsequently set up part of the China Electrotechnical Society. The translation and definition of Power Electronics for Power Electronics (the original idea was also known as the Power Electronics), and the popularity of power electronics played a role. Mechanical, electrical, electronic and other departments are very concerned about its development. Related to the power semiconductor devices has also been known as the power electronic devices. However, this name is very difficult to find abroad, but the corresponding terms. "Electricity" in reference to electronic access to universal, but also left a number of sequels. People mistakenly believe that only high-power direction is the "power" of the main electronic devices, and the difficulty of the rapid development of the MOSFET as a "power electronics" of the other main. From that point, I would like to use power semiconductor devices as the subject of this article, and power electronic devices can be used to express a broader sense to include other non-semiconductor, including a variety of power electronic devices. The development of power semiconductor devices in three stages The development of power semiconductor devices can be divided into three stages. The first stage is 60 to the seventies, when the various types of thyristors and power transistors Darlington significant development, or what might be called the era of bipolar. Its clients are mainly for industrial applications, including power systems, such as locomotive traction. The second stage is 80 to the nineties, due to the rise of the power MOSFET to power electronics into a new area. Modern 4C booming industry: the Communication, Computer, Consumer, Car (communication, computer, consumer electronics, automobiles) to provide a new vitality. Before and after the twenty-first century, the development of power semiconductor devices have entered the third phase, that is, and integrated circuit combined with a growing stage, Figure 1 and Figure II made to the above description of a simple sum. Of course, first of all need to focus on that here is this: when the continuous development of power semiconductor devices, the previous stage has not been the dominant product from the stage of history. For example, SCR is still an important product. China has in recent years the introduction of ultra-high-power thyristor, thyristor-controlled technology, such as China's major power transmission project, providing a key device. Recently, in considering the introduction of IGCT technology. In this regard it should be said that has gradually moved towards the world. This is our country going on the many major infrastructure. Although the view from the United States, the production of high-power thyristors have been less and less on the economic development of the two countries are not identical. I draw in Figure 2 in power semiconductor devices in both directions in the development. The left side of the bipolar nature of the direction toward the integration of ultra-high-power and direction. The right direction is unipolar, it is more established and integrated circuits of the inseparable relationship between closely. 一般来说是这样的

1. Semiconductor laser also known as laser diodes (LD). Into the 1980s, people absorb the semiconductor development of the latest achievements in physics, using a quantum well (QW) and strained quantum well (SL-QW), and other new structures, the introduction of index modulation Bragg launchers and enhanced modulation Bragg launchers The latest technology, and also the development of the MBE, MOCVD and the CBE, and other new technology of crystal growth, making the new epitaxial growth technology to precisely control the crystal growth, to achieve the precision of atomic layers thick, high-quality grown quantum wells and strained quantum well materials. Thus, to create the LD, the threshold current significant drop significantly improve the conversion efficiency, output power have increased significantly lengthen life. 2. Optoelectronics, the rapid development mainly based on quantum mechanics and materials science in the development, with particular attention is the development of optoelectronic semiconductors. LED, LD Shenqi these electronic devices is the result of this development, particularly the recent development of the organic photoelectric materials, and more is great to promote the progress of the photoelectric materials. Why is the first semiconductor LED » When the electronic conduction band jumped from the top to enter the zone at the time, a certain loss of energy, the energy becomes a photon emission out, is popular to say that the luminescence. Oh:) semiconductor laser is a direct bandgap semiconductor materials constitute the PN junction of material or PIN entered into a small laser. Semiconductor laser work of dozens of substances, has made laser Jia arsenide semiconductor material (GaAs), arsenic Gu (InAs), gallium nitride (GaN), antimony and Gu (InSb), curing the pot (cds), hoof-fu (CdTe), lead selenide (PbSe), tellurium and lead (PhTe ), Al Jia arsenic (A1xGa, -, As), Gu phosphorus arsenic (In-PxAS), and so on. Semiconductor laser incentive There are three main ways, that is, people-Note, optical pump-and-high-energy electron beam incentives. The vast majority of Semiconductor laser is the way of incentives, Notes, or to Pn guitar and forward voltage, so that the guitar in a regional plane stimulated emission, that is a positive bias of the diodes, also known as the semiconductor laser diode laser diode . On the semiconductor, electronics is due in the transition between the band, rather than in discrete energy levels between the transition, the transition energy is not a set value, which makes semiconductor laser output wavelength distribution in a very broad The scope. They issued by the wavelength of between 0.3-34um. Wavelength range of its decision on the materials used by the band gap, the most common is AlGaA: double-heterojunction laser, the output wavelength of 750 - 890nm. The world On the first semiconductor laser is available in 1962, after several decades of research, semiconductor laser achieved a surprising development, and its infrared wavelengths from the red light green to blue, gradually expanding the scope covered, the performance Parameters also have greatly increased their production by the proliferation of technology has to LPE Law Act (LPE), extension of gas (VPE), MBE Act (MBE), MOCVD method (metal organic compounds vapor deposition) , Chemical beam epitaxy (CBE) and their various combined, and other technology. Lasing closure of its current value from a few hundred mA down to a few dozen mA, until the sub-mA, its life expectancy by a few hundred to tens of thousands of hours, and 1 million hours from the initial low-temperature (77 K) under development to operate at room temperature for work, the power output by several milliwatts to kilowatts level (Array) it has a high efficiency, small size, light weight, simple structure, can Power for the direct conversion of laser energy, high power conversion efficiency (has reached more than 10 per cent, up to 50 per cent). Facilitate direct modulation, power-saving advantages, applications growing. At present, the fixed-wavelength laser diode to use the number of Habitat All of the first laser, the application of certain important areas over the past used the other lasers, has gradually been replaced by a semiconductor laser. Semiconductor Laser is the biggest drawback: laser properties affected by temperature, the beam divergence angle greater (in general several times to 20 degrees), so in the direction and coherence of monochrome and other poor areas. But with the With the rapid development of science and technology, the semiconductor laser-depth study positive direction, the performance of semiconductor laser continuously improve. Semiconductor laser power can reach very high level, and beam quality has been greatly improved. Semiconductor laser as to The core semiconductor photonics technology in the 21st century information society will make more progress, play a bigger role.

希望能帮到你:Power semiconductor devices and power electronics World's first semiconductor rectifier and the transistor is, when no power semiconductor or microelectronics semiconductor division. In 1958, China began the first research topic Thyristor (originally known as PNPN device). In similar time, the study of integrated circuits began gradually. From semiconductor devices to the two direction. The former became the basis for power electronics, while the latter led to the development and micro-electronics and information electronics. According to the system, power system devices are classified to the machinery, integrated circuits, electronic systems are included. As the semiconductor leader in the electronic systems, coupled with the semiconductor integrated circuits is the main body, which after a long-term evolution of integrated circuits in a number of occasions, has become almost synonymous with semiconductor devices only. At the end of the sixties and early seventies, the country has set off a "SCR" hot. The boom continued a long time, great influence, and therefore still believe that the domestic power of semiconductors is the main SCR. The late seventies, the development of a thyristor family. And called the name of a standardized "thyristor." As the technology to regulate the power switch, so the wear and tear on a small device, so as the energy trump card. Its application is to cover all fields. China was first mooted in 1979, the establishment of Power Electronics Society, IEEE slightly earlier than the establishment of the United States Institute of Power Electronics (Power Electronics Society). Power Electronics Society of China was founded, as a result of the importance of professional development is very rapid. However, because the focal point was the relationship, it does not like the United States become an independent professional institutes, and was subsequently set up part of the China Electrotechnical Society. The translation and definition of Power Electronics for Power Electronics (the original idea was also known as the Power Electronics), and the popularity of power electronics played a role. Mechanical, electrical, electronic and other departments are very concerned about its development. Related to the power semiconductor devices has also been known as the power electronic devices. However, this name is very difficult to find abroad, but the corresponding terms. "Electricity" in reference to electronic access to universal, but also left a number of sequels. People mistakenly believe that only high-power direction is the "power" of the main electronic devices, and the difficulty of the rapid development of the MOSFET as a "power electronics" of the other main. From that point, I would like to use power semiconductor devices as the subject of this article, and power electronic devices can be used to express a broader sense to include other non-semiconductor, including a variety of power electronic devices. The development of power semiconductor devices in three stages The development of power semiconductor devices can be divided into three stages. The first stage is 60 to the seventies, when the various types of thyristors and power transistors Darlington significant development, or what might be called the era of bipolar. Its clients are mainly for industrial applications, including power systems, such as locomotive traction. The second stage is 80 to the nineties, due to the rise of the power MOSFET to power electronics into a new area. Modern 4C booming industry: the Communication, Computer, Consumer, Car (communication, computer, consumer electronics, automobiles) to provide a new vitality. Before and after the twenty-first century, the development of power semiconductor devices have entered the third phase, that is, and integrated circuit combined with a growing stage, Figure 1 and Figure II made to the above description of a simple sum. Of course, first of all need to focus on that here is this: when the continuous development of power semiconductor devices, the previous stage has not been the dominant product from the stage of history. For example, SCR is still an important product. China has in recent years the introduction of ultra-high-power thyristor, thyristor-controlled technology, such as China's major power transmission project, providing a key device. Recently, in considering the introduction of IGCT technology. In this regard it should be said that has gradually moved towards the world. This is our country going on the many major infrastructure. Although the view from the United States, the production of high-power thyristors have been less and less on the economic development of the two countries are not identical. I draw in Figure 2 in power semiconductor devices in both directions in the development. The left side of the bipolar nature of the direction toward the integration of ultra-high-power and direction. The right direction is unipolar, it is more established and integrated circuits of the inseparable relationship between closely.

有很多的同学在写英语 作文 的时候,也会写一些经典的议论文,我整理了相关范文,希望会对大家有所帮助!

英语作文范文带中文翻译

Manyyearsago,themovieabouttheyouthbecameverypopular,everyyear,wecanseemanyhotmoviesabouttheprotagonist’spassedyouth.Peopleliketorecalltheirpassedyouth,whichmakessuchmoviessellgood.ButIfindthecommonthingsaboutthesemovies,alltheprotagonists’youthareaboutfighting,loveandothernegativethings.Iunderstandthedirectors’intention,theywanttotellpeopleyouthisnotperfectandhavingpities.Ofcoursemovieisexaggerating,therealyouthisaboutstudying,atleast,mostpeoplehaveworkedsohardtogetintotheiridealcolleges.Whatthemoviesdescribemakeupsomepeople’syouth,forwhichtheydon’thavethechancetoexperience.Weshouldnotbemisledbythesemovies,fortheteenagers,theirjobistostudy,sothattheycanhaveabrightfuture.

【翻译】很多年以前,关于青春的电影很受欢迎,此后每年,我们都可以看到很多热门电影是关于主人公逝去的青春。人们喜欢回忆他们逝去的青春,这才是让这类电影好卖的原因。但是我发现了这些电影的共同点,那就是所有的主人公的青春都是关于大家,恋爱和其他消极的东西。我明白导演们的意图,他们想要告诉人们青春是不完美的,存在遗憾。当然电影是夸张化的,真正的青春是关于学习,至少,大部分人是如此努力的学习,为了进入理想的大学。电影所刻画的弥补了一些人的青春,对于他们没有机会去体验这些东西。我们不应该被电影误导,对于青少年来说,他们的工作是学习,这样他们才能有一个美好的未来。

高中英语作文范文80词

IlikeEnglish.IthinkIcansharemyEnglishlearningmethodwithyou.Firstofall,developinterestonEnglish.Mywaytomakeitistowatchmoviesfromabroad.Atfirst,Iwillwatchthemoviewithsubtitle.ThenIwillremovethesubtitle,onlyEnglishleft.Gradually,showgreatinterestinEnglish.Secondly,recitevocabularies.VocabularyisthenecessaryfoundationtostartlearnEnglish.Thistimeyouhavetoforceyourselftorememberwords.Thirdly,understandbasicgrammarthoroughly.ItishardformetounderstandthemeaningofasentenceifIdon’tknowthebasicgrammar.Lastbutnotleastistospeakmore.Thebasicpurposetolearnalanguageistocommunicate.SotalkinEnglishasmuchasyoucan.Anddon’tworryaboutlosingface,becauseeveryonemakesmistakes.Thosearemymethods.

我喜欢英语。我觉得我可以和你分享一下我的英语学习方法。首先,培养对英语的兴趣。我的方法是看国外电影。一开始,我会留着字幕一起看。之后我就会不看字幕,只留英文。渐渐地,我对英语表现出极大的兴趣。其次,背诵词汇。词汇是学习英语的必要根基。这一点你只能强迫自己去背了。第三,完全理解基本语法。如果我不懂基本语法,我会很难理解一整个句子的意思。最后但并非最不重要的是要多说。学习语言的基本目的就是进行沟通。因此,尽可能多的用英语交谈。不要担心丢脸,因为每个人都会犯错误的。这些就是我的方法。

英语作文100词左右带翻译——珍惜时间

ChineseSpringFestivalcelebratingtheendofwinterandthewarmthofspring.Itbeganinthelastdayofthelunaryear,endinthe15thdayoflunarNewYear,alsoistheLanternFestival.DuringtheSpringFestival,peopleuseredlanternandSpringFestivalcoupletsdecorateahouse,putonallkindsofcoloredclothes,often

AnEnglishproverbsaysthattimeismoney.Iconsiderit(this)wrong.Why?Becauseweallknowthatwecanearnmoneybeworkbutcannotinanywaygetbacktime(inanyway).Forthisreason,wemay(can)saythattimeismorevaluablethanmoney.

Manypeopledonotknowthevalueoftime.It(this)isindeedagreatpity.Wemustbear(keep)inmindthatwastingtimeisequaltowastingyourlife.

【翻译】英国有句谚语说,时间就是金钱。我认为这是不对的。为什么?因为我们大家都知道我们能够用工作赚钱,但无论如何却无法把时间争取回来。基于此种理由,我们可以说时间比钱钱更宝贵。

许多人不知爱惜时光。这确实是可惜的。我们必须记住浪费时间等于浪费生命。

半导体英文论文

半导体物理学的迅速发展及随之而来的晶体管的发明,使科学家们早在50年代就设想发明半导体激光器,60年代早期,很多小组竞相进行这方面的研究。在理论分析方面,以莫斯科列别捷夫物理研究所的尼古拉·巴索夫的工作最为杰出。在1962年7月召开的固体器件研究国际会议上,美国麻省理工学院林肯实验室的两名学者克耶斯(Keyes)和奎斯特(Quist)报告了砷化镓材料的光发射现象,这引起通用电气研究实验室工程师哈尔(Hall)的极大兴趣,在会后回家的火车上他写下了有关数据。回到家后,哈尔立即制定了研制半导体激光器的计划,并与其他研究人员一道,经数周奋斗,他们的计划获得成功。像晶体二极管一样,半导体激光器也以材料的p-n结特性为敞弗搬煌植号邦铜鲍扩基础,且外观亦与前者类似,因此,半导体激光器常被称为二极管激光器或激光二极管。早期的激光二极管有很多实际限制,例如,只能在77K低温下以微秒脉冲工作,过了8年多时间,才由贝尔实验室和列宁格勒(现在的圣彼得堡)约飞(Ioffe)物理研究所制造出能在室温下工作的连续器件。而足够可靠的半导体激光器则直到70年代中期才出现。半导体激光器体积非常小,最小的只有米粒那样大。工作波长依赖于激光材料,一般为0.6~1.55微米,由于多种应用的需要,更短波长的器件在发展中。据报导,以Ⅱ~Ⅳ价元素的化合物,如ZnSe为工作物质的激光器,低温下已得到0.46微米的输出,而波长0.50~0.51微米的室温连续器件输出功率已达10毫瓦以上。但迄今尚未实现商品化。光纤通信是半导体激光可预见的最重要的应用领域,一方面是世界范围的远距离海底光纤通信,另一方面则是各种地区网。后者包括高速计算机网、航空电子系统、卫生通讯网、高清晰度闭路电视网等。但就目前而言,激光唱机是这类器件的最大市场。其他应用包括高速打印、自由空间光通信、固体激光泵浦源、激光指示,及各种医疗应用等。晶体管利用一种称为半导体的材料的特殊性能。电流由运动的电子承载。普通的金属,如铜是电的好导体,因为它们的电子没有紧密的和原子核相连,很容易被一个正电荷吸引。其它的物体,例如橡胶,是绝缘体 --电的不良导体--因为它们的电子不能自由运动。半导体,正如它们的名字暗示的那样,处于两者之间,它们通常情况下象绝缘体,但是在某种条件下会导电。

《半导体学报》是中国电子学会和中国科学院半导体研究所主办的学术刊物。它报道半导体物理学、半导体科学技术和相关科学技术领域内最新的科研成果和技术进展,内容包括半导体超晶格和微结构物理,半导体材料物理,包括量子点和量子线等材料在内的新型半导体材料的生长及性质测试,半导体器件物理,新型半导体器件,集成电路的CAD设计和研制,新工艺,半导体光电子器件和光电集成,与半导体器件相关的薄膜生长工艺,性质和应用等等。本刊与物理类期刊和电子类期刊不同,是以半导体和相关材料为中心的,从物理,材料,器件到应用的,从研究到技术开发的,跨越物理和信息两个学科的综合性学术刊物。《半导体学报》发表中、英文稿件。《半导体学报》被世界四大检索系统(美国工程索引(EI),化学文摘(CA),英国科学文摘(SA),俄罗斯文摘杂志(РЖ))收录。《半导体学报》1980年创刊。现为月刊,每期190页左右,国内外公开发行。每期均有英文目次,每篇中文论文均有英文摘要。《半导体学报》主编为王守武院士。国内定价为35元。主要读者对象是从事半导体科学研究、技术开发、生产及相关学科的科技人员、管理人员和大专院校的师生。国内读者可直接到全国各地邮局订阅。

The power semiconductor device and the micro electron power semiconductor device is in the semiconductor device important link, it and the micro electron component relations is close, because the micro electron component required power semiconductor device forms a complete set provides its power source and the execution system.If develops rapidly computer, when CPU from 286,486, to gallops I, II, III, IV…When development, to took the power source the power semiconductor request increasingly is also harsh.For example the present is developing the voltage to be smaller than 1 volt, on the electric current hundred amperes power sources, this must develop the newest MOSFET component to be able to meet the needs.In order to achieve these renew unceasingly the performance index, the power semiconductor device must use the micro electron component similar fine craft.This will also be this article is detailed narrates. The power semiconductor device and the integrated circuit close union, in the one has arranged in order four aspects in the chart: Namely 1) power and micro electron component in chip manufacture craft already day by day close: The power MOS component in order to achieve a better performance, for example requests to pass condition the resistance lowly, its craft already from 20 year ago several microns technologies rapidly to submicron even deep submicron development.This and the micro electron component development is consistent. 2) the MOS component seal technology is also approaching to the integrated circuit.These for years, the power MOS component has used has inverted (Flip) likely, ball grid array (BGA) and packing forms and so on multi-chip module (MCM).These all are the quite new integrated circuit packing forms. 3) looked from the component structure that, makes the power MOS component and the integrated circuit in the identical chip perhaps the identical packing, is one of recent development directions.Therefore the power semiconductor device equates simply for established separately the component no longer to be appropriate.Take the IR Corporation product as the example, the power integrated circuit, perhaps and IC does in the same place power component, as well as the special advanced component, held its product one above the half. 4) the comprehensive solution (Total Solution) is each kind of component finally conceives.Seeks the component the function integrity, in the solution application all questions is the component manufacturer's ideal.Had the integrated circuit to enter the power semiconductor device, this kind of comprehensive solution plan was easier to realize.Not only to the low power direction is so, even the high efficiency direction is also pursuing a greater integration rate and the comprehensive solution.Certainly, contains all functions by a component not necessarily forever is the preferred plan.For example must consider the rate of finished products the loss, but also must pay attention to the protection customer to develop the electric circuit on own initiative the enthusiasm.

半导体学报

这个不属于二次元如果你要认证的话,不要选择这个。

本刊与物理类期刊和电子类期刊不同,是以半导体和相关材料为中心的,从物理,材料,器件到应用的,从研究到技术开发的,跨越物理和信息两个学科的综合性学术刊物。《半导体学报》发表中、英文稿件。《半导体学报》被世界四大检索系统(美国工程索引(EI),化学文摘(CA),英国科学文摘(SA),俄罗斯文摘杂志(РЖ))收录。属于4区

确实是的,这个学报的文章已经纳入了sci的文章范畴里面的。半导体学报这个应该是按字按这个应该能更好地将学习,如果不随机的话,他们这个应该是就很难,有一些技术应该是不不能刚刚好的技能先搬下来的东西,所以应该是学习的。

《半导体学报》是中国电子学会和中国科学院半导体研究所主办的学术刊物。它报道半导体物理学、半导体科学技术和相关科学技术领域内最新的科研成果和技术进展,内容包括半导体超晶格和微结构物理,半导体材料物理,包括量子点和量子线等材料在内的新型半导体材料的生长及性质测试,半导体器件物理,新型半导体器件,集成电路的CAD设计和研制,新工艺,半导体光电子器件和光电集成,与半导体器件相关的薄膜生长工艺,性质和应用等等。本刊与物理类期刊和电子类期刊不同,是以半导体和相关材料为中心的,从物理,材料,器件到应用的,从研究到技术开发的,跨越物理和信息两个学科的综合性学术刊物。《半导体学报》发表中、英文稿件。《半导体学报》被世界四大检索系统(美国工程索引(EI),化学文摘(CA),英国科学文摘(SA),俄罗斯文摘杂志(РЖ))收录。《半导体学报》1980年创刊。现为月刊,每期190页左右,国内外公开发行。每期均有英文目次,每篇中文论文均有英文摘要。《半导体学报》主编为王守武院士。国内定价为35元。主要读者对象是从事半导体科学研究、技术开发、生产及相关学科的科技人员、管理人员和大专院校的师生。国内读者可直接到全国各地邮局订阅。

半导体小论文

题目: 新型扳手星期天,我和哥哥一起去换自行车外胎,让店主帮他换,修理的工人拿来一个,工具包里放着许多扳手,又从中找出M8、M6、M5、M4的扳。应为自行车结构复杂所以用扳手松紧螺丝非常麻烦,白来白去,弄了半天,还是有几颗上的不紧,看得我们都着急。修理工人只好又费力的加工了一番,终于完成了,可是他已经满头大汗了。我见后,思考着有没有一种改变扳手的使用原理,使它更方便,而又能配有多样的扳头呢?我又查了许多关于扳手的知识,忽然,一个发明的火花闪过我的脑海:如果做出一种多用扳手,在活动手柄和扶手上旋转多种规格的扳头可以选择,可以旋转和垂直使用,多好呢!这种半首的制作方法很简单,找4个所需要的扳头,用铁环固定在活动手柄和扶手上。四种扳头就可以自由旋转,手柄可以垂直放置了。这样,旋转速度快而且省时,又可以水平放置,使用时扭力又大,多方便啊!这个作品的用法也很简单:垂直放置,当放进螺丝钉或放松开螺丝钉旋出时,这时用力不大,可以转动活动手柄垂直放置,一手夹住扶手,一手可以快速旋转,这时用力最小,可以在顷刻之间快速旋转下螺丝钉;水平放置,用力不变的情况,力聚改变——加长,可以使扭力工具增大,用于夹紧或夹紧后用力松开螺丝钉的一刻;还有四种规格可以选择,不需要更换,只需要旋转至所需要的规格即可。四种规格连在一个整体上,不容易丢失。这种扳手出来后,只要轻轻松松的就解决辛苦的上下螺丝麻烦了。希望大家能够在生活中多思考,多长一双发现创新的眼睛,相信将来你也可以创造出一些有帮助人们的想法。(这是以前自己修改的一片科技小论文,希望能帮上你。)

我今年近7O岁了,可以说半导体陪伴着我们长大,从小就爱听,听少儿节目,听老电影,听新闻,听小说,印象最深的是(欧阳海之歌)等等许多许多,收获很大,获得了知识,享受了快乐,直到现在我还是爱听半导体,现在主要听小品,相声,养生知识等等,因为半导体听起来方便,也不费眼晴,挺好的!

半导体射线探测器最初约年研究核射线在晶体上作用, 表明射线的存在引起导电现象。但是, 由于测得的幅度小、存在极化现象以及缺乏合适的材料, 很长时间以来阻碍用晶体作为粒子探测器。就在这个时期, 气体探测器象电离室、正比计数器、盖革计数器广泛地发展起来。年, 范· 希尔顿首先较实际地讨论了“ 传导计数器” 。在晶体上沉积两个电极, 构成一种固体电离室。为分离人射粒子产生的载流子, 须外加电压。许多人试验了各种各样的晶体。范· 希尔顿和霍夫施塔特研究了这类探测器的主要性质, 产生一对电子一空穴对需要的平均能量, 对射线作用的响应以及电荷收集时间。并看出这类探测器有一系列优点由于有高的阻止能力, 人射粒子的射程小硅能吸收质子, 而质子在空气中射程为, 产生一对载流子需要的能量比气体小十倍, 在产生载流子的数目上有小的统计涨落, 又比气体计数器响应快。但是, 尽管霍夫施塔特作了许多实验,使用这种探侧器仍受一些限制, 像内极化效应能减小外加电场和捕捉载流子, 造成电荷收集上的偏差。为了避免捕捉载流子, 需外加一个足够强的电场。结果, 在扩散一结, 或金属半导体接触处形成一空间电荷区。该区称为耗尽层。它具有不捕捉载流子的性质。因而, 核射线人射到该区后, 产生电子一空穴载流子对, 能自由地、迅速向电极移动, 最终被收集。测得的脉冲高度正比于射线在耗尽层里的能量损失。要制成具有这种耗尽层器件是在年以后, 这与制成很纯、长寿命的半导体材料有关。麦克· 凯在贝尔电话实验室, 拉克· 霍罗威茨在普杜厄大学首先发展了这类探测器。年, 麦克· 凯用反偏锗二极管探测“ 。的粒子, 并研究所产生的脉冲高度随所加偏压而变。不久以后, 拉克· 霍罗威茨及其同事者测量一尸结二极管对。的粒子, “ , 的刀粒子的反应。麦克· 凯进行了类似的实验, 得到计数率达, 以及产生一对空穴一电子对需要的能量为土。。麦克· 凯还观察到,加于硅、锗一结二极管的偏压接近击穿电压时, 用一粒子轰击, 有载流子倍增现象。在普杜厄大学, 西蒙注意到用粒子轰击金一锗二极管时产生的脉冲。在此基础上, 迈耶证实脉冲幅度正比于人射粒子的能量, 用有效面积为二“ 的探测器, 测。的粒子, 得到的分辨率为。艾拉佩蒂安茨研究了一结二极管的性质, 载维斯首先制备了金一硅面垒型探测器。年以后, 许多人做了大量工作, 发表了广泛的著作。沃尔特等人讨论金一锗面垒型探测器的制备和性质, 制成有效面积为“ 的探测器, 并用探测器, 工作在,测洲的粒子, 分辨率为。迈耶完成一系列锗、硅面垒型探测器的实验用粒子轰击。年, 联合国和欧洲的一些实验室,制备和研究这类探测器。在华盛顿、加丁林堡、阿什维尔会议上发表一些成果。如一结和面垒探测器的电学性质, 表面状态的影响, 减少漏电流, 脉冲上升时间以及核物理应用等等。这种探测器的发展还与相连的电子器件有很大关系。因为, 要避免探测器的输出脉冲高度随所加偏压而变, 需一种带电容反馈的电荷灵敏放大器。加之, 探测器输出信号幅度很小, 必需使用低噪声前置放大器, 以提高信噪比。为一一满足上述两个条件, 一般用电子管或晶体管握尔曼放大器, 线幅贡献为。在使用场效应晶体管后, 进一步改善了分辨率。为了扩大这种探测器的应用, 需增大有效体积如吸收电子需厚硅。采用一般工艺限制有效厚度, 用高阻硅、高反偏压获得有效厚度约, 远远满足不了要求。因此, 年, 佩尔提出一种新方法, 大大推动这种探测器的发展。即在型半导体里用施主杂质补偿受主杂质, 能获得一种电阻率很高的材料虽然不是本征半导体。因为铿容易电离, 铿离子又有高的迁移率, 就选铿作为施主杂质。制备的工艺过程大致如下先把铿扩散到型硅表面, 构成一结构, 加上反向偏压, 并升温, 锉离一子向区漂移, 形成一一结构, 有效厚度可达。这种探测器很适于作转换电子分光器, 和多道幅度分析器组合, 可研究短寿命发射, 但对卜射线的效率低, 因硅的原子序数低。为克服这一点, 采用锉漂移入锗的方法锗的原子序数为。年, 弗莱克首先用型锗口,按照佩尔方法, 制成半导体探测器,铿漂移长度为, 测‘“ 、的的射线, 得到半峰值宽度为直到年以前, 所有的探测器都是平面型, 有效体积受铿通过晶体截面积到“和补偿厚度的限制获得补偿厚度约, 漂移时间要个月, 因此, 有效体积大于到” 是困难的。为克服这种缺点, 进一步发展了同轴型探测器。年, 制成高分辨率大体积同轴探测器。之后, 随着电子工业的发展而迅速发展。有效体积一般可达几十“ , 最大可达一百多“ , 很适于一、一射线的探测。年以后广泛地用于各个部门。最近几年, 半导体探测器在理论研究和实际应用上都有很大发展。

半导体的应用英语小论文

First, semiconductor laser based on the theory Although some literature that the author created in their respective semiconductor lasers in the important role played by, but the fact is no one on semiconductor laser to the emergence of a complete theoretical basis, nor an early worker for the realization of the study and solve the semiconductor laser All the technology issues. Therefore, it can be that the semiconductor laser is the emergence and development of many co-workers on the crystallization of wisdom. As early as in September 1953, the U.S. Feng. Newman (John Von Neumann) in his unpublished papers a manuscript in the first exposition in the semiconductor produced by stimulated emission of possibility that can be injected to the PN junction Are in the minority in mind to achieve stimulated emission; calculated according to the two brilliant transition zone between the radiation rate. Bading concluded Feng 'Newman on the basic theory of semiconductor laser after that. Through various means (for example, to inject a small number of PN junction carrier) disturbance belt electronic price band Hole and the balance of concentration, according to which non-minority-carrier in the compound and a photon. The rate of its radiation can be like amplifiers, with the same frequency of electromagnetic radiation. It should be said to be laser (Liser) the earliest concept of this than Gordon (Corden) and the Andean soup (Towes) reported by the quantum of microwave amplifiers (Maser) to the concept as early as 2001. Ecsle Normale Superieure and Pierre Aigrain in 1956 had encouraged the U.S. radio company [RCA] Pankove start manufacturing the semiconductor laser. June 1958 in Brussels of an international conference on the statement, first published in the semiconductor be coherent light of the views, but it was not until 1964 he published articles on the theory of semiconductor lasers and experimental work. Soviet Lebedev Physical Institute Basov (Basov), and so on the outstanding contribution of semiconductor lasers, he is the first time in 1958 published an article in the semiconductor raised in the realization of negative-state (that is, population inversion) on the theory . In 1961 they published the first carrier will be injected into the semiconductor PN junction to achieve the "injection laser" exposition and demonstration in the tunnel diodes as high as in Jane and the PN junction to achieve population inversion (which is Produced by stimulated emission of the necessary conditions for) the possibility, but also that active high-density areas around the most active carrier of the border areas on both sides of the refractive index of a difference, creating optical waveguide effect. After these theories to the emergence of semiconductor laser has played a positive role in promoting, Basuo Fu therefore be Nobel Prize. However, in 1963, published by the Basuo Fu, and so on semiconductor laser experiment with the theory of the article is more active semiconductor materials for Ge. And La Vieques (Lax) in 1959 made direct bandgap semiconductor (such as GaAs, InP, etc.) than the indirect bandgap semiconductor (such as Ge, Si, etc.) is more suited to produce stimulated emission of material. This important thesis for the accuracy of which appear later confirmed by the semiconductor laser. 1960 Bell Labs of Wembley (Boyle) and Thomson put forward in parallel with the semiconductor and as a cleavage-feedback resonator, the strengthening of the laser is essential. Laser optical resonator is an integral part. 1961 Bernard (Bernard) and Dulafuge (DM raffo "rg)-use fee. Derived the concept of energy meters in the semiconductor active than in the medium to achieve population inversion conditions on the condition that the following year The success of semiconductor laser research has played an important guiding role of theory. To sum up, in theory, that should be in the semiconductor laser direct bandgap semiconductor PN junction, with the injection-carrier method by Bernard Dulafuge a condition under the control of population inversion, from electronics and Hole compound generated by the laser radiation in the optical resonant cavity oscillation be enlarged and, finally have a coherent laser output.

First, semiconductor laser based on the theoryAlthough some literature that the author created in their respective semiconductor lasers in the important role played by, but the fact is no one on semiconductor laser to the emergence of a complete theoretical basis, nor an early worker for the realization of the study and solve the semiconductor laser All the technology issues. Therefore, it can be that the semiconductor laser is the emergence and development of many co-workers on the crystallization of wisdom.As early as in September 1953, the U.S. Feng. Newman (John Von Neumann) in his unpublished papers a manuscript in the first exposition in the semiconductor produced by stimulated emission of possibility that can be injected to the PN junction Are in the minority in mind to achieve stimulated emission; calculated according to the two brilliant transition zone between the radiation rate. Bading concluded Feng 'Newman on the basic theory of semiconductor laser after that. Through various means (for example, to inject a small number of PN junction carrier) disturbance belt electronic price band Hole and the balance of concentration, according to which non-minority-carrier in the compound and a photon. The rate of its radiation can be like amplifiers, with the same frequency of electromagnetic radiation. It should be said to be laser (Liser) the earliest concept of this than Gordon (Corden) and the Andean soup (Towes) reported by the quantum of microwave amplifiers (Maser) to the concept as early as 2001.Ecsle Normale Superieure and Pierre Aigrain in 1956 had encouraged the U.S. radio company [RCA] Pankove start manufacturing the semiconductor laser. June 1958 in Brussels of an international conference on the statement, first published in the semiconductor be coherent light of the views, but it was not until 1964 he published articles on the theory of semiconductor lasers and experimental work. Soviet Lebedev Physical Institute Basov (Basov), and so on the outstanding contribution of semiconductor lasers, he is the first time in 1958 published an article in the semiconductor raised in the realization of negative-state (that is, population inversion) on the theory . In 1961 they published the first carrier will be injected into the semiconductor PN junction to achieve the "injection laser" exposition and demonstration in the tunnel diodes as high as in Jane and the PN junction to achieve population inversion (which is Produced by stimulated emission of the necessary conditions for) the possibility, but also that active high-density areas around the most active carrier of the border areas on both sides of the refractive index of a difference, creating optical waveguide effect. After these theories to the emergence of semiconductor laser has played a positive role in promoting, Basuo Fu therefore be Nobel Prize. However, in 1963, published by the Basuo Fu, and so on semiconductor laser experiment with the theory of the article is more active semiconductor materials for Ge. And La Vieques (Lax) in 1959 made direct bandgap semiconductor (such as GaAs, InP, etc.) than the indirect bandgap semiconductor (such as Ge, Si, etc.) is more suited to produce stimulated emission of material. This important thesis for the accuracy of which appear later confirmed by the semiconductor laser.1960 Bell Labs of Wembley (Boyle) and Thomson put forward in parallel with the semiconductor and as a cleavage-feedback resonator, the strengthening of the laser is essential. Laser optical resonator is an integral part.1961 Bernard (Bernard) and Dulafuge (DM raffo "rg)-use fee. Derived the concept of energy meters in the semiconductor active than in the medium to achieve population inversion conditions on the condition that the following year The success of semiconductor laser research has played an important guiding role of theory.To sum up, in theory, that should be in the semiconductor laser direct bandgap semiconductor PN junction, with the injection-carrier method by Bernard Dulafuge a condition under the control of population inversion, from electronics and Hole compound generated by the laser radiation in the optical resonant cavity oscillation be enlarged and, finally have a coherent laser output.

希望能帮到你:Power semiconductor devices and power electronics World's first semiconductor rectifier and the transistor is, when no power semiconductor or microelectronics semiconductor division. In 1958, China began the first research topic Thyristor (originally known as PNPN device). In similar time, the study of integrated circuits began gradually. From semiconductor devices to the two direction. The former became the basis for power electronics, while the latter led to the development and micro-electronics and information electronics. According to the system, power system devices are classified to the machinery, integrated circuits, electronic systems are included. As the semiconductor leader in the electronic systems, coupled with the semiconductor integrated circuits is the main body, which after a long-term evolution of integrated circuits in a number of occasions, has become almost synonymous with semiconductor devices only. At the end of the sixties and early seventies, the country has set off a "SCR" hot. The boom continued a long time, great influence, and therefore still believe that the domestic power of semiconductors is the main SCR. The late seventies, the development of a thyristor family. And called the name of a standardized "thyristor." As the technology to regulate the power switch, so the wear and tear on a small device, so as the energy trump card. Its application is to cover all fields. China was first mooted in 1979, the establishment of Power Electronics Society, IEEE slightly earlier than the establishment of the United States Institute of Power Electronics (Power Electronics Society). Power Electronics Society of China was founded, as a result of the importance of professional development is very rapid. However, because the focal point was the relationship, it does not like the United States become an independent professional institutes, and was subsequently set up part of the China Electrotechnical Society. The translation and definition of Power Electronics for Power Electronics (the original idea was also known as the Power Electronics), and the popularity of power electronics played a role. Mechanical, electrical, electronic and other departments are very concerned about its development. Related to the power semiconductor devices has also been known as the power electronic devices. However, this name is very difficult to find abroad, but the corresponding terms. "Electricity" in reference to electronic access to universal, but also left a number of sequels. People mistakenly believe that only high-power direction is the "power" of the main electronic devices, and the difficulty of the rapid development of the MOSFET as a "power electronics" of the other main. From that point, I would like to use power semiconductor devices as the subject of this article, and power electronic devices can be used to express a broader sense to include other non-semiconductor, including a variety of power electronic devices. The development of power semiconductor devices in three stages The development of power semiconductor devices can be divided into three stages. The first stage is 60 to the seventies, when the various types of thyristors and power transistors Darlington significant development, or what might be called the era of bipolar. Its clients are mainly for industrial applications, including power systems, such as locomotive traction. The second stage is 80 to the nineties, due to the rise of the power MOSFET to power electronics into a new area. Modern 4C booming industry: the Communication, Computer, Consumer, Car (communication, computer, consumer electronics, automobiles) to provide a new vitality. Before and after the twenty-first century, the development of power semiconductor devices have entered the third phase, that is, and integrated circuit combined with a growing stage, Figure 1 and Figure II made to the above description of a simple sum. Of course, first of all need to focus on that here is this: when the continuous development of power semiconductor devices, the previous stage has not been the dominant product from the stage of history. For example, SCR is still an important product. China has in recent years the introduction of ultra-high-power thyristor, thyristor-controlled technology, such as China's major power transmission project, providing a key device. Recently, in considering the introduction of IGCT technology. In this regard it should be said that has gradually moved towards the world. This is our country going on the many major infrastructure. Although the view from the United States, the production of high-power thyristors have been less and less on the economic development of the two countries are not identical. I draw in Figure 2 in power semiconductor devices in both directions in the development. The left side of the bipolar nature of the direction toward the integration of ultra-high-power and direction. The right direction is unipolar, it is more established and integrated circuits of the inseparable relationship between closely.

Power semiconductor devices and power electronics World's first semiconductor rectifier and the transistor is, when no power semiconductor or microelectronics semiconductor division. In 1958, China began the first research topic Thyristor (originally known as PNPN device). In similar time, the study of integrated circuits began gradually. From semiconductor devices to the two direction. The former became the basis for power electronics, while the latter led to the development and micro-electronics and information electronics. According to the system, power system devices are classified to the machinery, integrated circuits, electronic systems are included. As the semiconductor leader in the electronic systems, coupled with the semiconductor integrated circuits is the main body, which after a long-term evolution of integrated circuits in a number of occasions, has become almost synonymous with semiconductor devices only. At the end of the sixties and early seventies, the country has set off a "SCR" hot. The boom continued a long time, great influence, and therefore still believe that the domestic power of semiconductors is the main SCR. The late seventies, the development of a thyristor family. And called the name of a standardized "thyristor." As the technology to regulate the power switch, so the wear and tear on a small device, so as the energy trump card. Its application is to cover all fields. China was first mooted in 1979, the establishment of Power Electronics Society, IEEE slightly earlier than the establishment of the United States Institute of Power Electronics (Power Electronics Society). Power Electronics Society of China was founded, as a result of the importance of professional development is very rapid. However, because the focal point was the relationship, it does not like the United States become an independent professional institutes, and was subsequently set up part of the China Electrotechnical Society. The translation and definition of Power Electronics for Power Electronics (the original idea was also known as the Power Electronics), and the popularity of power electronics played a role. Mechanical, electrical, electronic and other departments are very concerned about its development. Related to the power semiconductor devices has also been known as the power electronic devices. However, this name is very difficult to find abroad, but the corresponding terms. "Electricity" in reference to electronic access to universal, but also left a number of sequels. People mistakenly believe that only high-power direction is the "power" of the main electronic devices, and the difficulty of the rapid development of the MOSFET as a "power electronics" of the other main. From that point, I would like to use power semiconductor devices as the subject of this article, and power electronic devices can be used to express a broader sense to include other non-semiconductor, including a variety of power electronic devices. The development of power semiconductor devices in three stages The development of power semiconductor devices can be divided into three stages. The first stage is 60 to the seventies, when the various types of thyristors and power transistors Darlington significant development, or what might be called the era of bipolar. Its clients are mainly for industrial applications, including power systems, such as locomotive traction. The second stage is 80 to the nineties, due to the rise of the power MOSFET to power electronics into a new area. Modern 4C booming industry: the Communication, Computer, Consumer, Car (communication, computer, consumer electronics, automobiles) to provide a new vitality. Before and after the twenty-first century, the development of power semiconductor devices have entered the third phase, that is, and integrated circuit combined with a growing stage, Figure 1 and Figure II made to the above description of a simple sum. Of course, first of all need to focus on that here is this: when the continuous development of power semiconductor devices, the previous stage has not been the dominant product from the stage of history. For example, SCR is still an important product. China has in recent years the introduction of ultra-high-power thyristor, thyristor-controlled technology, such as China's major power transmission project, providing a key device. Recently, in considering the introduction of IGCT technology. In this regard it should be said that has gradually moved towards the world. This is our country going on the many major infrastructure. Although the view from the United States, the production of high-power thyristors have been less and less on the economic development of the two countries are not identical. I draw in Figure 2 in power semiconductor devices in both directions in the development. The left side of the bipolar nature of the direction toward the integration of ultra-high-power and direction. The right direction is unipolar, it is more established and integrated circuits of the inseparable relationship between closely.

  • 索引序列
  • 半导体论文原著英文范文
  • 半导体英文论文
  • 半导体学报
  • 半导体小论文
  • 半导体的应用英语小论文
  • 返回顶部