首页 > 学术发表知识库 > 读秀论文检测

读秀论文检测

发布时间:

读秀论文检测

搜索论文的网站有中国知网、维普期刊、万方数据。

首先按照知网检测系统提示操作,完成信息填写,选择Word文件就可以上传了,支付知网论文查重费用,等待知网检测系统检测,一般2小时左右会出结果,如果是在晚上22:30后提交的论文都要到第二天9:30后才能出结果报告,接着下载报告。论文的有关部分全部抄清完了,经过检查,再没有什么问题,把它装成册,再加上封面。论文的封面要朴素大方,要写出论文的题目、学校、科系、指导教师姓名、作者姓名、完成年月日。论文的题目的作者姓名一定要写在表皮上,不要写里面的补页上。

中文论文:知网、维普、万方、读秀、iData外文论文:谷歌学术、sci-hub、Open Access Library(OALib)图书馆、Library Genesis、Web of Science、ScienceDirect、PubMed、Science、

在图书馆系统搜索读秀,输入关键词可以搜到很多论文。读秀是一款学术搜索引擎及文献资料服务平台。读秀提供全文检索、部分文献的原文试读、流量统计等功能。

deepfake检测论文解读

Deepfake,是由“deep machine learning”(深度机器学习)和“fake photo”(假照片)组合而成,本质是一种深度学习模型在图像合成、替换领域的技术框架,属于深度图像生成模型的一次成功应用。 其实该技术最早版本在2018年初就被提出了,当时在构建模型的时候使用了Encoder-Decoder自编解码架构,在测试阶段通过将任意扭曲的人脸进行还原,整个过程包含了:获取正常人脸照片=>扭曲变换人脸照片=> Encoder编码向量 => Decoder解码向量 => 还原正常人脸照片五个步骤。而ZAO在Encoder-Decoder的框架之上,又引入了GAN(生成对抗网络)技术,不但降低了同等条件下的模型参数量和模型复杂度,同时使生成的人脸更为清晰,大大降低了对原图的依赖,显著提升了换脸的效果,而且基于GAN技术的Deepfake改进版已经在Github开源。 尽管「Deepfake」这类应用非常吸引人,但落到实处还是会引发很多的问题,不论是伦理还是隐私。后面我们将介绍生成对抗网络和变分自编码器两种换脸的解决方案,也许大规模应用还能进一步催生效果更好、算力更少的解决方案。 直观而言,GAN 这类生成模型可以生成非常逼真的人脸图像,那么现在需要将某个人的特点迁移到另一张人脸上,这就需要更多的模块来定义需要迁移的位置与特点。 总体上,「Deepfakes」换脸主要分为以下过程: 其中人脸定位已经非常成熟了,一般定位算法可以生成人脸的特征点,例如左右眉毛、鼻子、嘴和下巴等等。人脸转换也就是采用 GAN 或 VAE 等生成模型,它的目标是生成拥有 A 表情的 B 脸。最后的图像拼接则是将人脸融合原图的背景,从而达到只改变人脸的效果。 当然,如果生成 ZAO 这种小视频,那么还需要一帧帧地处理图像,然后再将处理后的结果重新拼接成小视频。 人脸定位也就是抽取原人脸的表情特征,这些特征点大致描述了人脸的器官分布。我们可以直接通过 dlib 和 OpenCV 等主流的工具包直接抽取,但它们一般采用了经典的 HOG 的脸部标记算法。这种算法根据像素亮度差确定一些「箭头」,从而找到人脸显著的特征点。 如上是一些人脸特征点,如果我们想换脸的表情更加真实和准确,那么也可以使用目前主流的人脸识别算法,它利用卷及网络能生成更完美的特征点。但是这类深度模型需要更大的算力,尤其是在处理高分辨率图像时。 首先对于变分自编码器(VAE),我们知道它希望通过无监督的方式将人脸图像压缩到短向量,再由短向量恢复到人脸图像。这样短向量就包含了人脸图像的主要信息,例如该向量的元素可能表示人脸肤色、眉毛位置、眼睛大小等等。 所以如果我们用某个编码器学习所有人,那么它就能学习到人脸的共性;如果再用某个解码器学习特定的某个人,那么就能学习到他的特性。简单而言,当我们用通用编码器编码人脸 A,再使用特定解码器 B 解码隐藏向量,那么就能生成出拥有 A 的人脸表情,但却是 B 人脸的图像。 这就是 VAE 的解决方案,对于 GAN 来说,它会利用抽取的人脸特征点,然后根据生成器生成对应的目标人脸图像。这时候,编码器同样也会将真实的目标人脸编码,并和生成的目标人脸混合在一起。因此,如果判别器不能区分根据某人特征点生成的人脸和真实人脸有什么区别,那么生成的人脸就非常真实了。 如上所示为论文 Few-Shot Adversarial Learning of Realistic Neural Talking Head Models 的解决方案,它只需要几张目标人脸图,就能根据原人脸的特征点生成极其逼真的效果。 知道了如何制作换脸视频,我们还要掌握一些识别换脸视频的技术,因为这些换脸技术给大众带来欢乐的同时,也在被不少人滥用。这种滥用不仅给公众人物造成了困扰,甚至还威胁到了普通大众。 由于用来训练神经网络的图像数据往往是睁着眼睛的,因此 Deepfake 视频中人物的眨眼或不眨眼的方式通常是不自然的。 去年,奥尔巴尼大学(University of Albany)的研究人员发表了一篇论文,提出了一种可以检测这种不自然眨眼的技术。有趣的是,这项技术使用的也是深度学习,和制作假视频的技术是一样的。研究人员发现,利用眨眼视频训练出的神经网络可以在视频中定位眨眼片段,找出非自然眨眼运动的一系列帧。结果发现,Deepfake 视频中人物的眨眼不符合正常的生理学规律,由此可以识别出哪些是原始视频,哪些是 Deepfakes 视频。 每个人都有独特的头部运动(如开始陈述事实时点头)和面部表情(如表达观点时得意得笑),但 Deepfakes 中人物的头部动作和面部表情都是原人物而非目标人物的。 基于此,加州大学伯克利分校的研究者提出了一种检测换脸的 AI 算法。其基本原理是:利用一个人的头部动作和面部表情视频训练一个神经网络,然后拿这个神经网络去检测另一个视频中的人物动作和表情是否属于这个人。模型准确率达到 92%。 (a)原始人物;(b,c)分别是 Deepfake 人物。 论文地址: 制作换脸视频和识别换脸就像一场猫鼠游戏,造假技术日新月异,打假技术也在不断迭代。但仅在技术层面打击这一技术的滥用是不够的,我们还需要法律的支持。 参考链接:

DeepFake能将视频内的人脸进行替换,并且效果以假乱真,几乎看不出什么破绽。如果被不法分子使用,很容易引发各种犯罪,也容易引起慌乱。

十分邪恶,这是一种换脸技术,会被别有用心的人用在不好的地方。

人脸检测论文解读

Viola-jones人脸检测算法是一种基于滑动窗口的目标检测算法,但它却克服了滑动窗口检测带来的低效问题,可以用于实时人脸检测,主要归功于以下三点:

我参考论文[1]实现了Viola Jones中提到的attention cascade检测框架,此处是 github传送门 。

下面进一步详细介绍整个检测原理。

基于滑窗的目标检测基本原理很简单,首先构建一个classifier(分类器),以人脸检测为例,分类器的工作是判断给定大小的图像的是否为人脸,用该分类器从左至右从上到下扫描整幅图像,扫描获取的部分图像称为子窗(文章中子窗大小为24x24像素),当分类器判断子窗是人脸时,即完成了人脸检测。

这样处理有个问题,如果图像中包含的人脸变大了,此时采用固定大小的子窗就无法进行检测。通常有两种解决方法,1. 采用image-pyramid(图像金字塔),也就是通过resize获得多种不同大小图像并堆叠在一起,用固定大小分类器同时对所有图像进行扫描;2. 采用不同大小的分类器进行扫描。文章中用到的是第二种方法,尽管如此,虽然避免了调整图像大小带来的计算开销,但不同大小的分类器意味着有更多子窗需要进行处理。

如何构建一个足够快的分类器来对每个子窗进行快速判断。

分类器的构建有两种方式,一种是pixel-based(基于像素),另一种是feature-based(基于特征)。当把神经网络作为图像分类器时,输入是图像的像素值,即基于像素的分类器。用图像像素作为输入不包含任何和待分类目标有关的特定信息,往往训练这种分类器需要大量数据,并且分类过程较慢。基于特征的分类器就是先针对图像进行特征提取(HOG特征,SIFT特征等),再利用获取的特征进行分类。这种分类器不需要大量训练数据,且计算量一般会在特征计算部分,相对较小。

文章采用的是基于特征的分类器,选取了一种较为简单的特征即haar-like特征。利用矩形个数对可以将haar-like特征分为三类,分别由两个,三个,和四个 大小相同 的矩形组成。全部列举出来可以分为以下(a)(b)(c)(d)(e)五类(注意是五类不是五个,具体有多少个haar-like特征是由子窗大小决定的)。如下图所示(文章[1]中的图)。

当子窗大小给定后,我们可以用五个参数唯一确定 一个 haar-like特征,即特征种类(a/b/c/d/e),左上角x轴坐标,左上角y轴坐标,矩形的长,矩形的宽。对应的特征值等于位于白色矩形框中像素值总和减去位于黑色矩形框中的像素值总和。文章中用到的子窗大小为24x24像素,可以计算出来总共有162336个特征(把在子窗中所有可能位置和可能大小的特征全部列举出来)。利用haar-like特征进行分类只需两步:

haar-like特征有两个优点,第一是它是scale-invariant(不随图片大小而改变)的,第二是可以通过积分图像快速计算。简单的说下第一点的含义,例如我们用24x24像素的训练样本训练获取一组haar-like特征和对应的门限值,当对图像进行扫描时,子窗大小调整为SxS像素,此时只需将特征中的矩形大小按同样比例进行缩放(门限值同样需要缩放),计算所得的特征值依然是有效的。 积分图像是受卷积的微分性质启发而定义一种数据结构。积分图像定义: 其中 为积分图像, 为原图像。积分图像中 位置处的像素值等于原图中位于 的左侧和上方的所有像素值之和。有了积分图像我们就可以快速计算haar-like特征,以特征(a)为例,如下图所示。

S1到S6是积分图像在这六个顶点上的值。该特征值等于位于A中的像素总和减去位于B中的像素总和,而A中像素总和等于S5+S1-S2-S4,B中像素总和等于S6+S2-S3-S5,并且无论矩形多大,我们总能在固定时间内计算出特征值(6次索引操作和少量的加法乘法计算)。积分图像只需计算一次后续可以一直使用,事实上在算法实现时,我们只需保存样本的积分图像,原图像反而不用保存。

现在找到了一类特征用于构建分类器,和快速计算该类特征的方法。分类器是由一组特征构成的,而不是一个,如何找到一组有效的特征。

文章列举了前人的一些特征选取方法(此处就不列举了),它们虽然取得了一定的效果,但最终选出来的特征数量还是太多。文章将adaBoost算法用于特征选取(创新点),即每次训练的弱分类器的过程看做特征选取的过程,一次从162336个特征中选取一个特征(同时还包括了对应的门限值,极性,加权误差)。

adaboost算法就不详细介绍了,它的基本思想是训练一系列“弱”分类器,组成一个committee(即每个弱分类器都有投票权,但是权重不同,加权误差越小的弱分类器权重越大)。adaboost采用迭代训练方式,给定一个t阶committee,如何寻找第t+1个弱分类器和对应的权重,以最小化在一定分布下的训练样本的加权指数损失。这个优化过程可以转换为对训练样本的分布进行调整(即增大上一轮错误判断的样本的权重,减小正确判断的样本权重),在调整后的样本分布下寻找最小化加权0-1损失的弱分类器并计算对应的加权0-1损失。

可以利用adaboost找到一组特征构成分类器,使得该分类器有极高的准确率和召回率(这种分类器势必会有较大的计算量),这样会导致图像中的每一个子窗都享有同等的计算量,扫描一整幅图会有几十万甚至上百万子窗,总体计算量依然很大。实际上一幅图像中只有极少可能包含人脸的位置是我们感兴趣的,其他不包含人脸的子窗我们希望能够快速筛除,将更精细的计算用于包含人脸的子窗。

文章引入了attention-cascade的机制(注意力级联),即训练多个分类器进行级联,替代单一的分类器。结构如下图所示(文章[3]中的图)。

上图所示的分类器有三级,上一级的输出是下一级的输入,只有预测为正的样本才能传递给下一级,预测为负的样本直接舍弃。大部分非人脸子窗往往在前几级分类器就被舍弃,这样使得扫描每个子窗所需的平均计算量大大减小。

分类器是一级一级训练之后级联起来的,训练分类器时,整个级联分类器的假负率(fpr_overall)有一个训练目标(文章[1]中设置为10e-7),同时每一级有一对训练目标,即假正率和假负率。每级分类器训练的思想是在假负率极低的情况下(文章[1]中设置为0.005)尽量得到一个较低的假正率(文章中[1]中设置为0.5),即我们保证在正样本尽可能多的通过该级分类器的情况下尽量筛除更多的负样本。文章[3]通过一个松弛量来调节假正率和假负率。

下一级用到的训练数据是由所有的正样本和上一级输出的假正样本组成的,这样训练的好处是可以让处于级联后半部分的分类器“看到”更多负样本数据,缺点是训练后期假正样本很难获取,训练时间会比较长。

尽管我们获取了一个级联分类器,但依然不能保证对同一幅图中的一张人脸只会检测到一次(子窗相对人脸有所便宜或者缩放子窗大小都可能导致重复检测),如何消除重复检测,获得更好的检测效果。

文章[3]中说的较为简略,主要是针对检测框构建并查集,并对并查集中的候选框求平均得出最终的检测框。

文章[1]中是采用连通分量算法,计算每种大小检测框的置信度,根据置信度选取最终结果,但前提是检测器在图像中扫描的步进必须是1个像素,处理时间可能会比较长。

只能用于正脸检测,如果人脸朝屏幕内外或者在屏幕平面上旋转均有可能失效 在背景较亮,人脸较暗的情况下可能失效。 在有遮挡的情况下大概率失效。

目标检测论文解读

有一个月没更博客了,捂脸 o( ̄= ̄)d

端午回家休息了几天,6月要加油~

回到正文,HOG是很经典的一种图像特征提取方法,尤其是在行人识别领域被应用的很多。虽然文章是2005年发表在CVPR上的,但近十年来还没有被淹没的文章真的是很值得阅读的研究成果了。

key idea: 局部物体的形状和外观可以通过局部梯度或者边缘的密度分布所表示。

主要步骤:

上图为论文中提供的图,个人觉得我在参考资料中列出的那篇 博客 中给出的图可能更好理解一些。

具体细节: 关于每一个过程的详细解释还是在 这篇博客 中已经写得很清楚了,这里就不再搬运了。

文章中数据集的图像大小均为:64*128, block大小为16x16, block stride为8x8,cell size为8x8,bins=9(直方图等级数);

获取到每张图的特征维度后,再用线性SVM训练分类器即可。

下图为作者而给出的示例图:

这两篇博客写的都很好,推荐阅读一波。

论文原文:

YOLO(you only look once)是继RCNN、faster-RCNN之后,又一里程碑式的目标检测算法。yolo在保持不错的准确度的情况下,解决了当时基于深度学习的检测中的痛点---速度问题。下图是各目标检测系统的检测性能对比:

如果说faster-RCNN是真正实现了完全基于深度学习的端到端的检测,那么yolo则是更进一步,将 目标区域预测 与 目标类别判断 整合到单个神经网络模型中。各检测算法结构见下图:

每个网格要预测B个bounding box,每个bounding box除了要回归自身的位置之外,还要附带预测一个confidence值。这个confidence代表了所预测的box中含有object的置信度和这个box预测的有多准两重信息,其值是这样计算的:

其中如果有object落在一个grid cell里,第一项取1,否则取0。第二项是预测的bounding box和实际的groundtruth之间的IoU值。

每个bounding box要预测(x, y, w, h)和confidence共5个值,每个网格还要预测一个类别信息,记为C类。即SxS个网格,每个网格除了要预测B个bounding box外,还要预测C个categories。输出就是S x S x (5*B+C)的一个tensor。(注意:class信息是针对每个网格的,即一个网格只预测一组类别而不管里面有多少个bounding box,而confidence信息是针对每个bounding box的。)

举例说明: 在PASCAL VOC中,图像输入为448x448,取S=7,B=2,一共有20个类别(C=20)。则输出就是7x7x30的一个tensor。整个网络结构如下图所示:

在test的时候,每个网格预测的class信息和bounding box预测的confidence信息相乘,就得到每个bounding box的class-specific confidence score:

等式左边第一项就是每个网格预测的类别信息,第二三项就是每个bounding box预测的confidence。这个乘积即encode了预测的box属于某一类的概率,也有该box准确度的信息。

得到每个box的class-specific confidence score以后,设置阈值,滤掉得分低的boxes,对保留的boxes进行NMS(非极大值抑制non-maximum suppresssion)处理,就得到最终的检测结果。

1、每个grid因为预测两个bounding box有30维(30=2*5+20),这30维中,8维是回归box的坐标,2维是box的confidence,还有20维是类别。其中坐标的x,y用bounding box相对grid的offset归一化到0-1之间,w,h除以图像的width和height也归一化到0-1之间。

2、对不同大小的box预测中,相比于大box预测偏一点,小box预测偏一点肯定更不能被忍受的。而sum-square error loss中对同样的偏移loss是一样。为了缓和这个问题,作者用了一个比较取巧的办法,就是将box的width和height取平方根代替原本的height和width。这个参考下面的图很容易理解,小box的横轴值较小,发生偏移时,反应到y轴上相比大box要大。其实就是让算法对小box预测的偏移更加敏感。

3、一个网格预测多个box,希望的是每个box predictor专门负责预测某个object。具体做法就是看当前预测的box与ground truth box中哪个IoU大,就负责哪个。这种做法称作box predictor的specialization。

4、损失函数公式见下图:

在实现中,最主要的就是怎么设计损失函数,坐标(x,y,w,h),confidence,classification 让这个三个方面得到很好的平衡。简单的全部采用sum-squared error loss来做这件事会有以下不足:

解决方法:

只有当某个网格中有object的时候才对classification error进行惩罚。只有当某个box predictor对某个ground truth box负责的时候,才会对box的coordinate error进行惩罚,而对哪个ground truth box负责就看其预测值和ground truth box的IoU是不是在那个cell的所有box中最大。

作者采用ImageNet 1000-class 数据集来预训练卷积层。预训练阶段,采用网络中的前20卷积层,外加average-pooling层和全连接层。模型训练了一周,获得了top-5 accuracy为0.88(ImageNet2012 validation set),与GoogleNet模型准确率相当。

然后,将模型转换为检测模型。作者向预训练模型中加入了4个卷积层和两层全连接层,提高了模型输入分辨率(224×224->448×448)。顶层预测类别概率和bounding box协调值。bounding box的宽和高通过输入图像宽和高归一化到0-1区间。顶层采用linear activation,其它层使用 leaky rectified linear。

作者采用sum-squared error为目标函数来优化,增加bounding box loss权重,减少置信度权重,实验中,设定为\lambda _{coord} =5 and\lambda _{noobj}=0.5 。

作者在PASCAL VOC2007和PASCAL VOC2012数据集上进行了训练和测试。训练135轮,batch size为64,动量为0.9,学习速率延迟为0.0005。Learning schedule为:第一轮,学习速率从0.001缓慢增加到0.01(因为如果初始为高学习速率,会导致模型发散);保持0.01速率到75轮;然后在后30轮中,下降到0.001;最后30轮,学习速率为0.0001。

作者还采用了dropout和 data augmentation来预防过拟合。dropout值为0.5;data augmentation包括:random scaling,translation,adjust exposure和saturation。

YOLO模型相对于之前的物体检测方法有多个优点:

1、 YOLO检测物体非常快

因为没有复杂的检测流程,只需要将图像输入到神经网络就可以得到检测结果,YOLO可以非常快的完成物体检测任务。标准版本的YOLO在Titan X 的 GPU 上能达到45 FPS。更快的Fast YOLO检测速度可以达到155 FPS。而且,YOLO的mAP是之前其他实时物体检测系统的两倍以上。

2、 YOLO可以很好的避免背景错误,产生false positives

不像其他物体检测系统使用了滑窗或region proposal,分类器只能得到图像的局部信息。YOLO在训练和测试时都能够看到一整张图像的信息,因此YOLO在检测物体时能很好的利用上下文信息,从而不容易在背景上预测出错误的物体信息。和Fast-R-CNN相比,YOLO的背景错误不到Fast-R-CNN的一半。

3、 YOLO可以学到物体的泛化特征

当YOLO在自然图像上做训练,在艺术作品上做测试时,YOLO表现的性能比DPM、R-CNN等之前的物体检测系统要好很多。因为YOLO可以学习到高度泛化的特征,从而迁移到其他领域。

尽管YOLO有这些优点,它也有一些缺点:

1、YOLO的物体检测精度低于其他state-of-the-art的物体检测系统。

2、YOLO容易产生物体的定位错误。

3、YOLO对小物体的检测效果不好(尤其是密集的小物体,因为一个栅格只能预测2个物体)。

论文检测查重必读

一、了解知网查重版本一般高校使用的都是知网,然而知网版本很多,比如常见的有①知网VIP,知网tmlc,主要是用来研究生毕业论文查重;②知网pmlc主要用来检测本科毕业论文,可以检测到“大学生联合对比库”就是可以检测到知网数据库查询不到的本科学长论文;③知网AMLC/SMLC就是检测期刊发表的科技类/社科类文章,值得注意的是此两个版本结果一般误差不大。更详尽可以在学术不端网上阅读《最新CNKI知网论文查重检测系统的区别》。二、查重格式要尽量和学校保持一致高校一般检测Word或者PDF格式的其中一种,初稿完成后需要弄清楚学校知网查重的时候提交哪个版本,因为有的时候Word和PDF版本的查重结果会误差很大,在我们上一篇文章《知网查重Word格式比PDF更准确》有详细说明。三、查重内容要尽量和学校保持一致一般高校检测的内容包括摘要、目录、正文、参考文献。然而也有很多学校只检测正文,如果学校只检测正文的话,那么我们就没有必要去检测摘要、目录和参考文献啦,要做到检测内容尽量和学校保持一致,这样知网查重结果才会和学校保持高度一致! 具体可以参考学术不端网上一篇《必读:知网查重时检测哪些内容》。四、知网查重前尽量去除学校信息我们都知道,中国知网只有单位内部可以使用,也就是说我们学生个人是无权注册使用的。同时知网公司有一个不成文的规定就是本校知网查重账号不能用于检测其他高校论文,否则会予以封号处理。所以在提交知网查重前务必要去除学校信息,以免检测失败而耽误论文修改的宝贵时间。另外学术不端网值得提醒的是《知网查重时是否需要填写真实作者姓名》。五、掌握全体,理顺论文内容论文初稿关于终究要交给的终稿来说,论文初稿我们也一定要尽善尽美,初稿仅仅最基本的第一步,绝对不要换一些低级的错误,文章的内容不够完好,字句之间的逻辑不通,段落之间的言语不顺,一起也会存在许多有抄袭嫌疑的字句,所以在文章开始写好后,掌握内容的全体,将这些疑问都理顺,晓得自个的文章,哪里能够存在疑问,哪里需求修正。

为了快速顺利的通过论文查重,大家最好掌握一些论文查重的技巧,下面小编就给大家讲解一下,论文查重需要掌握哪些技巧。技巧一:首先要了解各种相关的论文查重软件,尤其是学校用的论文查重软件。现在有很多论文查重软件,如果在选择的时候能对他们有所了解,就不会轻易踩雷,可以了解论文查重软件查重的原理。比如主要是根据连续词来开始检测,从而调整你的论文。技巧二:论文查重时掌握查重内容的范围,使用自己的论文查重软件时,可以上传学校明确要求查重的内容,只上传学校和查重系统要求的内容,一方面可以为自己节省查重的成本。另一方面可以减少查重的时间,从而提高修改论文的效率。技巧三:控制你的时间。因为每个大学都会限制毕业生在一定时间内提交论文,所以你在查重论文的时候要注意控制好自己的时间。最好能给自己留点时间,以便应对突发情况。当然,还有其他的小技巧。比如你可以参加查重软件推出的活动,就可以获得免费查重论文的机会,就像paperfree的论文查重网站一样。

论文查重注意事项有哪些?由清华同方所开发的知网论文查重系统经常被用于对于高校毕业生们的毕业论文审查,根据其检测出的查重率来评判论文是否存在抄袭行为,该查重系统虽然许多本科学生或者是研究生都会用到的查重工具,但是依旧有着很多人对于同方知网论文检测系统了解不够充分,今天就为大家盘点一二论文查重注意事项有哪些。论文查重注意事项注意清楚透彻的了解论文查重结果:知网查重完毕后,都会给出一份该篇论文的详细查重报告,其中内容很多。清楚的明白报告内容所指含义才能清楚自己论文的情况。在报告上显示的文章中黄色字体则代表论文中的引用部分,而红色字体则意味着该部分文字高度相似,而论文的总复制比是包括红色和黄色部分内容的文字占论文总字数的比值,对于论文降重,重复部分和引用部分都是需要修改的。论文查重并不会对论文中的所有内容全部查重,其查重内容往往限于文字,而论文中所包含的图片、公式编辑器、word域代码,知网对于这些内容是不查重的,由此我们在论文写作过程中可以善用公式、图片等形式去表达相似的内容。注意图表内容也是会查重的,对于一些研究数据,论文中常常以图表形式来提现,对于Word或者是Excel编辑的图表,知网查重是能检测查重的,如果借鉴了他人论文数据,则该图表在查重报告中是定会标红显示的。以上就是论文查重注意事项的具体内容,论文查重并非难事,只要掌握方法和查重的规律,一次性通过亦是是没有问题的。

本科生是使用“中国知网”大学生论文抄袭检测系统(PMLC),但价格略贵,可以等学校统一安排。下面是一些查重的技巧,望采纳:论文抄袭检测算法1.论文的段落与格式:论文检测基本都是整篇文章上传,上传后,论文检测软件首先进行部分划分,上交的最终稿件格式对抄袭率有很大影响。不同段落的划分可能造成几十个字的小段落检测不出来。因此,我们可以通过划分多的小段落来降低抄袭率。2.数据库:论文检测,多半是针对已发表的毕业论文,期刊文章,还有会议论文进行匹配的,有的数据库也包含了网络的一些文章。这里给大家透露下,很多书籍是没有包含在检测数据库中的。之前朋友从一本研究性的著作中摘抄了大量文字,也没被查出来。就能看出,这个方法还是有效果的。3.章节变换:很多同学改变了章节的顺序,或者从不同的文章中抽取不同的章节拼接而成的文章,对抄袭检测的结果影响几乎为零。所以论文抄袭检测大师建议大家不要以为抄袭了几篇文章,或者几十篇文章就能过关。4.标注参考文献:参考别人的文章和抄袭别人的文章在检测软件中是如何界定的。其实很简单,我们的论文中加了参考文献的引用符号,但是在抄袭检测软件中。都是统一看待,软件的阀值一般设定为1%,例如一篇文章有5000字,文章的1%就是50字,如果抄袭了多于50,即使加了参考文献,也会被判定为抄袭。5.字数匹配:论文抄袭检测系统相对比较严格,只要多于20单位的字数匹配一致,就被认定为抄袭,但是前提是满足第4点,参考文献的标注。

  • 索引序列
  • 读秀论文检测
  • deepfake检测论文解读
  • 人脸检测论文解读
  • 目标检测论文解读
  • 论文检测查重必读
  • 返回顶部