生活中无处不在的数学 应用数学则是一个庞大的系统,有人说,它是我们的全部知识中,能用数学语言来表示的那一部分。应用数学只限于说明自然现象,解决实际问题,是纯粹数学与科学技术之间的桥梁。大家常说现在是信息社会,专门研究信息的“信息论”,就是应用数学中一门重要的学科,数学有3个最显著的特征:高度的抽象性、逻辑的严谨性、广泛的应用性。宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中。比如说,上街买东西自然要用加减法,修筑房屋总要画图纸。三角形很稳定,许多支架都是三角形的,这就运用了“三点确定一个平面”的数学公理;我们玩玩具枪时,总是用眼睛瞄准准星和靶心,使之成为一条直线,这样命中率才高,这就证明了“两点确定一条直线”的数学公理;轮胎之所以设计成圆的,是因为它容易滚…… 类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题。 小时候,妈妈烙饼,锅里一次只能放两张饼,我一想,这不就是一个应用数学问题吗?烙一张饼用两分钟,烙正反两面各用一分钟,锅里最多放两张饼,那么烙三张饼至少要用多少分钟呢?我想了想,得出结论:要用三分钟:先把第一张饼和第二张饼同时放进锅内,一分钟后,取出第二张饼,再放入第三张饼,把第一张饼翻面;再烙一分钟第一张饼就好了,取出来。然后将第二张饼的反面放入锅中,将第三张饼翻面,这样三分钟就能全部搞定。可是过年家里人多,要烙许多饼,怎样才能早点烙好饼?经过不断测试,我得出了一个限用两饼一锅的公式:饼数×单面用时=烙饼最少用时。我把这个想法告诉了爸爸,他说,实际上不会这么巧,总得有一些误差,不过算法是正确的。看来,我们必须学以致用,才能更好的让数学服务于我们的生活。
国庆节中的一天,我和爸爸吃完午饭玩24。从开始到结束一直是我赢,爸爸说:“你有什么技巧?”我说: “巧算24点”是一种数学游戏,游戏方式简单易学,能健脑益智,是一项极为有益的活动.巧算24点的游戏内容如下:一副牌中抽去大小王剩下52张,(如果初练也可只用1~10这40张牌)任意抽取4张牌(称牌组),用加、减、乘、除(可加括号)把牌面上的数算成24.每张牌必须用一次且只能用一次,如抽出的牌是3、8、8、9,那么算式为(9—8)×8×3或3×8+(9—8)或(9—8÷8)×3等. “算24点”作为一种扑克牌智力游戏,还应注意计算中的技巧问题.计算时,我们不可能把牌面上的4个数的不同组合形式——去试,更不能瞎碰乱凑.给你介绍几种常用的、便于学习掌握的方法:1.利用3×8=24、4×6=24求解.把牌面上的四个数想办法凑成3和8、4和6,再相乘求解.如3、3、6、10可组成(10—6÷3)×3=24等.又如2、3、3、7可组成(7+3—2)×3=24等.实践证明,这种方法是利用率最大、命中率最高的一种方法. 2.利用0、11的运算特性求解.如3、4、4、8可组成3×8+4—4=24等.又如4、5、J、K可组成11×(5—4)+13=24等. 3.在有解的牌组中,用得最为广泛的是以下六种解法:(我们用a、b、c、d表示牌面上的四个数) ①(a—b)×(c+d) 如(10—4)×(2+2)=24等. ②(a+b)÷c×d 如(10+2)÷2×4=24等. ③(a-b÷c)×d 如(3—2÷2)×12=24等. ④(a+b-c)×d 如(9+5—2)×2=24等. ⑤a×b+c—d 如11×3+l—10=24等. ⑥(a-b)×c+d 如(4—l)×6+6=24等. 游戏时,同学们不妨按照上述方法试一试.需要说明的是:经计算机准确计算,一副牌(52张)中,任意抽取4张可有1820种不同组合,其中有458个牌组算不出24点,如A、A、A、5. 不难看出,“巧算24点”能极大限度地调动眼、脑、手、口、耳多种感官的协调活动,对于培养我们快捷的心算能力和反应能力很有帮助.” 爸爸说“真棒!我送你一个航模。” 看来,生活真离不开数学
可以从下面六点来写:(1)一道数学题的解答。主要是学生对某一道有挑战性的题目简便的或与众不同的解法(包括一题多解)。例如,书后的思考题,奥数题,教师或家长布置的智慧题,数学刊物上的挑战题,平时自己在做题时遇到的有一定难度的题目等。学生通过对这些问题的解决,不但发展了思维,而且体验到一种强烈的成就感,这对他以后数学的学习将是一个巨大的动力。(2)用数学的眼光去分析现实问题。主要指学生用数学的眼光去观察、计算、分析现实问题,获得一种理性的思考。比如,有学生写道:如果每人每天节约1克水,那全国13亿人口每天可以节约1300吨水,发出了“人人节约一滴水,沙漠也能变绿洲”的感慨!还有学生写道:如果每个去银行储蓄的人每次都能为“希望工程”捐1角钱的话,全国那么多储蓄点捐到的钱可以资助多少贫困学生实现上学的梦想呀!学生能从这些角度通过数学的计算去思考社会意义,它的价值就能远远超过数学研究本身。(3)生活中的数学问题。主要用来记录学生在生活中遇到的感兴趣并有亲身体验的有关数学的情境记录。写这种数学小论文的题材特别多,比如,有学生写到了人民币为什么只有1元、2元、5元而没有3元、4元、6元、7元、8元、9元的;再如,有学生写到了他家住的楼房每层有24级楼梯,那么他从1楼到5楼要爬多少级楼梯。这些都是生活中每天要经历的很平常的事,但学生一旦用数学的眼光来观察和思考这些看似平常的生活问题,就在数学和生活之间架起了一座桥梁,能够感受到生活中处处有数学。(4)课堂上的数学问题。主要指学生在课堂数学学习过程中自己的一些思考和发现。这对学生数学学习非常有帮助,比如,有个学生在学习画三角形的高时,发现书上介绍了锐角三角形和直角三角形的三条高,而钝角三角形只介绍了一条高。她在课后通过自己的思考和尝试,画出了钝角三角形的另外两条高,在得到老师的肯定后,欣喜万分,连忙写下了《我发现了钝角三角形的另外两条高》这篇数学小论文。(5)数学实践活动中遇到的问题。主要指学生通过自己亲自动手实践,在实践活动的过程中产生的疑惑、获得的启示和得到的结论等。比如,有个学生在教师还没有上实践活动课“可能性”之前,自己看书并根据书上的内容用红、蓝铅笔去摸,自己动手去探索并验证规律,事后写了一篇心得体会,写出了她在动手实践过程中的想法和体会,让她觉得其乐无穷。(6)数学童话。主要指学生发挥丰富的想象力,用童话的形式(其中包含着数学论述)来记录看到的数学世界。这是语文学科和数学学科一种很好的整合,那种独特的视角,生动的语言描述,让教师耳目一新。
数学小论文一 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。 数学小论文二 各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.” 正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域. 数学小论文三 数学是什么 什么是数学?有人说:“数学,不就是数的学问吗?” 这样的说法可不对。因为数学不光研究“数”,也研究“形”,大家都很熟悉的三角形、正方形,也都是数学研究的对象。 历史上,关于什么是数学的说法更是五花八门。有人说,数学就是关联;也有人说,数学就是逻辑,“逻辑是数学的青年时代,数学是逻辑的壮年时代。” 那么,究竟什么是数学呢? 伟大的革命导师恩格斯,站在辩证唯物主义的理论高度,通过深刻分析数学的起源和本质,精辟地作出了一系列科学的论断。恩格斯指出:“数学是数量的科学”,“纯数学的对象是现实世界的空间形式和数量关系”。根据恩格斯的观点,较确切的说法就是:数学——研究现实世界的数量关系和空间形式的科学。 数学可以分成两大类,一类叫纯粹数学,一类叫应用 数学。 纯粹数学也叫基础数学,专门研究数学本身的内部规律。中小学课本里介绍的代数、几何、微积分、概率论知识,都属于纯粹数学。纯粹数学的一个显著特点,就是暂时撇开具体内容,以纯粹形式研究事物的数量关系和空间形式。例如研究梯形的面积计算公式,至于它是梯形稻田的面积,还是梯形机械零件的面积,都无关紧要,大家关心的只是蕴含在这种几何图形中的数量关系。 应用数学则是一个庞大的系统,有人说,它是我们的全部知识中,凡是能用数学语言来表示的那一部分。应用数学着限于说明自然现象,解决实际问题,是纯粹数学与科学技术之间的桥梁。大家常说现在是信息社会,专门研究信息的“信息论”,就是应用数学中一门重要的分支学科, 数学有3个最显著的特征。 高度的抽象性是数学的显著特征之一。数学理论都算有非常抽象的形式,这种抽象是经过一系列的阶段形成的,所以大大超过了自然科学中的一般抽象,而且不仅概念是抽象的,连数学方法本身也是抽象的。例如,物理学家可以通过实验来证明自己的理论,而数学家则不能用实验的方法来证明定理,非得用逻辑推理和计算不可。现在,连数学中过去被认为是比较“直观”的几何学,也在朝着抽象的方向发展。根据公理化思想,几何图形不再是必须知道的内容,它是圆的也好,方的也好,都无关紧要,甚至用桌子、椅子和啤酒杯去代替点、线、面也未尝不可,只要它们满足结合关系、顺序关系、合同关系,具备有相容性、独立性和完备性,就能够构成一门几何学。 体系的严谨性是数学的另一个显著特征。数学思维的正确性表现在逻辑的严谨性上。早在2000多年前,数学家就从几个最基本的结论出发,运用逻辑推理的方法,将丰富的几何学知识整理成一门严密系统的理论,它像一根精美的逻辑链条,每一个环节都衔接得丝丝入扣。所以,数学一直被誉为是“精确科学的典范”。 广泛的应用性也是数学的一个显著特征。宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。20世纪里,随着应用数学分支的大量涌现,数学已经渗透到几乎所有的科学部门。不仅物理学、化学等学科仍在广泛地享用数学的成果,连过去很少使用数学的生物学、语言学、历史学等等,也与数学结合形成了内容丰富的生物数学、数理经济学、数学心理学、数理语言学、数学历史学等边缘学科。 各门科学的“数学化”,是现代科学发展的一大趋势。
我想,大家一定知道小数吧。其实,生活中也有许多小数。不知道你们发现了没有?下面,我就来跟你介绍一下生活中的小数吧!瞧,那边的水果店里琳琅满目的水果的标签价格,是不一样的,其中,一定有带有一个小点点的吧!没错,那个小点点就是小数点,小数点后面的数字就叫做小数。我想,大家一定认识小数了吧,现在,我就来跟你讲讲小数吧!大家别忘了小数也是有数位的哦,我告诉你吧!小数的数位有:十分位,表示十分之一(0.1);百分位,表示百分之一(0.01);千分位,表示千分之一(0.001);万分位,表示万分之一(0.0001)。当然,还有很多很多,是说不完的。认识了小数的数位,那小数是怎样进一的呢?其实,小数和整数是一样的,它们都是“逢十进一”的,还有,别忘了,小数与小数之间的进率是10哦!对了,大家肯定会问,为什么生活中要用小数啊?因为我们在日常生活中尽心测量和计算时,往往不能正好得到整数的结果,所以常用小数来表示。通过我的介绍,大家一定深入的了解小数了吧。只要你平时留心,就一定能发现数学的奥秘!
在我学习数学中,会遇到许多问题,比如说:能被2、3、5整除的数有什么规律;又比如说:求最大公约数和最小公倍数有没有什么简便算法,这些,都需要我慢慢学习,在数学的海洋中探索!
经过查找资料,和同学讨论,并结合书本,我了解到,个位上是0、2、4、6、8的数可以被2整除。个位上是0或5的数都可以被5整除。各个位上的数加起来的和能不能被3整除,就知道,这个数能不能被3整除。
通过学习求两组数的最大公约数,我发现了如果两个数成倍数情况,那么最大数就是这两个数的最小公倍数。如果两个数成互质数情况,那么这两个数的积就是这两个数的最小公倍数。
数学的天空色彩斑斓,那是理性之光射向艺术殿堂产生的美景。我在数字中遨游,在数字中学习,捕获更多的数学知识在现实中应用。虽然有时会遇到困难,但是只要努力去学习,去和同学们讨论,和老师交流,一定会发现规律,解决问题!
学好数学要做到3点,只要学好了这三点你的数学绝对很好。
第一点就是要有孙悟空的火眼金睛,要善于发现题目中的重点,要善于发现更简单的解题思路,要是你善于发现的话有可能在一个问题中学习到更多的知识。
第二就是要有小叮当的口袋,大家都知道小叮当的口袋里什么东西都有,在大雄有困难的时候总能拿出一个能解决问题的东西这就是未雨绸缪,在学习数学的时候我们要学会未雨绸缪不要等到火烧眉毛的时候再想办法,只要学会未雨绸缪就能抢在别人前面做某件事小侓也会随之提高。
第三点就是要有柯南的头脑,柯南的脑袋是全世界公认的好,他不管是什么案件都能顺利破案,他靠得当然是他聪明的脑袋和细心,所以我们要学习柯南头难不好没关系重要的是细心,有了细心不管是什么事都难不到自己。
让我们记住这三点学好数学吧
数学,在生活中时常能显现它的影子,它是生活中不可或缺的一部分。在生活中,不但要用到数学,而且也能学到数学知识。
今天,爸爸妈妈去公园散步健身去了,让我在家好好看书、写作业。等作业写完时,他们还没回家。闲得无聊时,我就想上网玩一会儿。
于是,急忙奔向书房,打开电脑正准备上网时,我愣了,原来爸妈早料到我这招,竟然在电脑上设置了开机密码。这可把我急得团团转,可又不甘心就这样放弃这样一个大好机会。正当我在发愁的时候,我在屏幕下方发现了一个密码提示,我像抓住了救命稻草一样。可仔细一看,又让我犯了难。原来,这个提示是一道数学题!题目是这样的:1+2+3+4+5…….+99+100=?这道题的答案就是开机密码。
我一看题目,头都大了,更别说算了,从来没做过这么复杂的题目。可算不出来,就不能上网。为了能上网,我只得拿出纸张,认真的演算起来。在经过几次演算后,看着长长的算式,我是真的犯了难。就仔细琢磨,有没有什么规律和简便的方法可用。经过尝试之后,我终于找到了计算的方法,用最大数相加最小数,以此类推,1+100=101、2+99=101…….50+51=101,正好是50个101,最后我终于算出了答案是5050!当我把答案输入密码时,一下就开机了,让我兴奋地跳了起来。
当爸爸妈妈回到家时,我还在网上正开心的玩着呢,他们见我在上网,非常惊讶,便问我是如何破解密码而上网的,我便把刚才的市场计算方法告诉了他们,他们听了哈哈大笑,说下次要用难点的题目设密码了。
这件事让我明白了:数学在生活中无处不在,生活中处处充满了知识,只要肯动脑筋,就一定会学到知识,解决问题!
今天,我和爸爸坐地铁来到油坊桥去玩,从中我明白了一个道理。
我们先来到地铁,发现地铁有19站,每一站每一站要2分钟,中间停车的时间是1分30秒,这时爸爸给我出了一个难题:如果从经天路到油坊桥一共需要多少分钟?我想了一会儿:“19减去1等于18,18乘以2等于36,18乘以1分30秒等于1小时12分钟,1小时12分钟加上36分钟等于1小时48分钟。”爸爸听后笑了笑说:“你的算法不太简便,先把19减去1等于18,这样就知道一共有18个停车时间,然后用2分钟加上1分30秒等于3分30秒,再用3分30秒乘以18个站就等于1小时12分钟了!你说这种方法是不是比你的方法简便?”我点了点头
通过这次坐地铁我明白了生活中虽然有着许许多多的数学,但是有些数学题不简便, 等着我们去简便的算它,以后我必须认真的学习数学解答更多的数学难题。
0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变数(一个变数在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变数在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变数,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,巨集观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。
千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:452.5=112.5(千米),112.5+18=130.5(千米),130.52=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是452.5=112.5(千米),112.5-18=94.5(千米),94.52=189(千米)。所以正确答案应该是:452.5=112.5(千米),112.5+18=130.5(千米),130.52=261(千米)和452.5=112.5(千米),112.5-18=94.5(千米),94.52=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。
在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。 大家一定从小就开始奇怪了,0到底是怎么来的呢?关于0的起源,有以下几种观点。①、古巴比伦的0的符号是用空位来表示的,例如要表示一百零一,古巴比伦写作1。1②、在古印度数学中,发现0的最早记载是公元876年,欧洲许多数学家都同意这一观点。公元6世纪,印度人就开始用“?”,后来变成了一个圆圈。到了公元九世纪就固定成了今天的“0”。③、0的故乡在中国。我国最早的诗歌总集《诗经》中就有0的记载,只不过当时0的意思是“暴风雨末了的小雨滴”。在我国远古时代的结绳记数法中,0是在对“有”的否定中出现的,意思是“没有”。总之,有关0的起源还没有一个定论。 但是无论如何,0自从一出现就具有非常旺盛的生命力,现在,它广泛应用于社会的各个领域。 在课堂上,常听老师说,0就是没有的意思,你有0元钱,就代表没有钱;你有0支笔,就代表你没有笔。在这样的情况下,温度表上的0度就代表着没有温度吗?答案肯定是否定的。纯净的冰水混合物的温度就是0度。 想一想我们四年级学的素数与合数吧!老师是这样解释的“自然数可以分成3类:1、素数与合数,一个自然数只有一和它本身两个因数的数是素数,因数大于3个就是合数,1单独为一种。”那0也是自然数,它是最小的自然数,0到底是质数还是合数呢?这个谁也说不清楚。 我还有一个关于0的问题,自然数也可以分成奇数与偶数,能被2整除的数就是合数,反之就是奇数。0是奇数还是偶数呢?看上去像偶数,但又说不准,到底是什么数谁也不清楚。 0还有许多奇妙有趣的事就在我们身边呢,大家一起来发现吧! 麻烦采纳,谢谢!
有趣的职业 小赵、小丁、小张分别是教师、医生和律师,只知道:1小赵比教师年纪大;2小张和教师不同岁;3小赵和律师是朋友,你能推断谁是教师,谁是律师,谁是医生吗? 根据1小赵比教师年纪大和3小赵和律师是朋友,可以推断小赵既不是教师,也不是律师,所以小赵是医生,再根据2小张和教师不同岁和小赵是医生可以看出小张是律师,所以剩下的小丁是个教师。 这道题目很简单,我运用了排除法,比如:根据条件1和3就可以看出,小赵既不是教师,也不是律师。以次类推就可以得出答案。在我们学习数学的过程中,我们只要掌握方法,就可以解决一切难题,想不到从数学中也能得到乐趣。
千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。所以正确答案应该是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
数学小论文 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变数(一个变数在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变数在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变数,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,巨集观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。
模糊不过vncjhvb
数学小论文 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变数(一个变数在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变数在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变数,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,巨集观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。 望采纳。
《容易忽略的答案》 大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。所以正确答案应该是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
记得暑假里的一天,我们到叔叔家里玩,正玩到兴头上,叔叔拿了10个硬币走了过来,说:“你们想要这些硬币吗?”“当然想啦!”大家异口同声地回答道。我望着叔叔,真有点丈二和尚——摸不著头脑,我心里琢磨著,不知道叔叔葫芦里卖的是什么药。“你们想要这些硬币,就要回答我的问题,谁答对,硬币就全归他了。”说完,叔叔就提出一个问题:“怎样才能把10个硬币放进3个杯子里,使每个杯子里的硬币数都是奇数,看谁能找出最多的方法。” 听完叔叔的题目,大家冥思苦想。只见表弟在客厅里走来走去,表姐坐在椅子上冷静地思考着。不一会,我看见妹妹找来了材料,试着做。可是,做了很久,妹妹还是没找到具体解题的方法。我也不甘示弱,开动脑筋想着。哎,要是能把这硬币拿到手,那该多好啊! 过了十多分钟,大家都没有想到怎么做,叔叔见此情景,对我们说:“给你们一点提示吧!解这道题要学会多转几个弯,不要……”“等等!”话没说完,表弟好象想到了什么似的。只见他拿起10个硬币,先把第1个硬币放到第1个杯子里去,然后把3个硬币投进第2个杯子里,看到这里,我不禁想道:这个办法嘛,我早就想过了,根本就不行,剩下的硬币有6个,6是偶数,我可以肯定地说一句:“这个办法是行不通的。”当表弟把剩下的6个硬币放到第3个杯子时,我插嘴道:“这办法根本……”我的话还没说完,表弟就把我的话打断了,“表姐,你还是看我的表演吧!”表弟神气地说。只见他拿起第1个杯子,把那个硬币放到第3个杯子里去。“这就是第一种方法。”表弟得意地扮了个鬼脸。“哎呀!我真笨,怎么想到第三步就放弃了呢?真不值得!”接着,表弟按照第一次那样做,先把3个硬币放到第1个杯子里,然后在第二个杯子里放5个硬币,接着把剩下的硬币放到第三个杯子里,最后,把第一个杯子里的硬币放到第三个杯里去。这样第二种方法就完成了。按著这样的方法,表弟连续做了13次。 看到这里,站在一旁的叔叔拍起了手掌,点点头说:“真想不到,你这小鬼还会有动脑筋的时候,这回你赢了,10个硬币都归你了。”叔叔一边称赞表弟,一边抚摸着他的小脑袋。“不过,小瑜呀,你可得加把劲了,这回连表弟都赢了你。记住,凡事多动脑筋,别轻易放弃。” 是呀,叔叔说得对,凡事多动脑筋,别轻易放弃。如果我刚才想到第三步没放弃的话,再动动脑筋,那道题就被我解开了。以后,真的要加把劲,要努力学好数学,掌握好数学,更要学会在生活中灵活运用好数学。
第一页 居中 先写题目 第二行写班级、姓名 换页 找关于论文的主题的例子 写完一个例子写两行左右的说明,例如这题的做法是怎么样的 写三到五个例题即可 一般用WROD两页即可,建议多写,但不要写的题目太难,不符合你的年龄段
数学小论文一 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。 数学小论文二 各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.” 正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域. 数学小论文三 数学是什么 什么是数学?有人说:“数学,不就是数的学问吗?” 这样的说法可不对。因为数学不光研究“数”,也研究“形”,大家都很熟悉的三角形、正方形,也都是数学研究的对象。 历史上,关于什么是数学的说法更是五花八门。有人说,数学就是关联;也有人说,数学就是逻辑,“逻辑是数学的青年时代,数学是逻辑的壮年时代。” 那么,究竟什么是数学呢? 伟大的革命导师恩格斯,站在辩证唯物主义的理论高度,通过深刻分析数学的起源和本质,精辟地作出了一系列科学的论断。恩格斯指出:“数学是数量的科学”,“纯数学的对象是现实世界的空间形式和数量关系”。根据恩格斯的观点,较确切的说法就是:数学——研究现实世界的数量关系和空间形式的科学。 数学可以分成两大类,一类叫纯粹数学,一类叫应用 数学。 纯粹数学也叫基础数学,专门研究数学本身的内部规律。中小学课本里介绍的代数、几何、微积分、概率论知识,都属于纯粹数学。纯粹数学的一个显著特点,就是暂时撇开具体内容,以纯粹形式研究事物的数量关系和空间形式。例如研究梯形的面积计算公式,至于它是梯形稻田的面积,还是梯形机械零件的面积,都无关紧要,大家关心的只是蕴含在这种几何图形中的数量关系。 应用数学则是一个庞大的系统,有人说,它是我们的全部知识中,凡是能用数学语言来表示的那一部分。应用数学着限于说明自然现象,解决实际问题,是纯粹数学与科学技术之间的桥梁。大家常说现在是信息社会,专门研究信息的“信息论”,就是应用数学中一门重要的分支学科, 数学有3个最显著的特征。 高度的抽象性是数学的显著特征之一。数学理论都算有非常抽象的形式,这种抽象是经过一系列的阶段形成的,所以大大超过了自然科学中的一般抽象,而且不仅概念是抽象的,连数学方法本身也是抽象的。例如,物理学家可以通过实验来证明自己的理论,而数学家则不能用实验的方法来证明定理,非得用逻辑推理和计算不可。现在,连数学中过去被认为是比较“直观”的几何学,也在朝着抽象的方向发展。根据公理化思想,几何图形不再是必须知道的内容,它是圆的也好,方的也好,都无关紧要,甚至用桌子、椅子和啤酒杯去代替点、线、面也未尝不可,只要它们满足结合关系、顺序关系、合同关系,具备有相容性、独立性和完备性,就能够构成一门几何学。 体系的严谨性是数学的另一个显著特征。数学思维的正确性表现在逻辑的严谨性上。早在2000多年前,数学家就从几个最基本的结论出发,运用逻辑推理的方法,将丰富的几何学知识整理成一门严密系统的理论,它像一根精美的逻辑链条,每一个环节都衔接得丝丝入扣。所以,数学一直被誉为是“精确科学的典范”。 广泛的应用性也是数学的一个显著特征。宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。20世纪里,随着应用数学分支的大量涌现,数学已经渗透到几乎所有的科学部门。不仅物理学、化学等学科仍在广泛地享用数学的成果,连过去很少使用数学的生物学、语言学、历史学等等,也与数学结合形成了内容丰富的生物数学、数理经济学、数学心理学、数理语言学、数学历史学等边缘学科。 各门科学的“数学化”,是现代科学发展的一大趋势。 祝:学习进步!
多动脑筋好好想想,生活中数学很多啊,琢磨琢磨能想出来的 1、如何做一个尽可能大的无盖长方体盒子2、黄金比3、圆周率这些都可以啊
阿姨的数学题 我妈妈开了文具店,今天是星期天,妈妈有事,叫我去看店。一会,来了一位阿姨,她说要考考我,才能告诉我买什么,她说:“李辉买了一枝铅笔和一个练习本,一共花了0.48元。练习本的价钱是铅笔的两倍。铅笔和练习本的单价各是多少钱?” 我想了想:练习本和铅笔一共是三倍,只要用0.48÷3就能求出铅笔的价格,那练习本的价格也能求出来了。我把答案说了出来,阿姨夸我:“能够仔细的分析题目,真不错!”“你这里练习本每本0。6元,作文本每本0。9元,我要买10本,给你8.1元,不用找,你该给我几本练习本 ,几本作文本?”我想了想说:“先假设10本全是作文本,需要10×0.9=9元,实际付了8.1元,比假设少付了9-8.1=0.9元,实际作文本比练习本多0.9-0.6=0.3元,就可求出练习本是0.9÷0.3=3本,作文本是10-3=7本。”算出来了,阿姨直夸我聪明,我心里美滋滋的,后来阿姨又买来几样文具,结帐时我还沉浸在欢乐之中,结果呢把钱算错了,我没发现,阿姨却对我说:“你呀,一夸你就得意忘形了。把该付的钱的小数点看错了,结果呢我少付15。3元。”“对不起,小数点向左移动了一位,比原来的价格缩小了10倍,相差了9倍,只要15.3÷9=1.7元,由于刚才缩小了10倍,所以要1.7×10=17元。”阿姨又买了几个文具,就走了。 今天,阿姨的数学题我一一攻破了,心想:生活中的数学无处不在,数学博大精深,我要更加努力,争取再上一层楼!
dmo j l wo
数学小论文:年龄问题四年级300字今天,我在做题时被一道应用题给难住了。这道题的题目是:小华今年3岁,今年爸爸26岁,几年后爸爸的年龄是小华的3倍?我百思不得其解。后来妈妈回来了,我就请教妈妈。妈妈帮我分析:根据这个题目的条件可知,今年爸爸和小华的“年龄差”是26-4=24(岁)。再根据“爸爸的年龄是小华的3倍”这一关系,画张图试试。我们俩就开始画了起来。画了图之后,我马上明白过来了:他们俩过了几年后,“年龄差”还是24岁。再根据差倍问题的解法求出几年后小华的年龄,用几年后小华的年龄减去2岁,就可以求出中间经过了几年了。解是:26-2=24(岁)24÷(3-1)=12(岁)12-2=10(年)答:10年后爸爸的年龄是小华的3倍。妈妈又让我验算一下,10年后爸爸的年龄是不是小华的3倍。(26+10)÷(2+10)=36÷12=3耶!我答对了。看来做题先得画图,画了图就能就一目了然了。
数学小论文:年龄问题四年级300字今天,我在做题时被一道应用题给难住了。这道题的题目是:小华今年3岁,今年爸爸26岁,几年后爸爸的年龄是小华的3倍?我百思不得其解。后来妈妈回来了,我就请教妈妈。妈妈帮我分析:根据这个题目的条件可知,今年爸爸和小华的“年龄差”是26-4=24(岁)。再根据“爸爸的年龄是小华的3倍”这一关系,画张图试试。我们俩就开始画了起来。画了图之后,我马上明白过来了:他们俩过了几年后,“年龄差”还是24岁。再根据差倍问题的解法求出几年后小华的年龄,用几年后小华的年龄减去2岁,就可以求出中间经过了几年了。解是:26-2=24(岁)24÷(3-1)=12(岁)12-2=10(年)答:10年后爸爸的年龄是小华的3倍。妈妈又让我验算一下,10年后爸爸的年龄是不是小华的3倍。(26+10)÷(2+10)=36÷12=3耶!我答对了。看来做题先得画图,画了图就能就一目了然了。
丁立一下子想不出来,就说:“笔和草稿纸呢?”我想:即使现在有笔和草稿纸你也未必做得出来呢!于是,我对丁立说:“其实这到题的解题方法很简单:先算出小红和小丁平均几分钟踢进一球?再算出踢进90个球要几分钟?最后把所需时间加上一点十分,就能算出什么时候一共踢进90个球。丁立笑了,反问我:“是不是因为你平时注意观察生活,在生活中学习数学,所以才被称为“数学小王子”?” 没想到一个小小的数学题竟和生活有着联系。看来生活是离不开数学的。生活中无时无刻不与数学打交道,足球场上也不例外。例如,足球场的大小就有严格的数字规定:长90—120米,宽45—90米,球门宽7. 32米,高2.44米,中圈半径为9.15米等。把足球场与数学联系起来,.确实是一件有趣的事。
“对我来说什么都可以变成数学。”数学家笛卡儿曾这样说过。“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学。”我国家喻户晓的数学家华罗庚也曾下过这样的结论。的确,正如两位前辈所说,数学与我们的生活息息相关,数学的脚步无处不在。 2006年已经接近尾声了,迎面而来的是新的一年——2007年。行走在繁华的大街上,随处可见商家打出的“满400送400”,“满300送300”的促销招牌。“这真实惠!”消费者们蜂拥而至,商场里人山人海,抢购成风。此情此景,真让人以为回到了物资短缺的年代。实际上商家心里早打好了如意算盘。俗话说:只有买亏,没有卖亏,“满400送400元券”只是商家的一种促销手段,其中暗藏着数学问题,暗藏着商业机密,暗藏着许多玄机。 去年,我们一家三口,也在新年之际在商场里“血拼”,当时是满400送400元券。我们先用980元买了一件苹果牌的皮夹克给爸爸,送来了800元购物券。我们并没有过分浪费,花了298元券买了一件藏青色的李宁牌棉袄,又用剩下的500元券中的488买了一件太子龙男装(由于是购物券,不设找零)。到底便宜了多少?298+488+980=1766(元)——这是原来不打折时需要花的钱。980/1776,所打的折扣大约是五五折。 我的姑姑和姑夫从前也做过服装生意,我对服装的进货成本与销售价的关系也有些了解。服装的进价一般只占建议零售价的20%~30%。随着竞争的加剧和商场促销力度越来越大,为了保持利润,商家或厂家还不断地把衣服的建议零售价标高。就如前几天在电视中看见的一位消费者所说,某一品牌同一款式的一条尼料的裤子,三年前建议零售价还只是299元,今年标价变成了999元。这么一算,进价大概只有商场里售价的10%~20%。就算打了五五折,商家还稳赚三至五成的毛利。 广告,广告,便是广而告之。许多人一窝蜂似的赶来抢购、血拼,商场的人流量多了,商品销售量也快速增长。就按人流量是平时的三倍算,这里又出现了一个数学问题。假设平时人流量少时,一件商品按8折销售。8折减去进价2折,标价部分的6成就成了毛利。虽然现在“满400送400元券”时同一件商品可能只赚三至五成,但销量起码是平时的三倍以上。就按三成毛利和三倍销量来计算,3×3=9,与平时的6成毛利相比,一天能多赚50%。虽说这样卖每件单位毛利率有所下降,毛利额却因销售量的增加而增长,更因大量销售而加快了资金周转,带来额外的收益。 商品标价和促销中有数学,购物消费中有数学,装修房子有数学,织毛衣中有数学……总而言之,数学在现实生活中无处不在! 满意吗?``祝你成功!~
作为小学数学教师,让四年级的学生写数学的小论文,对于学生的成绩提高有很大的作用。下面是我为大家整理的 四年级数学 小论文,供大家参考。
【摘要】要:新课改出台后,新的课程教学标准对小学数学教学也作了新的要求。如何在新课改背景之下采取有效的 教学 方法 和策略,提升数学教学效果,是摆在所有数学老师面前的问题。本文以小学数学四年级教学为对象,深入探讨了新课改背景下,教师转换身份角色、注重学生数学 逻辑思维 能力和实践操作能力的培养对提高数学教学效果的重要作用。
【关键词】四年级数学角色思维能力实践能力
随着新课程改革的不断深入,小学数学教学更加突出地体现出义务 教育 所具有的普遍性、基础性和发展性特点。小学数学课堂的改革也呈现出蓬勃的趋势。越来越多的数学教师逐渐对“合作、自主、探索”的课堂教学模式表示认可和推崇,切实践行了新课程改革中“人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展”的要求。小学四年级起着连接低年级与高年级的作用,是学生能否建立起学习的兴趣,顺利向小学高年级过度的重要阶段,因此,如何提升课堂教学效果,进而提高小学四年级数学教学质量是摆在所有数学教师面前的重要课题。
(一)要敢于并善于做出教师角色转换
长期以来,因为应试教育根深蒂固的影响而形成的教育教学模式已不能适应教育发展需要。作为小学教师,要提高数学教学质量,首要的是敢于做出自身教师角色的转换,在课堂教学上要进行创新,重视学生能力、 学习态度 以及 创新思维 的培养。摒弃传统教学中教师单纯地讲,学生被动地听这种填鸭式的教学方式。通过丰富多彩的课堂教学模式。发动学生的学习积极性,让学生在课堂教学中讨论、探讨,实际动手操作,相互帮助,真正树立学生是课堂核心的观念。
具体而言,要实现教师角色转化,应注意以下方面。一是要切实转变数学教学观念。随着新课程改革理念的提出,新时期的数学教师要切实转变传统的填鸭式教学模式。教师应发挥引导作用,尝试着让学生进行课堂分组讨论和合作,在此基础上进行评价和指导,教学效果必定会有显著的改变。二是数学教师要进一步加强自身知识素养,由单一型教师向综合型教师转变。数学教师不能针对数学教学而只讲数学教学,实际上,教师的知识素养应当包括专业知识素养、 文化 知识素养和教育知识素养等方面的内容。新课程改革背景下,数学教学可能涉及多门学科和知识,也就要求数学教师要尽力完善自身知识结构以适应新课改背景下教师教学要求。为此,数学教师要以继续教育为契机进一步拓宽自身获取文化知识资源载体的 渠道 ,提升自我的知识素养,在课堂教学中展现出综合教学能力,引导学生快速成长。三是要由课堂的主导者转向引导者,作知识平等的交流者和朋友。新课改背景下,教师要敢于改变传统高高在上的身份,走下讲台,深入学生之中,与学生一起探讨、交流,合作学习。真正坚持“以学生为本”,将课堂主动权交还给学生,发挥学生的教学主体作用。通过教师主导者向引导者身份的转变,逐渐建立起民主、平等的新型和谐师生关系,使学生在愉快轻松的氛围中学习到知识。四是要由教学的灌输者转变为服务者。为此,数学教师要充分利用课堂,创造条件,使学生充分发挥主观能动性参与到合作学习当中去。要采取激励机制,鼓励学生在课堂上勇于表达自己的思想。同时要善于倾听与评价学生提出的问题,并引导学生作出正确的解答。在这个过程中,进一步鼓励学生敢于表现、敢于质疑,建立起批判性思维。
通过笔者的试验,教师经过上述角色转化后,数学教学的课堂效果发生了明显的改变,学生的学习积极性显著提高了,课堂氛围更加活跃,学生课堂参与性更强。因此,在小学教育阶段,尤其是四年级数学的课堂教学中,教师角色的转换体现了素质教育要“以学生为本”的教育原则,是切实符合新课改要求和改革理念的。
(二)积极培养学生的数学逻辑思维
著名教育家赞可夫曾指出:“在数学教学中要始终注意培养学生的逻辑思维能力,培养学生的思维灵活性和创造性。”培养学生的逻辑思维能力是义务教育中的一项基本和重要任务,也是提升课堂教学效果的重要前提之一。数学逻辑思维能力的培养要从小就开始,具体而言,可以从以下方面着手培养学生的数学逻辑思维能力。一是思维能力的培养要贯穿于各年级的数学教学中。小学数学教师要明确各年级阶段都担负着学生思维能力培养的任务,尤其是作为承上启下的四年级,数学思维能力的培训更显重要。数学思维能力的培养要从一开始就有意识的进行,例如培养学生比较能力,可以从认识物体大小、长短、多少等方面着手;培养学生抽象、概括能力则可以从学习十以内数的加、减着手等等。数学教师在教学活动中,需要引导学生通过实际操作、观察等方式,逐步进行比较、分析、综合、抽象、概括,培养相应的思维能力。二是学生数学思维能力的培养要贯穿于每一堂课的学习中。数学思维能力时时刻刻都需要进行有意识的培养,不管是在开始的复习中,还是在教学新知识的过程中,或是在组织学生练习习题中,都要结合具体教授的内容有意识地进行培养。在教学新知识时,要引导学生去分析、推理,最后归纳出正确的结论或计算法则,这是比单纯得出答案更为重要的教学方法。三是要在数学各部分内容的教学中贯穿思维能力培养。具体来说,就是要在教学数学概念、计算法则、解答应用题或操作技能等内容时,都要注意培养学生的思维能力。因为从数学教学角度来讲,任何一个数学概念,都是对客观事物的数量关系或空间形式进行抽象、概括的结果。在教授每一个数学概念时,都要注重通过实例或者实物引导学生分析、比较并寻找出共同点、不同点,揭示概念的本质特征,进而做出正确的判断。
总的来说,数学思维能力的培养是一个长期的过程,但在小学四年级的教学中,又显得极为重要。思维能力一旦较好的建立起来,对学生今后更进一步的学习是大有裨益的。
(三)注重培养学生的实践操作能力
实践活动是学生学习成长的重要途径之一,也是学生形成实践能力的载体。针对四年级学生的年龄特点,在数学教学中应当注重通过实践操作的方式,培养学生的动手能力、主动参与意识和勇于创新的学习能力。通过实践能力的培养,使学生在亲自动手的实践体验中领悟数学,学会想象和创造,有力地摆脱了数学的枯燥乏味,培养了学习数学的兴趣,提高了学生的学习积极性。
参考文献
[1]丁始,马玲译.教师角色[M].北京:中国轻工业出版社.2002
[2]姚艳琼.激活课堂教学提高学习兴趣[J].课程教材教学研究:教育研究版,2007(4)
[3]周洪伟.提高初中数学复习课有效教学的若干策略[J].成功:教育,2010(8)
【摘 要】作为新课程改革所提倡的重要 学习方法 之一,合作学习方法被越来越多的教师应用在课堂上,在发挥积极作用的同时,存在着形式化、泛化的倾向,因此,对小学四年级数学课堂合作学习有效性进行研究具有重要的意义。本文首先提出了合作学习的概念,阐述了合作学习的意义,小学数学合作学习应具备的条件及小学数学合作学习有效发挥的制约因素,最后提出了提高小学四年级数学课堂合作学习有效性的策略。
【关键词】小学数学;合作学习;有效性
作为一种重要的学习方法,合作学习应用于所有学科的教学活动中,数学具有抽象性、严谨性和广泛应用性的特点,给合作学习提供了广泛的应用空间。目前,新课程改革所倡导的合作学习方法已广泛应用于小学数学教学中,但教师在实际应用过程中,还不能发挥合作学习的最大功效,仅流于形式,如何理解合作学习的真正含义,使合作学习发挥最大功效,本文结合现状对小学四年级数学课堂合作学习有效性问题进行初步探讨。
一、合作学习的基本概况
(一)合作学习的概念
相关文献表明,合作学习按照主要取向归结为四类:师生互动、师师互动、生生互动和全员互动。以生生互动为特征的数学合作学习是指在既定的教学内容下,课堂上遵循合作学习的基本原理和基本方法,学生在小组中通过互动等方式,共同学习,最终实现学生认知、情感等全面发展的一种教学活动。
数学合作学习有效性是指:从结果上看,通过合作学习,取得了明显的效果,学生学习成绩显著进步;从过程上看,通过合作学习,学生提高了学习效率,教师提高了教学效率;从长远影响上看,通过合作学习,学生提高了学习数学的兴趣,掌握了学习数学的方法,学生的内在潜能和创新能力得到全面发展。
(二)开展合作学习的意义
美国当代著名教育评论家埃利斯和福茨说过:合作学习如果不是当代最大的教学改革的话,那么它至少也是其中最大的一个。他充分肯定了实施合作学习的意义:一是学生通过合作学习,互 相学 习、互相帮助,在共同完成学习任务的同时,培养了学生的合作意识和合作精神,为学生以后融入社会打下良好的基础;二是以小组合作学习这种方式,给学生营造一个轻松的学生氛围,学生可以充分发表自己的看法,能够激发学生的积极主动性,展现学生的个性,体现学生在课堂上的主体地位。
(三)小学数学课堂合作学习应具备的条件
并不是所有的合作学习都是有效的,只有具备一定的条件,合作学习才是有效的。首先要具备良好的教学环境,包括科学合理的座位安排及和谐的学生氛围等,一般情况下,合作学习都是根据座位进行分组的,教师在座位安排时要充分考虑学生的知识结构、文化背景、性格差异等,同时,小组成员之间建立起良好的关系,给学生营造一种融洽、和谐的氛围。选择合适的教学内容是合作学习有效的基础,不是说所有的教学内容都适合使用合作学习的方法,合作学习的内容要综合考虑课程类型、所涉及知识领域及学生当时的学习氛围等因素。学生独立思考是合作学习有效的关键,合作学习的过程是学生进行独立思考后,通过互相讨论实现再认识、再提高的过程,如果没有独立思考,就不能真正参与其中,不能实现个人的发展,因此,合作学习需要学生独立进行思考。
(四)小学数学课堂合作学习有效发挥的制约因素
部分教师对合作学习的概念理解不到位,把合作学习简单的看成是小组学习,使合作学习流于形式,不能真正发挥作用。在小组合作学习过程中,有些教师没有找准定位,要么是过多干预,影响了学生的独立思考,要么是不给予适当的指导,导致部分小组讨论偏离主题、效率不高。此外,学生的年龄、心理特征、合作意识及合作技巧的掌握也是影响合作学习有效开展的制约因素。
二、提高小学四年级数学课堂合作学习有效性的策略
(一)为合作学习创设良好的环境
合作学习要想有效的开展,要保障有良好的环境,包括开展合作学习所取得的认可和课堂上合作学习的氛围。为合作学习创设良好的环境,需要有学校、家长及社会的支持,学校和社会要为合作学习投入一些教学设备,保障物质需求,家长要与教师积极配合,完成学生合作学习的预习及复习任务。
(二)教师和学生都要掌握一定的合作技巧
教师在明确教学任务的基础上,通过提出具有指向性的问题,把握合作学习的方向和进度,具备课堂组织和调控能力。教师在进行教学设计时,要充分考虑课程目标、学生特点、分组策略等因素。学生要想在合作学习中充分发挥主体作用,要进行 课前预习 ,搜集相关资料,提前思考,对问题有自己独立的见解,在课堂合作学习过程中,学生要具备倾听、思考、质疑的能力。
(三)处理好独立思考与合作学习的关系
教学中缺少必要的独立思考的合作学习将成为“无源之水,无本之木”。学生只有进行了独立的思考,才能融入讨论,参与合作探究,才能发表自己独特的见解,最终通过合作学习,达到一点即通、恍然大悟的效果。学生只有真正的独立思考,才能出现观点的针锋相对,才能找到问题的最佳答案,从而实现共享成果、共同进步、共同发展。
(四)关注合作学习小组的每一个成员,防止“搭车”现象
合作学习要让每一位学生都参与进来,感受集体的智慧和成功的喜悦。教师在进行分组时就要充分考虑小组成员的能力、个性、背景等差异,努力做到组内异质、组间同质,小组内成员优势互补,小组之间实力相当,这样既有利于学生之间互相帮助、互相学习,还能形成良好的竞争氛围。在进行合作学习的过程中,教师要有一定的指导和操控能力,小组讨论气氛不热烈时,及时予以指导,发现有“搭车”的成员,及时给予个别帮助,小组讨论气氛过于热烈时,及时予以提醒,使合作学习达到最佳的效果。
三、结论
综上所述,创设良好的环境,教师和学生具备一定的合作技巧,学生能够独立进行思考,并关注合作学习小组的每一个成员,防止“搭车”现象的出现,一定能够提高小学四年级数学课堂合作学习的有效性。本文对小学四年级数学课堂合作学习有效性的阐述还不够成熟,需要在以后的教学实践中不断完善。
【参考文献】
[1]朱智贤主编.心理学大词典[M].北京:北京师范大学出版社,1988:156.
[2]王坦.合作学习的理念与实施[M].北京:中国人事出版社,2003:2.
[3]杜和春.课堂教学中学生的独立思考与合作学习[J].教育艺术,2007(6):68.
【内容摘要】培养学生的数学学习兴趣是小学数学教育的重要任务之一,对提高学生学习数学的主动性和积极性有着极为重要的意义。本文以小学四年级为例,就如何提高学生的数学学习兴趣进行了探讨。
【关键词】小学数学 四年级 学习兴趣 数学教育
1 引言
兴趣是学生学习的源动力,是学生终身学习的支点,是影响学生注意力的重要因素,是建立和谐师生关系的楔合点。但如何培养学生的学习兴趣,如何让学生的学习兴趣得以保持,却一直是众多教师所面临的难点问题。小学四年级学生活泼好动,注意力不容易集中,开始产生逆反心理,小学四年级数学是一个重要的转折点,在内容量和难度上都有所增加,极容易影响学生的学习兴趣,因此必须注意学生学习兴趣的提高,帮助学生培养起可持续学习的动力,促进学生主动积极的参与学习,为学生的全面发展打下坚实的基础。下面,本文针对小学四年级数学教学,就如何提高学生的学习兴趣进行浅要的探讨。
2 小学四年级数学教材特点和学生年龄特点
2.1 小学四年级数学教材特点
相对于小学1~3年级的数学教材来说,四年级的数学教材在编写上,其内容更为丰富,更为注重算法的多样化,更侧重于培养学生灵活解决问题的能力,关注了学生学习方式的培养,注重学生自身的学习体验。丰富、系统、逻辑严密的数学知道需要学生有更好的知识基础与 抽象思维 能力,要求学生能举一反三的通过迁移类推来探索新的知识,逐步完成学生的知识体系结构。同时,小学四年级数学教材加强了数学知识同学生实际生活之间的联系,以帮助学生借助于实际活动和生活情境来理解、感受数学知识,在实践中探索数学知识,以培养学生灵活活的计算能力和解题能力。第八册教材,则将小数的相关知识作为了重点,逐步引起入四则混合运算,进一步提高学生的数感和计算理解能力,整体来看困难程度与复杂程度都有所提高,需要不断提高学生的思维方法与判断能力。
2.2 小学四年级学生年龄特点
从年龄特征来看,小学四年级学生是个性差别最大的时期,在这一阶段的学生生理方面出现了较大的差异,一部分学生身体发育已经接近中学生指标,一部分学生则还稍显迟缓同一二年级学生相当。在生理方面,由于家庭环境、教育引导等方面的原因,一部分学生心理发育较快开始变得老成,其视野更为开阔,思想更为成熟,已经开始阅读成人书籍,而一部分学生在心理上还明显落后。这种生理和心理方面的差异,给教师的教学带来了极大的影响。此外,小学四年级学生的自主意识呈现整体增强趋势,开始根据自己的 兴趣 爱好 做出自主的选择,独立自主能力更强,但其爱好还不够稳定,并不如成人一样具有稳定的自主选择能力。
3 如何提高学生的学习兴趣
针对小学四年级数学教材的特点和学生生理与心理发展的特点,小学四年级数学要提高学生的学习兴趣,可以从以下几个方面入手进行:
3.1 环境改善培养学生学习兴趣
良好的学习环境对学生的学习兴趣有着直接的影响,在小学四年级数学教学中,为学生营造一个良好的学习环境,对生理与心理日渐成熟的孩子们来说更是如此。要营造出良好的学习环境,必须注意多从平等、民主、和谐方面下功夫,一方面注意教师与学生的关系,改变传统的高高在上的教师教育观,让自己从神坛上走下来,与学生做朋友,真正的让学生成为学习的主体,创建和谐的师生关系。另一方面注意学生与学生之间的关系,多设计数学活动,包括如制作班级学习报、组织数学兴趣小组、让优生帮助差生等,促使学生与学生之间的关系更为和谐。其次,要从整个学习氛围上下功夫,多对学生进行思想教育,让学生认识到数学的重要性,认识到学习的重要性,但注意思想教育不是讲大道理,只有学生能听懂、能理解、能接受的道理,才会真正对学生思想造成影响。
3.2 情境创设激发学生学习兴趣
相对于语文学科来说,数学学科的知识显得较为枯燥泛味,极容易使学生失去兴趣,尤其是小学四年级数学在内容、难度等方面都有所提高,使得学生学习压力更大,更容易失去兴趣。要让数学课堂变得更为生动有趣,情境创设极为重要。在教学过程中,教师应当改变过去传授知识的不良习性,变为引导学生探索知识,在设计教学时就充分考虑,如何为学生创造出一个探索性的学习情境,让学生在探索性的学习情境中去主动、积极的发现问题、思考问题、解决问题,最终获得知识,而不是在教师枯燥单调的讲解中去接受知识。此外,将数学知识与实践活动进行联系,让学生在可操作、熟悉的情境下去学习数学知识,让学生去动手测量、亲自演示,在数学游戏中激发学生的求知欲望,也可以极好的调动学生的学习兴趣。
3.3 促进成功壮大学生学习兴趣
每个人都希望成功,都希望得到别人的认可和赞同,小学四年级学生更是如此。这一阶段的学生开始有了较强的自主独立意识,竞争心理不断加强,充分利用这一点给予学生成功的机会,让学生获得更多成功的体验,能极好的壮大学生的学习兴趣。让学生获得成功的体验,可以多组织各类竞赛、活动等,让学生在竞争环境中主动积极的投入最后获得成功的体验,也可以是在课堂上多发现学生的闪光点,从各个角度去鼓励学生让学生获得成功,也可以通过降低难度、区别对待的方法让学生获得成功体验。
4 结束语
兴趣对学生的学习极为重要,其影响不仅是在校期间,还影响着学生参加工作以后的终身学习,因此在教学中要注意学生学习兴趣的培养。对于小学四年级学生来说,要培养他们数学学习兴趣,教师必须深入的把握小学四年级数学教材的特点,深入的分析这一阶段学生的心理和生理特点,为学生创造一个良好的学习环境,从多个方面去培养并壮大学生的学习兴趣,使学生受益终身。
【参考文献】
[1] 王莹.小学数学学习兴趣的培养之我见[J].现代教育教学导刊,2012(09)
[2] 张飞飞.浅谈小学数学教学中学生学习兴趣的培养[J].新课程,2011(06)
[3] 秦福秀.对小学生数学教学的几点探讨[J].学苑教育,2011(05)
1. 数学小论文范文
2. 数学小论文的范文
3. 小学生数学日记优秀范文 四年级
4. 小学生数学教学小论文范文
5. 一年级数学小论文范文
数学小论文:年龄问题四年级300字今天,我在做题时被一道应用题给难住了。这道题的题目是:小华今年3岁,今年爸爸26岁,几年后爸爸的年龄是小华的3倍?我百思不得其解。后来妈妈回来了,我就请教妈妈。妈妈帮我分析:根据这个题目的条件可知,今年爸爸和小华的“年龄差”是26-4=24(岁)。再根据“爸爸的年龄是小华的3倍”这一关系,画张图试试。我们俩就开始画了起来。画了图之后,我马上明白过来了:他们俩过了几年后,“年龄差”还是24岁。再根据差倍问题的解法求出几年后小华的年龄,用几年后小华的年龄减去2岁,就可以求出中间经过了几年了。解是:26-2=24(岁)24÷(3-1)=12(岁)12-2=10(年)答:10年后爸爸的年龄是小华的3倍。妈妈又让我验算一下,10年后爸爸的年龄是不是小华的3倍。(26+10)÷(2+10)=36÷12=3耶!我答对了。看来做题先得画图,画了图就能就一目了然了。
“对我来说什么都可以变成数学。”数学家笛卡儿曾这样说过。“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学。”我国家喻户晓的数学家华罗庚也曾下过这样的结论。的确,正如两位前辈所说,数学与我们的生活息息相关,数学的脚步无处不在。 2006年已经接近尾声了,迎面而来的是新的一年——2007年。行走在繁华的大街上,随处可见商家打出的“满400送400”,“满300送300”的促销招牌。“这真实惠!”消费者们蜂拥而至,商场里人山人海,抢购成风。此情此景,真让人以为回到了物资短缺的年代。实际上商家心里早打好了如意算盘。俗话说:只有买亏,没有卖亏,“满400送400元券”只是商家的一种促销手段,其中暗藏着数学问题,暗藏着商业机密,暗藏着许多玄机。 去年,我们一家三口,也在新年之际在商场里“血拼”,当时是满400送400元券。我们先用980元买了一件苹果牌的皮夹克给爸爸,送来了800元购物券。我们并没有过分浪费,花了298元券买了一件藏青色的李宁牌棉袄,又用剩下的500元券中的488买了一件太子龙男装(由于是购物券,不设找零)。到底便宜了多少?298+488+980=1766(元)——这是原来不打折时需要花的钱。980/1776,所打的折扣大约是五五折。 我的姑姑和姑夫从前也做过服装生意,我对服装的进货成本与销售价的关系也有些了解。服装的进价一般只占建议零售价的20%~30%。随着竞争的加剧和商场促销力度越来越大,为了保持利润,商家或厂家还不断地把衣服的建议零售价标高。就如前几天在电视中看见的一位消费者所说,某一品牌同一款式的一条尼料的裤子,三年前建议零售价还只是299元,今年标价变成了999元。这么一算,进价大概只有商场里售价的10%~20%。就算打了五五折,商家还稳赚三至五成的毛利。 广告,广告,便是广而告之。许多人一窝蜂似的赶来抢购、血拼,商场的人流量多了,商品销售量也快速增长。就按人流量是平时的三倍算,这里又出现了一个数学问题。假设平时人流量少时,一件商品按8折销售。8折减去进价2折,标价部分的6成就成了毛利。虽然现在“满400送400元券”时同一件商品可能只赚三至五成,但销量起码是平时的三倍以上。就按三成毛利和三倍销量来计算,3×3=9,与平时的6成毛利相比,一天能多赚50%。虽说这样卖每件单位毛利率有所下降,毛利额却因销售量的增加而增长,更因大量销售而加快了资金周转,带来额外的收益。 商品标价和促销中有数学,购物消费中有数学,装修房子有数学,织毛衣中有数学……总而言之,数学在现实生活中无处不在! 满意吗?``祝你成功!~
开头:数学是我们在生活中必不可少的一部分。