阶线性微分方程的一般形式为这里假设系数 都在区间 上连续. 当 时方程(3.22)变为齐次线性微分方程若令则方程(3.22)可以转换成一阶线性微分方程组其中当 时,方程组(3.25)变为齐次线性微分方程组显然,由方程(3.22)的任一解 可得到方程组(3.25)的一个解反之,方程组(3.25)的任一解的第一个分量就是方程(3.22)的解. 特别地,方程(3.22)满足初值条件的解在区间 上存在并且唯一. 考虑方程它等价于方程组这里 可以验证为方程组(3.29)对应的齐次线性方程组的基解矩阵. 并且利用常数变易公式可得方程组(3.29)的通解为因此方程(3.28)的通解为其中 为任意常数. 由于 阶线性微分方程(3.22)利用上述转化方式可变换为与之等价的一阶线性微分方程组(3.25),因此我们可以把前几节的主要结果平行地推广到方程(3.22). 与方程组(3.25)相对应的,假设函数 是齐次线性微分方程(3.23)的 个解,我们称为解组 的 Wronski 行列式. 齐次线性微分方程(3.23)的 个线性无关的解的全体称为该方程的一个基本解组. 利用关系式(3.24),我们可以把关于方程组(3.26)的定理自然转述到高次方程(3.23)上. 阶齐次线性微分方程(3.23)的解组 线性无关的充要条件是它的 Wronski 行列式 在区间 上恒不为零,而这等价于 在区间 的某点 处不为零,并且方程(3.23)的任一解组 的 Wronski 行列式满足 Liouville 公式这里由于与方程(3.23)等价的方程组(3.26)中矩阵函数 的迹 ,因此由于关于方程组的 Liouville 公式(3.32),就可以求出方程(3.23)的通解. 设 是二阶齐次线性方程的的一个非零解,其中 和 是 上的连续函数,则方程(3.33)的通解为证明 为简便起见,假设 在区间 上恒不为零. 设 为方程(3.33)的任一解,则由 Liouville 公式(3.32)可得亦即上式两端同乘以积分因子 ,可得积分上式,就可得公式(3.34). 这个例子告诉我们一个利用 Liouville 公式降阶的方法. 一般地,如果事先能够知道齐次高阶方程(3.23)的一个非平凡解 ,即 ,我们还可以用变量替换 把方程化成关于函数 的低一阶的齐次线性微分方程. 事实上,对这个变量替换求导并带入(3.23),可得到形如的方程,它一定有解 ,因此 是方程(3.23)的解. 由此推出, ,因此远方还曾可化为如下的 阶线性微分方程根据非齐次线性方程组(3.25)与非齐次线性高阶微分方程(3.22)的关系,我们把非齐次线性微分方程的常数变易公式应用到方程(3.22)上,容易得到下面的结果. 设 是 阶齐次线性微分方程(3.23)在 上的一个基本解组,则非齐次线性微分方程(3.22)在 上的通解为其中 为任意常数,而是方程(3.22)的一个特解, 是解组 的 Wronski 行列式, 是 中第 行第 列元素的代数余子式.
基于高阶线性微分方程的物理原理不多,但是关于多个未知函数的微分方程组可以转化为高阶线性微分方程,反之一样。由于常系数高阶线性微分方程好解,有时借助它求解多个未知函数的微分方程组。
列几个题目引导一下你吧,呵呵,我不是学这能帮助你的也只能这样了。抽象代数中的若干问题[数学专业论文]复变函数积分方法探究[数学专业论文]高阶微分方程解的分布问题[数学专业论文]几类函数的留数定理[数学与应用数学]与复积分有关的几个定理[数学与应用数学]证明等边三角形的几种复数方法[数学与应用数学]浅谈新课标下小学数学应用题的改革对了,要查更多的内容的话,在网站关键字输入“数学”就可以如果对你有帮助,请加分哦。
基于高阶常微分方程模型饿狼追兔问题分析 1 -基于高阶常微分方程模型饿狼追兔问题分析朱云龙1,赵娜2,孙利杰1,王勃1,程明1,白海滔1,王建1,李开1,赵福兴1,王铁柱11 辽宁工程技术大学采矿工程系,辽宁阜新(123000)2 辽宁工程技术大学生物工程(食品科学)系,辽宁阜新(123000)E-mail:摘要:利用高阶常微分模型饿狼是否能追上兔子。首先,建立狼和兔子的运动轨迹模型,兔子是向正北方向的洞穴直线跑去,狼沿曲线追去。接着,利用matlab 画出狼和兔子的运动轨迹图形。然后,利用解析方法求解x=0时y 的值,依次来判断狼是否能够追上兔子。最后,再用数值微分方法求解x=0时y 的值判断狼是否能够在兔子进洞之前将其擒获,美餐一顿。常微分方程在很多学科领域内有着重要的应用,自动控制、各种电子学装置的设计、弹道的计算、飞机和导弹飞行的稳定性的研究、化学反应过程稳定性的研究等。这些问题都可以化为求常微分方程的解。关键词:高阶常微分;数值微分;数学模型中图分类号:O172.11 引言在我们现实生活中,有很多追击问题,如赛车比赛,田径比赛,鹰抓兔子等等追击现象。那么这些问题是否成立,是否能成功呢?再次将要论述与验证狼和兔子的模型,看看是否能追的上,并通过MATLAB 画出狼和兔子曲线[1]。在我们实现实生活中有很多地方要用到这些追击模型。虽然狼无暇顾及兔子的洞穴所在,并计算怎样才能追上兔子,可它丢掉的仅仅是一顿美餐而已,再寻其它猎物即可。可是我们人类就不同了,如在军事上,跟中导弹追击敌机问题,恰与饿狼追兔问题模型相似。根据追击者和被追击者相差距离和被追击者得逃亡范围,通过计算,适当调整速度,即可追上。倘若不假思索的追击,后果将不堪设想,失去的将不仅仅时一顿每餐那么简单。所以,通过本模型分析将要得到清晰的MATLAB 曲线,使结果明确的显现在计算机上,一目了然,希望此模型能用到我们现实生活中,得到一定用处,提高国民经济和科学技术的应用。2 问题的提出神秘的大自然里,处处暗藏杀机,捕猎和逃生对动物的生存起着至关重要的作用,而奔跑速度和路线是能否追上和逃生的关键因素。这里就讨论一对老冤家的追逃问题,快速奔跑的狼能否追上不远处有洞穴的兔子。有一只兔子、一匹狼,兔子位于狼的正西100 米处,假设兔子与狼同时发现对方并一起起跑,兔子往正北60 米处的巢穴跑,而狼在追兔子。已知兔子、狼是匀速跑且狼的速度是兔子的两倍。试建立数学模型[2]研究以下问题:(1)根据已知条件,建立狼的运动轨迹微分模型。(2)画出兔子与狼的运动轨迹图形。(3)用解析方法求解,判断兔子能否安全回到巢穴。(4)用数值方法求解,判断兔子能否安全回到巢穴。3 模型建设假设狼不知道兔子远处是否有洞穴,故狼的速度方向应该始终是朝向兔子,而兔子是不中国科技论文在线- 2 -断奔跑的,所以狼的速度方向不断的改变,运动轨迹应该是一条光滑的曲线。设兔子的速度为v,以t=0 时刻兔子的位置为原点,兔子朝向狼的方向为x 轴,逆时针旋转90 度的方向为y 轴方向建立平面直角坐标系,t 时刻狼的坐标为(x,y),兔子的坐标为(0,vt),狼的速度方向与x 轴负半轴的夹角为θ。3.1 问题的分析与模型建立3.3.1 建立狼的运动轨迹微分模型作出狼的运动轨迹草图如下:图1 狼的运动轨迹草图Figure 1 the trajectories of a wolf plant 时刻y 对x 求导等于曲线在点(x,y)处的切线斜率,即Y= − tanθ (1)又由于狼的运动方向指向兔子,所以,xvt − ytanθ = = − tanθdxdy(2)由(1)和(2)得,xy vtdxdy −=(3)将狼的速度分解成为沿x 轴和y 轴方向,即x v =dxdt ,yv dydt=,所以,22 2(2v)dtdxdtdy = ⎟⎠⎞⎜⎝+ ⎛ ⎟⎠⎞⎜⎝⎛(4)由(3)式可得,y = x dxdy+ vt (5)两边对t 求导得,中国科技论文在线 3 -vdtdxdxx d ydxdydtdxdxdy = ∗ + ∗ + 22(6)整理,得dtdxdxx d y ∗ 22= −v (7)将(4)式左右两边同乘以2 dtdx⎛ ⎞⎜ ⎟⎝ ⎠,得2 dydx⎛ ⎞⎜ ⎟⎝ ⎠+1=22 4 ⎟⎠⎞⎜⎝⎛dxv dt (8)由(7)、(8)两式得22dxd yvxdxdt = −(9)(9)式即为狼的运动轨迹微分模型。3.3.2 画出兔子与狼的运动轨迹图形根据上述微分方程,利用 matlab 软件中的ode45 函数即可求出二阶微分方程(9)中x值对应的y 值,再利用绘图函数plot 即可画出狼的运动轨迹图像[3]。程序如下:先建立matlab 函数:function f=odefun(x,y)f(1,1)=y(2);f(2,1)=sqrt(1+y(2).^2)./(2.*x);再在主程序中输入下列程序:t=100:-0.1:0.1;y0=[0 0];[T,Y] = ode45('odefun',t,y0);plot(T,Y(:,1),'-')即可得到如下曲线,即为狼的运动轨迹图形。中国科技论文在线 4 -图2 狼的运动轨迹图形Figure 2 the trajectories of a wolf graphics兔子的运动轨迹是一条从(0,0)点到其洞穴(0,60)的直线,所以,再在主程序中输入以下程序即可将兔子和狼的运动轨迹绘制出来。x1=[0 0];y1=[0 60];plot(T,Y(:,1),'-',x1,y1,’r’)绘制出来的图像如下图:(其中蓝色代表狼的运动轨迹,红色代表兔子的运动轨迹)中国科技论文在线 5 -图3 狼和兔子的运动轨迹图形Figure 3 wolves and rabbits trajectories graphics4 模型求解4.1 用解析法求解兔子能否安全回到巢穴判断狼是否能追上兔子,可先假设没有洞穴,看看狼再什么位置可以追上兔子,若追上时兔子运动的距离已经超过60 米,那就是说再狼追上兔子之前,兔子已经安全的逃回洞穴之中。用解析法判断狼是否能追上兔子的具体过程[4]如下:可假设p dxdy= ,则22dp d ydx dx= ,那么(9)式可变为22 2 4 1 ⎟⎠⎞⎜⎝+ = ⎛− ∗dxdpvp v x (10)整理得22 2 4 1 ⎟⎠⎞⎜⎝+ = ⎛dxp v dp (11)dxp2 +1 = 2x dp (12)xdxpdp2 1 2=+(13)再对等式两边积分,得( ) '1 ln p + p2 +1 = ln x + C (14)也即中国科技论文在线 6 -p + p2 +1 =C x 1 (15)因为x=100 时,狼的速度方向沿y 轴负向,所以此时p=0,可求得1 C =110(15)式可变为p + p2 +1 = x101(16)两边平方1002 p2 +1+ 2 p p2 +1 = x (17)移项2 p p2 +1 = (2 1)100x − p2 +(18)再次平方(2 1)1004 4 1 2100004 4 4 2 22p4 + p2 = x + p + p + − x p + (19)整理( ) 1 01004 21000022x − p + x + =(20)求p222 1010100 2100210014 10000 ⎟ ⎟⎠⎞⎜ ⎜⎝⎛− = + − = −+=xxxxxxp(21)xp x 520= − (22)因为p dxdy= ,所以(22)式可变为xxdxdy 520= − (23)两边积分即可得到y 与x 的函数关系式3 12 221 1030y = x − x +C (24)因为x=100 时,y=0,所以3 12 220 1 100 10 10030= ∗ − ∗ +C解得2 C =2003=66.67中国科技论文在线 7 -故(24)式可变为3 11 2 10 2 20030 3y = x − x + (25)令x=0,可求得y=2003=66.67因为y=66.67>60,所以在狼追上兔子之前,兔子已经安全逃回到洞穴之中,饿狼只能干瞪眼了。4.2 用数值方法求解兔子能否安全回到巢中前面已经用解析法判断出狼并没有追上兔子,那么我们现在再用数值微分法求出(9)式中x=0 时y 的值,再将y 值与60 比较,若y 大于60,则也说明在兔子安全逃回洞穴之前,狼没有追上兔子,下面就是用数值微分法并借助matlab 软件判断狼是否能够追上兔子的方法:利用matlab 软件中的ode45 函数求出二阶常微分方程的初值,并求出x=100 时y 的值即可判断出狼是否能够追上兔子[5]。具体matlab 程序如下:先建立odefun 函数:function f=odefun(x,y)f(1,1)=y(2);f(2,1)=sqrt(1+y(2).^2)./(2.*x);再在主程序中输入如下程序:t=100:-0.1:0.1;y0=[0 0];[T,Y] = ode45('odefun',t,y0);n=size(Y,1);Y(n,1)即可输出结果:ans =63.5007x=0.1 时,y=63.5007>60,而当x=0 时y>63.5007 当然也大于60,所以狼在兔子进洞之前并没有能够追上兔子,一顿美餐就这样从它眼前没了。5 结果分析从图 2 可以粗略的看出x=0 时y 的值大于60,用数学解析法也算出y 值等于66.67 大于60,用数值微分法算出来的y 值也大于60。所以,从种种计算方法表明,在兔子就如洞穴之前,狼时无法将其擒获的。如果换个角度考虑,假设狼知道兔子的洞穴所在,直接跑向其洞穴处守洞待兔。那么根据勾股定理[6],狼运动的距离s= 6 0 2 + 1 0 0 2 =116.6m,此时兔子运动距离为s/2=58.3<60。也就是说兔子还没有逃进洞里,而狼已经再其洞口等待,那么兔子就不敢进洞,只要兔子没法进洞,狼的速度是兔子的2 倍,狼就可将其擒获。可惜,饥饿而又贪婪的狼只想着怎么样快速的追上兔子美餐一顿,哪里有时间而且也不会进行这么复杂的计算,并且很多情况下狼是不知道兔子的洞穴所在,所以,狼只能在快要追到兔子的时候看着兔子溜掉而干瞪眼了
举例说明常微分方程模型是各类数学建模竞赛中常见的模型, 并通过列举一些参考文献来说明此类模型的建模方法和求解求解技巧不仅相同. 从而得出"常微分方程在数学建模中的应用"是值得研究的.
微分方程在力学中的应用是非常广泛的。但是你的问题问得太不着边际了,很难回答。微分方程分为常微分方程和偏微分方程。一般来说,后者应用更为广泛。常系数常微分方程通常用来解一些最简单、最基本的动力学问题,例如速度、加速度、弹簧受力分析等等。例如:F=m*d(ds/dt)/dt就是牛顿第二定律。这些方程一般都可以解出。最常见的非常系数常微分方程有贝赛尔方程、薛定鄂方程以及非线性薛定鄂方程等,这些方程一般应用在边界条件为圆柱或圆球形状的波的振动描述上。偏微分方程是分析波动、二维受力分析等常见的方程了。如果你要写论文,可以考虑以下两方面的应用:1 牛顿定律分析2 波动分析
问题一:高阶导数有什么用 你好,高阶导数非常有用。二阶导可以判断函数图像的凹凸性; 泰勒级数公式是用系数含有n阶导的x的幂次方表示的,而泰勒级数的作用非常强大,它可以把非常复杂的函数变成容易研究的幂函数。 问题二:高阶导数的物理意义……… 确实有这种说法,但是这个应该属于高级物理学里面的知识,至少要到三维空间里面才会出现,甚至是四维空间或者更高,至少要到四维空间,我上物理课时老师说到过这个概念,但是没有作任何解释,因为这个概念属于顶尖级别的人才会用到,所以相关的资料很少,所以甚至有人怀疑急动度是不是官方的说法, 如果你想了解相关的知识,最好到研究生论文和博士论文甚至更高层次的论文里面去查找相关资料 《试论混沌和急动度之关系》,是一篇江西师大教授的论文 问题三:高阶导数有什么用 高阶导数有什么用 位移相对于时间的一阶导数是速度, 二阶导数是加速度, 三阶导数是急动度 四阶导数是什么痉挛度 问题四:高阶导数中的!符号是什么意思 阶乘,9!=9*8*7*6*5*4*3*2*1 n!=1*2*3一直乘到n 问题五:高阶导数的定义 1、二阶以上的导数习惯上称之为高阶导数。2、一个函数的导数,其中A为三阶导数,B为四阶导数,则可以说B是A的高阶导数。n阶导数定义为:
数学小课题开题报告
在教学中引导学生掌握审题的具体步骤和方法。以下是我J.L为大家分享的2017年关于数学小课题的开题报告范文。
题目:初中数学主体合作学习方式的探究开题报告
一.本选题的意义和价值:
理论意义:国家课程改革的基本思想:以学生发展为本,关心学生需要,以改变学生学习方式为落脚点,强调课堂教学要联系学生生活,强调学生要充分运用经验潜力进行建构性学习。同时《初中数学新课程标准》突出体现基础性、普及性、和发展性,使数学教育面向全体学生,从而实现:人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展。动手实践、自主探索与合作交流是学生学习数学的重要方式。由此可见在数学学习中合作这种学习方式的确很重要。
应用价值: 有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践自主探索与合作交流是学生学习数学的重要方式。 主体合作学习作为一种新型的教学方式,在新课标下已成为数学课堂教学探讨的焦点问题之一。
通过本课题的研究,有利于充分确立学生的主体地位,有利于建立各教学要素之间的相互作用、彼此协调、取向一致的关系;使初中数学教学中学生的学习方式、教师的指导方式得到有效的改善,有利于激发学生学习的兴趣,达到数学教学 学习快乐、快乐学习 的目的。从而提高学生的学习效果,培养学生的合作,交流,创新的能力,进而提高学生的综合素质。
省内外同类研究现状述评:我国自90年代初期起,开始探讨合作学习,出现了合作学习的研究与实验,并取得了较好的效果,不少学生从中受益,教师们在实践中也开发了一些行之有效的实施策略。但目前国内对合作学习的研究主要是在高等学校,中学阶段的合作学习刚刚起步,随着素质教育的全面推进,初中阶段需要进一步开展合作学习,小学阶段尚未看到数学与合作学习整合的研究课题。因此现在进行初中数学与合作学习整合的研究带有前瞻性。国内目前的合作学习研究比较多的是提出一些原则,而对实践的、具体层面的、可操作的方式与途径的研究则比较少,本课题注重合作学习方式的探索,可以弥补这方面的不足。
二 研究内容、目标、思路
什么是主体合作学习形式就是通过小组目标 、小组分工、角色分配与转换 、集体奖励等形式,激发每个学生 荣辱与共 人人为我,我为人人 道德情感,通过感染舆论,集体荣誉体验等活动,使每个学生都感悟到只有自己努力对小组做贡献,人人都能获得必需的数学。
学习方式现状的调查与分析。
目前数学教与学形式上存在着种种弊端,要么是学习没有目标,或目标不能落实;要么教师责任心不强,对学生的问题不闻不问,要么是教师主观臆断,脱离学生实际,总之数学学习形式亟待改变。
主体合作学习在学习数学中的作用。
高效率地利用时间,使学生有更多主动学习的机会。更有利于培养学生社会合作精神与人际交往能力。能使学生互相取长补短,缩小两端学生的差距,双方都能获益,尤其对后进生有很大的帮助。更有利于培养学生主动探究、团结合作、勇于创新的精神。
教师在主体合作学习中的角色和地位。
转变观念是学习型社会的要求。在开放的教育环境下,教师的地位和角色也发生了改变。教师在小组中不是局外人,而是学习目标的制造者,程序的设计者,情景的创造者,讨论的参与者,协调者,鼓励者和评价者。
如何引导学生合作学习?
引导学生合作学习关键在于精心设计讨论话题。从教师这方面看,设计话题应突出趣味性、情景性、可操作性、创造性。
小组学生合作学习评价对象和方法。
评价的对象包括评价自己、评价同学等。评价的内容主要是学习态度、合作精神、学习能力、团队合作等几个方面。合作学习作为系统的学习方式,必须具备相应的评价机制,建立合理的合作学习评价机制能够把学生个体间的竞争,变为小组间的竞争,把个人计分改为小组计分,把小组总体成绩作为评价依据,形成一种组内成员合作,组间成员竞争的格局。把整个评价的重心由孤立的个人竞争达标转向大家合作达标。
本课题试图通过小组合作学习方式转变的实践过程,把学生自主学习与合作学习有机地结合起来,从而让学生真实地感受、理解、掌握数学思想、知识技能的形成过程,激发学生学习数学的兴趣,促进学生的数学思维能力、生活能力协同发展,培养学生能数学地分析、解释、解决现实生活问题的能力及运筹优化的意识和创新精神。
在教师指导下,学生逐步养成自主意识、合作意识和自我管理的能力。真正的实现自主学习与小组合作学习相融合。
转变观念是学习型社会的要求。在开放的教育环境下,教师的地位和作用也发生了改变,教师不再是单纯的知识传授者,而应该转变为学习者学习的向导、参谋、设计师、管理者和参与者。通过课题的研究,培养出一支具有先进教育理念,有一定教科研水平的教师队伍。
研究视角 本课题从新课标合作学习的角度出发,以小组活动为基本方式,建立合作研究的多元互动,注重开放的合作过程,强调合作方式的建构。
研究方法:
②. 调查法:运用座谈、问卷等方式,向学生了解数学学习的现状,并对此作出科学的分析。
④. 实验法:在学习方式的实验阶段,通过实验班与对照班比较分析的方式,研究这一学习方式的实践操作效果。
⑤.行动研究法:在课题实施研究过程中,通过学习、实践、反思、评价分析,寻找得失原因,不断提高小组合作的能力。
⑥. 经验总结法: 在教学实践和研究的基础上,根据课题研究重点,随时积累素材,探索有效措施,总结得失,寻找有效的小组 合作 的途径、方法和原则。通过各种方式全面搜集反映小组 合作 学习中事实材料,经过分析、整理和加工到理性认识的高度,作为 合作 学习方式的理论依据。
研究阶段
⑴准备阶段(2015年4月 2015年5月):
⑵实施过程(2015年6月 2015年1月)
根据课题设计方案,有计划、有步骤进行行动研究。不断实践,定期总结,每学期都有阶段成果。
⑶总结阶段(2015年2月 2015年5月)
在以上成果总结的基础上,对课题进行全面、科学的总结。写出结题报告,召开成果汇报会。
课题研究的现实背景和意义:
从我校历年来的质量分析和龙胜县20XX年数学小考质量分析来看,学生丢分的原因主要是是不认真审题。其实在日常教学中,每次数学作业或测试题,都可听到老师们埋怨学生 太粗心了 , 不认真审题 等等,学生也为自己的不认真审题表现很后悔。在期中与期末质量分析上,任课教师总结得最多的一句就是 学生太粗心太马虎,不认真审题。
可见学生的审题能力困惑着我们每位教师,也困惑着每位学生。特别是农村的小学生,由于养成了粗心大意、对自己要求不严格、没有责任心等不良习惯,多数学生都不能做到认真审题再做题。
通过问卷调查,审题这最重要的一个步骤在实际操作中往往被大多数学生忽略或者轻视,从而直接影响了学生的解题速度和正确率,间接导致了学生对数学学习的畏惧和恐慌。小学生由于审题不清,导致解错题的现象十分普遍。学生的审题能力薄弱,审题习惯令人担忧。
审题能力是一种综合性的数学能力,我想通过对小学生数学学习审题能力培养的研究,促使学生的分析、判断和推理能力以及学生的创造性思维能力从无到有,从低水平向高水平发展,从而提高数学的解题能力。
概念界定与理论依据
理论依据 :
在《小学数学教学大纲》中明确指出: 在小学,使学生学好数学,培养起学习兴趣,养成良好的学习习惯,对于提高全民族的素质,培养有理想、有道德、有文化、有纪律的社会主义公民,具有十分重要的意义。 审题是一种能力,更是一种习惯。小学生数学学习审题能力的培养能促进学生养成良好的学习习惯。
课题的实施方案
研究内容
研究农村小学生审题能力弱的原因。
研究农村小学生数学学习审题能力培养方案。
针对学习内容,研究学生审题的方法。
研究农村小学生数学学习审题习惯的培养。
具体的操作措施
研究农村小学生审题能力弱的原因。通过问卷、谈话调查任课教师对培养学生审题能力的态度、方法、能力和学生解题审题习惯。对班级个别审题能力特别弱的学生进行深入了解与分析,找到审题能力弱的原因。
针对学习内容,研究学生审题的方法。基于学习内容不同,审题的方法也会有所不同。小学数学各年级从教学内容上均分为数与代数、空间与图形、统计与概率、实践活动(综合应用)四大板块,呈螺旋式上升,其中计算和解决问题占了相当大的比重。根据内容的不同探索出相应的有效的审题方法。
研究农村小学生数学学习审题习惯的培养审题习惯主要包括读题习惯、解题习惯、检查习惯。加强读题训练,研究读题方法。读题是审题的第一步。读题时要做到不添字,不漏字,把题目读顺,养成指读两三遍的习惯。读题时要求做到 口到、眼到、手到、心到 ;指导方法,培养良好的解题习惯。
在教学中引导学生掌握审题的具体步骤和方法。如首先认真读题,弄清题目说了一件什么事情,哪些数量是已知条件,所求问题是什么,并能用自己的语言准确复述题意;然后可以划出题中的关键字、词,并正确理解其含义;分析并找出题中的数量关系,知道要解决问题还需哪些条件,怎样求出这些条件等,遇到不懂的及时作上记号,养成用符号标记习惯;研究学生认真检查的良好习惯培养。
农村小学生做题往往没有检查的好习惯,这就特别需要教师进行引导,让学生体会到检查的好处,并且结合学生实际情况进行奖励,形成一种氛围。检查是一种对于审题的'最后补救。
研究步骤与方法
第二阶段:20XX年11月 20XX年7月课题实施阶段,按照方案分析原因,制定对策,并付诸实践。先调查学生审题能力差的原因,再与学生共同探讨审题的方法及注意事项,通过实践与训练,让学生分析自己的得与失,组织学生交流成功的做法与经验,并强化训练,让学生养成审题的良好习惯。最后测试成效并与探究前比较,总结经验,将研究成果推广到数学教研组。同时,撰写可以研究相关论文。
方法的选择:
(1)调查研究法。通过调查了解农村小学生审题能力弱的原因。以及研究前后的变化。
(2)个案研究法。通过对班级个别审题能力特别弱的学生进行了解,制定相应措施,实施强化训练,观察结果,探索规律,总结经验。
(4)文献研究法。通过阅读与查找相关文献的研究,为此课题奠定理论基础;同时,了解同类课题研究的现状,为本课题研究提供借鉴,为创新性研究奠定基础。
(5)师生合作研究法。通过师生共同探讨、研究、训练、分析、总结等寻找提高审题能力的有效途径。
研究预期成果和成果形式
(1)在研究中探索出学生有效审题的方法和途径,通过研究提高农村小学生审题能力和培养农村小学生认真审题的良好学习习惯。
(2)课题研究报告一份。
我将以饱满的工作和探究热情,按照课题实施方案,一步一个脚印地去探究与实施,我想通过本课题的研究,在研究中探索出学生有效审题的方法和途径,通过研究培养农村小学生认真审题的良好学习习惯。希望我的课题研究工作在上级领导的指导与关怀下,通过我的努力能取得圆满成功!
论文题目:关于泰勒公式的应用
课题研究意义
在初等函数中,多项式是最简单的函数。因为多项式函数的运算只有加、减、乘三种运算。如果能将有理分式函数,特别是无理函数和初等超越函数用多项式函数近似代替,而误差又能满足要求,显然,这对函数性态的研究和函数值的近似计算都有重要意义。那么一个函数只有什么条件才能用多项式函数近似代替呢?这个多项式函数的各项系数与这个函数有什么关系呢?用多项式函数近似代替这个函数误差又怎么样呢?
通过对数学分析的学习,我感觉到泰勒公式是微积分学中的重要内容,在函数值估测及近似计算,用多项式逼近函数,求函数的极限和定积分不等式、等式的证明等方面,泰勒公式是有用的工具。
文献综述
主要内容
Taylor公式的应用
Taylor公式在计算极限中的应用
对于函数多项式或有理分式的极限问题的计算是十分简单的,因此,对一些较复杂的函数可以根据泰勒公式将原来较复杂的函数极限问题转化为类似多项式或有理分式的极限问题。 满足下列情况时可考虑用泰勒公式求极限:
(1)用洛比达法则时,次数较多,且求导及化简过程较繁;
(2)分子或分母中有无穷小的差,且此差不容易转化为等价无穷小替代形式;
(3)所遇到的函数展开为泰勒公式不难。
当确定了要用泰勒公式求极限时,关键是确定展开的阶数。 如果分母(或分子)是,就将分子(或分母)展开为阶麦克劳林公式。 如果分子,分母都需要展开,可分别展开到其同阶无穷小的阶数,即合并后的首个非零项的幂次的次数。
Taylor公式在证明不等式中的应用
有关一般不等式的证明
针对类型:适用于题设中函数具有二阶和二阶以上的导数,且最高阶导数的大小或上下界可知的命题。 证明思路:
(1)写出比最高阶导数低一阶的Taylor公式;
(2)根据所给的最高阶导数的大小或上下界对展开式进行缩放。
有关定积分不等式的证明
针对类型:已知被积函数二阶和二阶以上可导,且又知最高阶导数的符号。
证题思路:直接写出的Taylor展开式,然后根据题意对展开式进行缩放。
有关定积分等式的证明
针对类型:适用于被积函数具有二阶或二阶以上连续导数的命题。
证明思路:作辅助函数,将在所需点处进行Taylor展开对Taylor
余项作适当处理。
Taylor公式在近似计算中的应用
利用泰勒公式求极限时,宜将函数用带佩亚诺余项的泰勒公式表示;若用于近似计算,则应将余项以拉格朗日型表达,以便于误差的估计。
研究方法
为了写好论文我到中国期刊网、中国知识网和中国数字化期刊群查找相关论文的发表日期、刊名、作者,接下来要到图书馆四楼过刊室查找相关文献,到电子阅览室查找相关期刊文献。 从图书馆借阅相关书籍,仔细阅读,细心分析,通过自己的耐心总结、研究,老师的指导、改正,争取做好毕业论文工作。 具体采用了数学归纳法、分析法、反证法、演绎法等方法。
进度计划
为了有准备有计划的做好我的论文工作,我为自己安排了一个毕业论文进度计划,我会严格按照我的进度计划,及时完成我的毕业论文工作。
开题报告就是你选题的一些简要介绍,让老师看看你的题目是否合理,准备的差不多,以及是否可以动工写了包括如下几个部分:1论文的研究目的和意义2国内(外)研究现状文献综述性质的,总结目前国内学者对于你的论文研究主题的文献内容3主要研究内容和创新点此处略4研究进度和安排某月某日——某月某日做什么(开题、初稿、二稿、定稿、答辩)5参考文献此处略这些都有了就行了,一千字到三千字字左右文库有范文,给你一份范文哈
论文开题报告基本要素
各部分撰写内容
论文标题应该简洁,且能让读者对论文所研究的主题一目了然。
摘要是对论文提纲的总结,通常不超过1或2页,摘要包含以下内容:
目录应该列出所有带有页码的标题和副标题, 副标题应缩进。
这部分应该从宏观的角度来解释研究背景,缩小研究问题的范围,适当列出相关的参考文献。
这一部分不只是你已经阅读过的相关文献的总结摘要,而是必须对其进行批判性评论,并能够将这些文献与你提出的研究联系起来。
这部分应该告诉读者你想在研究中发现什么。在这部分明确地陈述你的研究问题和假设。在大多数情况下,主要研究问题应该足够广泛,而次要研究问题和假设则更具体,每个问题都应该侧重于研究的某个方面。
开题报告是指开题者对科研课题的一种文字说明材料。这是一种新的应用写作文体,这种文字体裁是随着现代科学研究活动计划性的增强和科研选题程序化管理的需要而产生的。
开题者把自己所选的课题的概况(即"开题报告内容"),向有关专家、学者、科技人员进行陈述。然后由他们对科研课题进行评议。亦可采用"德尔菲法"评分;再由科研管理部门综合评议的意见,确定是否批准这一选题。开题报告作为毕业论文答辩委员会对学生答辩资格审查的依据材料之一
扩展资料:
开题报告包括综述、关键技术、可行性分析和时间安排等四个方面 。由于开题报告是用文字体现的论文总构想,因而篇幅不必过大,但要把计划研究的课题、如何研究、理论适用等主要问题写清楚。开题报告一般为表格式,它把要报告的每一项内容转换成相应的栏目,这样做,既避免遗漏;又便于评审者一目了然,把握要点。
开题报告的内容一般包括:题目、理论依据(毕业论文选题的目的与意义、国内外研究现状)、研究方案(研究目标、研究内容、研究方法、研究过程、拟解决的关键问题及创新点)、条件分析(仪器设备、协作单位及分工、人员配置)、课题负责人、起止时间、报告提纲等。
毕业论文开题报告论文题目:学生姓名:学号:专业:指导教师:年月日开题报告填写要求1.开题报告作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一.此报告应在指导教师指导下,由学生在毕业设计(论文)工作前期内完成,经指导教师签署意见审查后生效.2.开题报告内容必须用黑墨水笔工整书写,按成教处统一设计的电子文档标准格式打印,禁止打印在其它纸上后剪贴,完成后应及时交给指导教师签署意见.3.学生查阅资料的参考文献应在3篇及以上(不包括辞典,手册),开题报告的字数要在1000字以上.4.有关年月日等日期的填写,应当按照国标GB/T7408—94《数据元和交换格式,信息交换,日期和时间表示法》规定的要求,一律用阿拉伯数字书写.如"2004年9月26日"或"2004-09-26".毕业论文开题报告1.本课题的研究意义中国互联网经过10年的持续发展。目前在普及应用上正步入崭新的多元化应用阶段。有关数据显示,中国宽带用户、网络国际出口带宽、上网方式和途径、网络应用服务更趋多样化。人们对互联网的使用广度、信用度、依赖度正在逐步提高。随着网络提供的功能和服务的进一步完善,网络应用化、生活化服务正逐步成熟。互联网的影响正逐步渗透到人们生产、生活、工作、学习的各个角落。中国互联网整体呈现较快的增长态势。但中国地区之间互联网发展水平、普及水平还存在明显的差距,呈现"东快、西慢,城快、村慢"的特点,因此,加大对于互联网应用和发展的研究力度,借鉴国外互联网应用的成功范例引入和普及互联网应用的先进经验是当务之急。2.本课题的重点和难点第一,从全国人口来看,互联网普及率还很低,仅有7.9%,与世界平均水平约14%还有较大差距。因此要普及互联网,让更多人来使用互联网是任重道远的事情。第二,网上信息资源还不够丰富,质量比较好的、能反映我国优秀文化的、对广大网民有真正用处的信息还不够多。根据国信办的调查,截至2004年底,我国共有6.5亿中文网页,比2003年底差不多翻了一番,但是仅占全世界网页数量(300多亿)的2%,比例很低。因此我们需要网上有更多丰富的内容,特别是健康的、有质量的、有针对性的内容。第三,目前,互联网产业虽然在电子政务、电子商务方面进行了不少探索,也取得了一些成果,但是从整体上看网络应用水平和实效(即网民的用户体验)还比较初级。在技术驱动下产生的包括网络游戏、电子商务、无线宽带、VoIP、P2P等新的应用还没有形成成熟的盈利模式。第四,新技术发展遭遇机遇和挑战。当前国外互联网新技术层出不穷,一直处于互联网发展的领先地位,而我国的自主创新能力比较薄弱,因此需要更加努力,迎头赶上。第五,网络安全和网络文明面临严峻挑战。网络文明要靠政府法制、行业自律、网民的自觉来维护,而最关键的应该是网民素质的提高。就像交通管理一样,有交通法规的限制,也有警察的监管,但是最关键的还是司机素质的提高,否则交通事故还是无法避免的。同时,提供内容、服务的企业也应当承担其责任,实施行业自律。3.论文提纲我国互联网在若干领域的应用1.互联网在政府中的应用2.互联网在企业中的应用3.互联网在消费群体中的应用我国互联网应用前景1.互联网将加速融入我们的生活2.互联网经济逐渐产生效益3.宽带网络建设打通互联网应用瓶颈4.互联网成为国民经济新的增长点毕业论文开题报告指导教师意见:(对本课题的深度,广度及工作量的意见)指导教师:(亲笔签名)年月日系部审查意见:系部负责人:(亲笔签名)年月日
这个应该是比较简单的,关于这个命题的证明好象很多书上都是有的,而且好象还不址一种.找找最古老的一本高等代数或者线性代数的书看看就可以了我推荐北京大学的,好象是不错的,武汉大学的有个教材也不错.主要是证明乘积后的秩的规律性
线性代数(Linear Algebra)是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。 线性代数的主要内容是研究代数学中线性关系的经典理论。由于线性关系是变量之间比较简单的一种关系,而线性问题广泛存在于科学技术的各个领域,并且一些非线性问题在一定条件下 , 可以转化或近似转化为线性问题,因此线性代数所介绍的思想方法已成为从事科学研究和工程应用工作的必不可少的工具。尤其在计算机高速发展和日益普及的今天,线性代数作为高等学校工科本科各专业的一门重要的基础理论课,其地位和作用更显得重要。 线性代数主要研究了三种对象:矩阵、方程组和向量.这三种对象的理论是密切相关的,大部分问题在这三种理论中都有等价说法.因此,熟练地从一种理论的叙述转移到另一种去,是学习线性代数时应养成的一种重要习惯和素质.如果说与实际计算结合最多的是矩阵的观点,那么向量的观点则着眼于从整体性和结构性考虑问题,因而可以更深刻、更透彻地揭示线性代数中各种问题的内在联系和本质属性.由此可见,只要掌握矩阵、方程组和向量的内在联系,遇到问题就能左右逢源,举一反三,化难为易. 一、注重对基本概念的理解与把握,正确熟练运用基本方法及基本运算。 线性代数的概念很多,重要的有: 代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化,二次型的标准形与规范形,正定,合同变换与合同矩阵。 我们不仅要准确把握住概念的内涵,也要注意相关概念之间的区别与联系。 线性代数中运算法则多,应整理清楚不要混淆,基本运算与基本方法要过关,重要的有: 行列式(数字型、字母型)的计算,求逆矩阵,求矩阵的秩,求方阵的幂,求向量组的秩与极大线性无关组,线性相关的判定或求参数,求基础解系,求非齐次线性方程组的通解,求特征值与特征向量(定义法,特征多项式基础解系法),判断与求相似对角矩阵,用正交变换化实对称矩阵为对角矩阵(亦即用正交变换化二次型为标准形)。 二、注重知识点的衔接与转换,知识要成网,努力提高综合分析能力。 线性代数从内容上看纵横交错,前后联系紧密,环环相扣,相互渗透,因此解题方法灵活多变,学习时应当常问自己做得对不对?再问做得好不好?只有不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然就开阔了。 例如:设A是m×n矩阵,B是n×s矩阵,且AB=0,那么用分块矩阵可知B的列向量都是齐次方程组Ax=0的解,再根据基础解系的理论以及矩阵的秩与向量组秩的关系,可以有 r(B)≤n-r(A)即r(A)+r(B)≤n 进而可求矩阵A或B中的一些参数 上述例题说明,线性代数各知识点之间有着千丝万缕的联系,代数题的综合性与灵活性就较大,同学们整理时要注重串联、衔接与转换。 三、注重逻辑性与叙述表述 线性代数对于抽象性与逻辑性有较高的要求,通过证明题可以了解考生对数学主要原理、定理的理解与掌握程度,考查考生的抽象思维能力、逻辑推理能力。大家复习整理时,应当搞清公式、定理成立的条件,不能张冠李戴,同时还应注意语言的叙述表达应准确、简明。
巴东县民族实验小学“小学数学有效课堂教学设计”课题研究开题报告各位领导、各位专家、老师们:大家好!我们巴东县民族实验小学于2007年4月向湖北省教研室申报立项,承担湖北省“十五”规划重点课题子课题——“小学数学有效课堂教学设计”的课题研究活动。今年9月获得正式立项,今天,我们正式开题。该项研究是以中共中央国务院《关于深化教育改革,全面推进素质教育的决定》和国务院《关于基础教育改革和发展的决定》的精神为指针,以教育部制定的《全日制义务教育数学课程标准》(实验稿)的要求为依据,以全面提高学生数学素养为目的的教研活动。一、本课题研究的理论和实践价值1、建构主义理论;2、行动学习理论;3、人本主义理论/。关于课堂有效学习的内涵(1)课堂有效学习是相对于无效和低效学习而言的。(2)学生的发展就其内涵,应包括知识与技能、过程与方法、情感态度与价值观三维目标的整合,缺少任一维度都无法实现真正意义上的发展;发展就其层次,包括现有发展区和最近发展区,教学促进发展,就是把最近发展区不断转化为现有发展区;发展就其形式,有内在发展与外在发展,外在发展是一种以追求知识的记忆、掌握为标志的发展,新课程强调着重追求以知识的鉴赏、判断力与批判力为标志的内在发展;发展就其机制,有预设性发展和生成性发展,新课程在注重从已知推出未知,从已有的经验推出未来发展的预设性发展的同时,强调不可预知的生成性发展;发展就其时间,有当下发展和终身发展,新课程既注重即时的可测性和量化的当下发展,更关注面向未来、着眼于可持续和发展后劲与潜力的终身发展。 二、本课题研究的主要内容课题研究将从调研课堂上无效教学现象、分析致因入手,研究课堂“有效学习”个案,发掘、预设并生成有效学习的操作点,引领教师积极应用,构建以“有效学习”为主导的教学体系。对课堂上无效教学现象进行调研,分析致因,针对无效学习现象,开展对应策略研究。立足于科学性、可行性、灵活性和有创意性,开展有效课堂教学评价内容与方式的研究。通过对新课程背景下教师教育教学行为与课堂教学效果的研究、教师专业化发展水平与教学效果的研究,小学生数学学习水平和能力的科学评价与课堂教学效果的研究,从理论和实践上丰富、完善小学数学课程评价体系,丰富课堂教学效果的研究,生成有效学习的操作要点与基本策略。三、本课题省内、外研究现状,预计有哪些突破为了了解《小学数学有效课堂教学设计研究》这一课题在同一领域的研究现状,把握发展趋势,我们查阅了大量的教育理论专箸、期刊、报纸及网络资料。从中我们发现,在新课程理念的指导下,人们越来越关注学生在课堂中是否进行有效的学习,如何组织、实施有效的课堂教学的研究。这些研究呈现以下特点:(1)改变或改善学生的学习方式。新一轮课程改革的目的,不仅仅是换套新的教材,或是说用了新的标准问题,其目的是要改变学生的学习方式,使课堂里面的情况发生变化,从而推进素质教育的进程。课程标准提出,有效的学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学习的重要方式。人们十分关注课堂教学中的学习,是否是探索性的、自主性的、研究性的学习。(2)越来越重视学生个性的发展。人本主义心理学讨论的是个体的人,是理性和感性相结合的人.当代教育研究把培养学生的独立人格和独特个性当作优先追求的目标。通过实施一定的课堂教学策略,使学生在人格中达成理性与情感意志、科学与人文等方面素质的和谐统一。使每一个学生在各个方面都得到不同程度的发展和提高。 (3)该领域研究发展趋势分析 新世纪的基础教育需要加快全面推进素质教育的步伐,努力培养具有创新精神和实践能力的有理想、有道德、有文化、有纪律的德、智、体、美等全面发展的一代新人,作为基础教育的一门重要学科,在课堂教学中,以人为本,实施有效教学,在探索性、自主性、研究性的学习活动中发展学生的创新思维,提高学生的实践能力,是课程改革发展的必然趋势。虽然该领域的研究取得了一些成绩,但对于正确的效益观、影响课堂教学效果的相关因素、有效教学和学习的方法与策略、有效教学评价的标准等缺乏全面、系统的研究、实践,在实施推广上也存在不足和不平衡。因此开展“小学数学课堂教学效果研究课题研究”,对构建小学数学课程评价体系所作的理念与实践的探索,将对课改的深入开展起到积极作用。我们课题研究人员应该以饱满的工作热情,系统的学习“建构主义”等相关理论,学习外地老师的教研教改经验。积极提供研究课,写好研究课设计方案、教学后记、案例分析等材料。还要认真地听研究课,参加说课、评课、信息交流、心得体会交流等研讨活动。最后,祝愿我们的课题研究工作在上级领导的关怀下,在大家的共同努力下取得圆满成功!
这个问题也不太难啊,你可以向你的学长和学姐们请教一下,或者向你的老师问问