数据挖掘的算法及技术的应用的研究论文
摘要: 数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中发现隐含的、规律性的、人们事先未知的, 但又是潜在有用的并且最终可被理解的信息和知识的非平凡过程。任何有数据管理和知识发现需求的地方都可以借助数据挖掘技术来解决问题。本文对数据挖掘的算法以及数据挖掘技术的应用展开研究, 论文对数据挖掘技术的应用做了有益的研究。
关键词: 数据挖掘; 技术; 应用;
引言: 数据挖掘技术是人们长期对数据库技术进行研究和开发的结果。起初各种商业数据是存储在计算机的数据库中的, 然后发展到可对数据库进行查询和访问, 进而发展到对数据库的即时遍历。数据挖掘使数据库技术进入了一个更高级的阶段, 它不仅能对过去的数据进行查询和遍历, 并且能够找出过去数据之间的潜在联系, 从而促进信息的传递。
一、数据挖掘概述
数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中发现隐含的、规律性的、人们事先未知的, 但又是潜在有用的并且最终可被理解的信息和知识的非平凡过程。
二、数据挖掘的基本过程
(1) 数据选择:选择与目标相关的数据进行数据挖掘。根据不同的数据挖掘目标, 对数据进行处理, 不仅可以排除不必要的数据干扰, 还可以极大地提高数据挖掘的效率。 (2) 数据预处理:主要进行数据清理、数据集成和变换、数据归约、离散化和概念分层生成。 (3) 模式发现:从数据中发现用户感兴趣的模式的过程.是知识发现的主要的处理过程。 (4) 模式评估:通过某种度量得出真正代表知识的模式。一般来说企业进行数据挖掘主要遵循以下流程——准备数据, 即收集数据并进行积累, 此时企业就需要知道其所需要的是什么样的数据, 并通过分类、编辑、清洗、预处理得到客观明确的目标数据。数据挖掘这是最为关键的步骤, 主要是针对预处理后的数据进行进一步的挖掘, 取得更加客观准确的数据, 方能引入决策之中, 不同的企业可能采取的数据挖掘技术不同, 但在当前来看暂时脱离不了上述的挖掘方法。当然随着技术的进步, 大数据必定会进一步成为企业的立身之本, 在当前已经在很多领域得以应用。如市场营销, 这是数据挖掘应用最早的领域, 旨在挖掘用户消费习惯, 分析用户消费特征进而进行精准营销。就以令人深恶痛绝的弹窗广告来说, 当消费者有网购习惯并在网络上搜索喜爱的产品, 当再一次进行搜索时, 就会弹出很多针对消费者消费习惯的商品。
三、数据挖掘方法
1、聚集发现。
聚集是把整个数据库分成不同的群组。它的目的是要群与群之间差别很明显.而同一个群之间的数据尽量相似.聚集在电子商务上的典型应用是帮助市场分析人员从客户基本库中发现不同的客户群, 并且用购买模式来刻画不同客户群的特征。此外聚类分析可以作为其它算法 (如特征和分类等) 的预处理步骤, 这些算法再在生成的簇上进行处理。与分类不同, 在开始聚集之前你不知道要把数据分成几组, 也不知道怎么分 (依照哪几个变量) .因此在聚集之后要有一个对业务很熟悉的人来解释这样分群的意义。很多情况下一次聚集你得到的分群对你的业务来说可能并不好, 这时你需要删除或增加变量以影响分群的方式, 经过几次反复之后才能最终得到一个理想的结果.聚类方法主要有两类, 包括统计方法和神经网络方法.自组织神经网络方法和K-均值是比较常用的`聚集算法。
2、决策树。
这在解决归类与预测上能力极强, 通过一系列的问题组成法则并表达出来, 然后经过不断询问问题导出所需的结果。典型的决策树顶端是一个树根, 底部拥有许多树叶, 记录分解成不同的子集, 每个子集可能包含一个简单法则。
四、数据挖掘的应用领域
4.1市场营销
市场销售数据采掘在销售业上的应用可分为两类:数据库销售和篮子数据分析。前者的任务是通过交互式查询、数据分割和模型预测等方法来选择潜在的顾客以便向它们推销产品, 而不是像以前那样盲目地选择顾客推销;后者的任务是分析市场销售数据以识别顾客的购买行为模式, 从而帮助确定商店货架的布局排放以促销某些商品。
4.2金融投资
典型的金融分析领域有投资评估和股票交易市场预测, 分析方法一般采用模型预测法。这方面的系统有Fidelity Stock Selector, LBS Capital Management。前者的任务是使用神经网络模型选择投资, 后者则使用了专家系统、神经网络和基因算法技术辅助管理多达6亿美元的有价证券。
结论:数据挖掘是一种新兴的智能信息处理技术。随着相关信息技术的迅猛发展, 数据挖掘的应用领域不断地拓宽和深入, 特别是在电信、军事、生物工程和商业智能等方面的应用将成为新的研究热点。同时, 数据挖掘应用也面临着许多技术上的挑战, 如何对复杂类型的数据进行挖掘, 数据挖掘与数据库、数据仓库和Web技术等技术的集成问题, 以及数据挖掘的可视化和数据质量等问题都有待于进一步研究和探索。
参考文献
[1]孟强, 李海晨.Web数据挖掘技术及应用研究[J].电脑与信息技术, 2017, 25 (1) :59-62.
[2]高海峰.智能交通系统中数据挖掘技术的应用研究[J].数字技术与应用, 2016 (5) :108-108.
互联网教育论文篇三:《“互联网+教育”变革路径研究进展》 摘 要:互联网技术重构了社会关系,它也将颠覆学校的基本结构;互联网会变革教育业务流程,从而打造新的教育生态;“互联网+”为重组学校教育提供了新的可能,“互联网+教育”就是教育的转基因工程等。本文梳理了2015“互联网+教育”开放论坛的主要观点并进行了简要分析,以期为相关研究提供一些基本素材。 关键词:“互联网+”;教育变革;智慧教育;教育大数据 一、引言 自从2015年3月在政府工作报告中提出“互联网+”行动计划之后,“互联网+”在各行各业中引发了一场革命,教育领域也不例外,关于“互联网+教育”的讨论持续升温。2015年7月《国务院关于积极推进“互联网+”行动的指导意见》颁布,进一步明确提出“鼓励学校逐步探索网络化教育新模式……鼓励学校通过与互联网企业合作等方式,对接线上线下教育资源,探索基础教育、职业教育等教育公共服务提供新方式……”。[1] 为了探讨“互联网+教育”的本质,寻求“互联网+教育”的变革路径,北京师范大学未来教育高精尖创新中心、教育信息化协同创新中心、“移动学习”―教育部―中国移动联合实验室、友成企业家扶贫基金会联合举办的“互联网+教育”变革路径之开放论坛在北京师范大学敬文讲堂召开。论坛以开放的形式邀请了18位专家围绕课程、教学、学习、管理、评价、环境、学校组织结构和教师专业发展等八大核心领域在“互联网+”背景下的变革和转型进行了专题学术报告,这些报告既有宏观的理论引领,也有中观的课程规划和 实施方案 ,还有微观的操作策略。本文将从五个方面对这次会议的主题进行综述。 二、“互联网+”促进教育的创新和变革 1.“互联网+”时代的教育创新 “互联网+教育”是什么?这是讨论“互联网+教育”是否可以推动教育创新和变革的前提。华南师范大学的柯清超教授首先对“互联网+”的概念进行了解读,然后分别从“互联网+教育”形态形成的可能性、“互联网+”能推动学校结构性变革和教育变革动力三个方面对“互联网+教育”的概念进行了分析。柯教授认为基于大数据平台、学习分析技术和智能传感技术促使了“互联网+”新一代教育环境从“干预手段”到“教学生态”的变革;同时课程教学也逐渐从封闭到开放融合,从“传统的封闭式”教学到“半开放式/连接式”教学的翻转课堂和社会化自组织的开放式MOOC课程教学进行变革。柯清超教授认为,“互联网+教育”实现了一系列的转变,包括从知识建构到核心素养培养的转变,从以教师为中心到以学生为中心的转变、从个体学习到小组建构的转变,从直接传授到自主发现的转变,从多媒体演示到探究工具的转变。他以“联合国 儿童 基金会爱生远程教育项目”、“远程协作学习项目”和“技术启迪智慧项目”等作为案例分析了应用ICT来创新农村学生学习方式的创新实践[2]。 互联网技术重构了社会关系,它也将颠覆学校的基本结构,我们应该将互联网的开放、共享、平等、自由等特征与教育教学的本质规律相结合,形成对学习者、课程、学校、教育政策、机制体制等相关因素的重新定位与思考。 2.“互联网+”推动教育变革 教育部科技发展中心__民主任认为技术进步是人类文明发展的根本动力,互联网推动人类文明迈上新台阶。“互联网+”促进了教育领域中五个方面的转变,即:教的工具、学的工具、评的工具、课的结构和课的形态的转变。__民主任分析了教育的本质与作用,指出MOOC是互联网与教育的融合,是经过多年摸索出来的一个模式。MOOC的出现是一个革命性的契机,MOOC的极大发展,将提高教学效率,降低教育成本,促进教育公平,使得原本无法上大学的群体可以无障碍地学习大学课程,真正实现受教育机会的公平。MOOC促使课程教学将从一名教师逐渐变成教学团队,弥补知识快速更新中的教师短缺问题,课程质量大大提升;MOOC加速了大学国际化进程[3]。 在这样的背景下,我们应该思考互联网对大学功能带来的影响,现代大学的功能将从人才培养、科学研究、社会服务、 文化 传承逐渐转变成为知识探索、知识验证、考试认证等功能为主的研究院、考试院,甚至未来向数字化、泛在化和全球化的虚拟大学转变。 3.互联网教育与学习革命 中国高等教育学会的钟秉林教授认为中国教育的发展呼唤基于互联网的教学,互联网技术为教育发展带来了重要机遇,同时互联网教学对传统教育也提出了严峻的挑战,钟秉林教授提出了基于互联网技术的教学模式不断完善的若干对策,如:加强“连结”与“互动”、完善学习监督和效果评价机制、探索和完善互联网教学的运行机制等。他还告诫学术界,教育的终极目标是培养全面发展的人、要避免炒作概念、片面夸大互联网教育的作用,倡导严谨求实的态度,跳出互联网教学发展的误区;提高在线开放课程质量,优化网络教学环境、实现线上与线下教学的结合。[4] 4.“互联网+”促进学校组织结构转型 北京师范大学的余胜泉教授认为“互联网+”为重组学校教育提供了新的基础设施、新的生产要素、新的社会空间、新的分工形态;“互联网+”解决了教育中的两个焦点悖论:即公平和质量问题。余教授认为未来学生和家长可以订制个性化的学习课程与活动,以反映儿童的个性、兴趣、家长的目标与价值观;未来学校的形态是自组织的,他以Minerva大学为例分析了这所借助互联网的力量把线下教学资源无限扩大并化身为虚拟大学的特征。未来,BYOD(Bring Your Own Devices,学生带着自己的移动设备来上学)将成为事实,因此学校要开始重新审议并制定网络开放政策,要建设网络上的校园文化,要建设网络上的学习空间,实现线上线下(OTO)融合的校园育人环境。[5] “互联网+教育”的变革,会重构学校教育的生态系统,主要包括内容供给的重构、智慧学习环境的重构、教与学方式的重构以及管理与评价的重构。当然,互联网不可能替代学校,但可以改变学校的基因,“互联网+教育”就是教育的转基因工程。 5.互联网时代的教学范式转型 首都师范大学的孙众副教授分析了互联网时代教师的“隐与现”、学生的“惰与乐”、技术的“强与笨”,从而提出了教学范式转型的解决方案,并基于互联网构建了互联网+教学的COME模型(Classroom learning+ Online learning+ Mobile learning+ E-learning)。孙众副教授基于互联网构建了满足个性化学习需求的COME校园混合课程,实现了师生之间的无缝交流;这种移动互联的课程和活动,满足了学生的个性发展,同时可以记录学生的学习痕迹,便于教师进行过程诊断;此外,还可以进行多维的精准分析,对学生的学习过程和行为进行预测和干预。通过基于COME模型的教学,采用实体课堂+在线+手机的学习方式,能够找到学生的“乐”学点,实现了新的在线交流方式。在评价中COME模型采用“任务+评价表、同伴互评+教师点评”的方式,使得过程性数据的存留和学习分析更加便捷,有助于教师对学生学习效果的干预、学业表现的预测以及在线学习行为的分析。[6] “互联网+教育”促成了教学结构和范式的转型,不仅创新了教学理念,而且建立起比较彻底的“以学生为中心”的教学方式。在这种模式下,学生真正成为学习的主体,教师则是学生学习的组织者、帮助者和指导者。 6.“互联网+”促进课程的转型 清华附中的李晟宇老师分享了基于互联网思维的通用技术课程的转型专题,李老师以清华大学的一个校级课题《基于互联网思维的通用技术教学体验项目探究》为案例,讲解了课程转型的过程和具 体操 作策略。该项目借助互联网,建立了MOOC教学资源,整合了学科思想方法,在教学中引入项目管理、 时间管理 、四象限、SWOT等先进的管理学理念,有效提升了项目教学的有效性;同时依托网络云技术搭建学生交流平台,实现了师生交互方式的互联网化;通过互联网云平台实现了教学资源的共享和微信公众订阅号上学习内容和新闻的推送,使学生的学习体验得到革新。[7]中国科学院上海高等研究院的李栋提出了基于科普、融合创客的创新教育2.0课程,该创新课程的组织方式包括:在线离线互动、线上线下结合和开放型课程设计等三种方式。李栋认为,创新教育2.0的核心价值在于“线上线下一体化平台、创新导师科技成果持续对接与跟踪指导、学生创新力评价与 职业规划 ”。[8]可见,“互联网+课程”让整个学校课程从组织结构到基本内容都发生了巨大变化。”互联网+课程”使得中小学各学科课程内容全面拓展与更新,适合中小学生的诸多前沿知识及时进入课堂,成为学生的精神套餐,课程内容艺术化、生活化也变成现实。 从以上六位专家和老师的视点可看出,“互联网+”促进教育的创新和变革是多样化的,不仅创新了教师的教学模式,丰富了教师教的方式,而且真切关注到学生的核心素养的形成,这正契合了国家新教育改革的方针政策。对于学校层面,“互联网+”带来的转变更是具体的,深入到学校组织管理、课堂教学、课程优化等各个方面,学校的围墙逐步被打破,学校、教师和学生变得越来越“泛在”,“互联网+”让教育更加无形、有趣、多样。未来将会有更多“互联网+”带来的教育创新和变革成果。 三、“互联网+”促进评价的变革 评价是任何一种教育形态和教学模式都不能忽视的问题,本次论坛共有3位专家的报告涉及“互联网+”背景下的教学评价问题,分别是华东师范大学副校长任友群教授、南京师范大学朱雪梅教授和北京市教委专职委员李奕博士。 1.伴随式评价――“互联网+教育”变革的先导 华东师范大学的任友群教授从“教育+互联网”和“互联网+教育”这两个概念的界定和辨析开始,抛出了伴随式评价是“互联网+教育”变革的先导的观点。 任友群教授认为,“教育+互联网”是从当下教育、教学的既定逻辑出发,以信息技术、互联网技术为手段,使得既定教育、教学逻辑运转得更加顺畅,在“教育+互联网”的格局中互联网或信息技术并没有成为再造或重塑性的力量;而“互联网+教育”则是深度应用“互联网思维”,将信息技术与教育教学深度融合,真正发挥教育信息化的“革命性力量”,再造、变革现有教育的既定逻辑。[9] 评价的变革包括评价内容的变革(从评价“可以测量的能力”扩展到评价“难以测量的能力”)和评价方式的变革(从传统的“纸笔评价”走向“数字评价”)。要支撑评价内容的拓展、评价方式的变革都需要“伴随式评价”,所谓“伴随式评价”有三大特征:第一,伴随生活全领域(只有伴随生活才有可能解决那些“难以测量能力”的“测不准”问题);第二,伴随学习全过程(只有伴随学习才能使评价真正应用于调整学生的学习行为);第三,伴随个体自适应。而要实现“伴随式评价”信息技术是不可或缺的。 2.“互联网+”时代教育评价的转型变革 南京师范大学的朱雪梅教授用实证方法开展了一项长达十年并且在2014年获得了国家级教学成果一等奖的研究――《“多元交互式”教学评价体系的建构与实践》。在该研究中,朱教授开发了专门的支撑评价工具,利用网络平台中可预设、可调节的各类专门化观察量表,利用移动终端在听课过程中采集“教”与“学”的表现性数据信息,通过后台计算与图形化处理后,为评估结论提供客观的量化证据,实现科学的课堂诊断,达到了矫正偏差教学行为的目的。该研究以信息技术推动课堂评价变革,用移动终端替代传统纸笔听课工具;将课堂观察表及行为标准嵌入平台中,克服传统评课缺乏标准的问题;课堂评估基于移动互联网,克服传统听评课受到时空限制的问题;进行数据分析与可视化呈现,克服传统评课无科学论据的问题;多元化评价主体交互协作,克服传统评课主体单一的问题;因此,朱雪梅教授在以上基础上提出了“互联网+数据思维+课堂观察=科学的课堂教学评价”的论断。 同时,朱雪梅教授还提出了“互联网+校本教研评估”的观点,通过校本教研平台的实践研究实现了“让教研评估迈进数字化时代”。该平台改革了当前校本教研工作只“研”不“评”的现状,突破了教育信息化“学习空间人人通”未通的瓶颈,探寻了教育评估手段从 经验 迈向“数字化”的路径,消除了常态化教研活动深受时间与空间束缚的困境,降低了评估主观性,提高了校本教研品质与管理效率,引导了智慧教研方式。因此,朱教授给出了这样的公式:互联网+数据思维+校本教研评估=学校可持续发展。[10] 3.深化基础教育考试评价与课程改革背景下的移动互联 来自北京市教委的李奕委员在分析了首都教育“深综改”的基本思路和策略以及考试评价改革和课程改革的突出特点后认为:充分尊重学生的个性化发展,让学生有更多的学习选择,学生不必为自己的弱项惶恐,每个学生都有好的一面以及优势的展示机会。李奕指出,广义教育供给下“移动互联”成为必须的选择:在供给方式上,在线教师服务、在线课程服务、在线诊断服务、跨部门、跨系统服务等这些移动互联的方式更为时尚也更加尊重学生的消费习惯和消费方式;在供给内容上,基于大数据分析后的课程资源供给,定向推送作业、教辅、服务索引,教师在线的智力支持服务,促进优质教育服务的迁移与流转,以新型资源观指导资源库建设,服务于学生的能力成长,供给“同伴”,构建在线学生自我诊断的“体检中心”和“化验室”,使质量监控服务于学生的成长,而不是管理监督;在供给节奏上,长短课结合,大小课结合,学段内快慢结合,长周期作业;在线自我诊断的频度依据学生认知个性、进度的供给;在线双师辅导的周期要合适等。[11] 从这三位专家报告可得出,评价的角度、评价的工具、评价的方式,一切围绕评价的关键词都变成了“互联网+”。伴随式评价实现了互联网与人的融合,评价标准与评价工具的互联网加法承载了数据思维,助力了科学教学评价的可持续发展。在无法改变考试作为学生终极考核的大背景下,“互联网+”的思路让评价更加有针对性,学校教育一样可以个性化,大众教育向个性化教育转变变得更加容易,这都是“互联网+”评价的重要表现,一旦“互联网+”迸发力量,必然像火山喷发一样散出无限能量。 四、教育大数据的管理与决策 来自江苏师范大学的杨现民博士和国家开放大学的魏顺平博士分别就大数据支持下的智慧教育管理和教育决策进行了分析。 1.大数据支持下的智慧教育管理 杨现民博士分析了教育大数据的特点,提出了“教育大数据是发展智慧教育的基石”的论断。杨博士利用教育大数据的冰山模型,分析了教育大数据的发力点,并对“信息化视角下的智慧教育管理”进行了科学的论述,认为“通过智慧管理云平台系统,对外界需求进行智能处理,为教育管理提供资源配置、数据集成、信息管理、运行状态监控、教育质量监测等业务支持,实现教育智能决策、可视化管控、安全预警、远程督导和个性服务,提升教育管理智慧化水平的过程。同时,杨博士还分析了国内外大数据助力智慧管理和科学决策的十多个案例,如清华大学、康涅狄格大学、深圳市教育资源科学动态规划、美国数据通用标准V5.0、美国ECLS项目等。杨博士认为如何构建立体化教育数据网络、教育大数据如何落地应用推广、如何保障教育数据质量与安全、如何合理合规运营教育大数据等问题是值得进一步探讨的问题。[12] 2.大数据支持下的教育决策 国家开放大学的魏顺平博士阐述了数据挖掘及其教育大数据对于支持教育决策的重要作用,指出是教育数据的决策支持应用是为了让淹没在众多信息系统中的海量数据能够“说话”,为教育领域中的相关人员提供与他们利益相关的数据统计与分析结果,从而帮助他们做出知情的决策。魏博士以国家开放大学的教学、管理和科研作为案例,分析了这三个领域中的大数据收集及其通过数据挖掘得到的有关信息,并最终服务于教育决策的过程,认为大数据和基于大数据的数据挖掘是作为审慎决策的依据,可以提高教育决策的科学化。[13] 无论是进行智慧教育管理还是开展教育决策,这都说明了当前时代是个“数据为王”的时代。在教育行业里,每天都在产生各种大数据,大数据分布在我们周围的每个角落,教育者如何将大数据转变为现实的生产力,去改变教育教学是当下的研究方向。“互联网+”有意义,大数据有帮助,教育呼唤“互联网+大数据”带来的质变。 五、“互联网+”改革教师培训和教师专业发展 教师培训和教师专业发展是教育改革中的主导因素,如果没有教师的理念转变和专业发展,再宏大的教育变革也只能是空话。 1.“互联网+”改革乡村教师培训 国务院参事汤敏就“如何用互联网+改革乡村教师培训?”进行了探讨,汤敏先生从对乡村教师培训存在的问题开始讲起,以“一乡村中学与人大附中同堂上课”和“田东上法初中双师教学课堂”为例,分析了基于互联网的“双师教学”的特点,并给出了建议。汤敏认为,应该把“双师教学”模式与国培、省培计划有机地结合起来;按照课程设置要求和各地课本版本安排,在全国、省区内分别都找出一批优秀教师,把他们的课全程录制下来;对参与录制课程的学校、有一定的激励;开展多层次、多学科和多方式的培训试点,充分利用互联网将录制的优质课堂传播出去,实现资源共享,达到乡村教师培训的目的。[14] 2.“互联网+”环境下的教师混合式学习 北京市西城区教育研修学院的陈颖老师分析了“互联网+”环境下的教师混合式学习,陈老师以西城区教师研修网为例,介绍了西城区教师研修网的基本情况、教师网上研修的几个基本要素(平台、资源、活动和组织管理),着重讲解了如何利用视频案例促进教师自我 反思 和同伴互助、如何利用视频案例促进群体学习和行为改进以及如何利用视频案例丰富网上学习资源等三个问题。[15]目前西城区教师已经实现了网络研修的常态化,陈老师认为“教师网上学习是如何进行知识建构的、大量的网上研讨数据能否作进一步提炼、影响教师深层学习的因素是什么、如何促进教师的深层学习”等这几个问题将是未来研究需要突破的问题。 中小学教师的专业素养决定了下一代人才的质量,汤敏参事和陈颖老师都对“互联网+”时代的教师专业发展给出了具体的做法。针对当前的中小学教师培训,既要考虑“双师教学”的人力做法,也要有“混合式学习”的技术做法,既要有“双师教学”的合作思维,又要有多元化学习、时时更新教师知识的观念;教师可能无法改变教学的物理环境,却可以借助“互联网+”延展自己的学习空间,从而实现更大程度的进步。因此,“互联网+”环境下教师的专业发展必须植入“互联网+”的基因,教师要具备互联网思维,掌握信息技术应用能力,提升信息技术教学技能。 六、“互联网+”促进同伴教育 深圳市南山区教育科学研究中心石义琦教研员认为,同伴教育是指建立有相互认同感的社会关系主体之间共同分享信息、知识和观念,相互传递思想、情感,以唤起感情上的共鸣,促进社会规范在个体身上内化、达到相互感染而奋发向上的一种教育方式。教育技术促进了同伴教育的开展。石老师以“南山教育综合服务大平台”和南山“课堂重构”模式作为案例,分析了互联网对同伴教育的支撑,认为网络提供了人性化的交流平台,为孩子们搭建展示的舞台与交流的空间。南山区在信息技术支持下构建了南山“六学”同伴教育课堂,即“教师导学、个体自学、同伴助学、互动展学、网络拓学和实践研学”,同时在同伴教育区域基本模式基础上,构建了各具校本特色的变式模式,比如:基于智能学习的平台的个性化学习模式、基于APP的游戏化学习与创客学习模式、基于MOOC的翻转学习模式等。[16] 随着QQ、微信等媒体技术的逐渐成熟,同伴教育变得越来越具有可行性,“互联网+”成就了教育服务;智慧教育平台的应用、教育APP的常态推广、MOOC翻转学习等都会成为学生的同伴,真正实现“互联网+以人为本”的教育方式。 七、结束语 综上观点不难发现,无论是互联网对于教育、课程、教学,还是学校的组织结构,都可以集中一个观点来概括,那就是“互联网+”对教育和教学带来了创新和变革,“互联网+教育”促进了教育形态、学校组织结构和教学范式的转变,也促进了课程、学习方式和学生核心素养培养的转变,但这种转变不是简单的物理变化,而是一种化学变化,化学的反应会改变物质的形态和性质,正像北京师范大学副校长陈光巨教授在论坛开幕式致辞中所说的:期待“互联网+教育”变成一个化学效应,减少负面效应。无论是任友群的“伴随式评价”还是朱雪梅的“多元交互式评价”,都离不开“互联网+”的逻辑支撑,但是“互联网+”并不仅仅是一种简单的用来支撑评价的工具,“互联网+评价”是对传统教育评价内容和形式的变革,这种变革是智慧的、是自适应的,是“化学变化”也是“生态变化”。 “互联网+”打破了权威对知识的垄断,让教育从封闭走向开放[17]。基于MOOC、SPOC模式的学习效果超于传统课堂,网络教育的奇点可能临近了,信息技术的变革教育的威力可能要爆发了。[18]但是“互联网+教育”作为一种新生事物,既有新的机遇,也要面对新的挑战。面对“互联网+教育”的机遇和挑战,我们也需要冷静应对,既不能坚守避战,也不能任由互联网“肆意妄为”,而是应该从教育变革的真正需求出发,抓住机遇,直面挑战。 这是一个跨界的时代,大数据、智慧教育等新的技术和概念层出不穷,“互联网+教育”的变革路径需要我们不断探索。 参考文献: [1]国务院.《国务院关于积极推进“互联网+”行动的指导意见国发〔2015〕40号》. [2]柯清超.互联网+时代的教育创新[R].开放论坛演讲报告,2015.12.20. [3]__民.信息技术发展与教育变革[R].开放论坛演讲报告,2015,12,20. [4]钟秉林.互联网教学与学习革命.开放论坛演讲报告,2015.12.20. [5]余胜泉.互联网时代的学校组织结构转型[R].开放论坛演讲报告,2015,12,20. [6]孙众.互联网时代的教学范式转型[R].开放论坛演讲报告,2015.12.20. [7]李晟宇.基于互联网思维的通用技术课程转型[R].开放论坛演讲报告,2015.12.20. [8]李栋.基于科普融合创客的创新教育2.0[R].开放论坛演讲报告,2015.12.20. [9]任友群.伴随式评价:变革的先导[R].开放论坛演讲报告,2015.12.20. [10]朱雪梅.互联网+时代教育评价的转型变革[R].开放论坛演讲报告,2015.12.20. [11]李奕.深化基础教育考试评价与课程改革背景下的移动互联[R].开放论坛演讲报告,2015.12.20. [12]杨现民.大数据支持下的智慧教育管理[R].开放论坛演讲报告,2015.12.20. [13]魏顺平.基于大数据的教育决策支持案例分享(国家开放大学)[R].开放论坛演讲报告,2015.12.20. [14]汤敏.如何用互联网+改革乡村教师培训?[R].开放论坛演讲报告,2015.12.20. [15]陈颖.互联网+环境下的教师混合式学习[R].开放论坛演讲报告,2015.12.20. [16]石义琦.同伴教育:教育信息化新视角[R].开放论坛演讲报告,2015.12.20. [17]赵国庆.“互联网+教育”:机遇、挑战与应对[N].光明日报,2015.6.9. [18]王涛.互联网变革教育的实践路径[R].开放论坛演讲报告,2015.12.20. 猜你喜欢: 1. 浅谈互联网对教育的影响论文 2. 有关网络教育论文 3. 关于互联网的形势与政策论文 4. “互联网+”形势下网络教育的现状与发展趋势探讨论文
Web数据挖掘技术探析论文
在日复一日的学习、工作生活中,大家或多或少都会接触过论文吧,论文对于所有教育工作者,对于人类整体认识的提高有着重要的意义。那么你知道一篇好的论文该怎么写吗?以下是我收集整理的Web数据挖掘技术探析论文,供大家参考借鉴,希望可以帮助到有需要的朋友。
引言
当前,随着网络技术的发展和数据库技术的迅猛发展,有效推动了商务活动由传统活动向电子商务变革。电子商务就是利用计算机和网络技术以及远程通信技术,实现整个商务活动的电子化、数字化和网络化。基于Internet的电子商务快速发展,使现代企业积累了大量的数据,这些数据不仅能给企业带来更多有用信息,同时还使其他现代企业管理者能够及时准确的搜集到大量的数据。访问客户提供更多更优质的服务,成为电子商务成败的关键因素,因而受到现代电子商务经营者的高度关注,这也对计算机web数据技术提出了新的要求,Web数据挖掘技术应运而生。它是一种能够从网上获取大量数据,并能有效地提取有用信息供企业决策者分析参考,以便科学合理制定和调整营销策略,为客户提供动态、个性化、高效率服务的全新技术。目前,它已成为电子商务活动中不可或缺的重要载体。
计算机web数据挖掘概述
1.计算机web数据挖掘的由来
计算机Web数据挖掘是一个在Web资源上将对自己有用的数据信息进行筛选的过程。Web数据挖掘是把传统的数据挖掘思想和方法移植到Web应用中,即从现有的Web文档和活动中挑选自己感兴趣且有用的模式或者隐藏的数据信息。计算机Web数据挖掘可以在多领域中展示其作用,目前已被广泛应用于数据库技术、信息获取技术、统计学、人工智能中的机器学习和神经网络等多个方面,其中对商务活动的变革起到重大的推动作用方面最为明显。
2.计算机Web数据挖掘含义及特征
(1)Web数据挖掘的含义
Web数据挖掘是指数据挖掘技术在Web环境下的应用,是一项数据挖掘技术与WWW技术相结合产生的新技术,综合运用到了计算机语言、Internet、人工智能、统计学、信息学等多个领域的技术。具体说,就是通过充分利用网络(Internet),挖掘用户访问日志文件、商品信息、搜索信息、购销信息以及网络用户登记信息等内容,从中找出隐性的、潜在有用的和有价值的信息,最后再用于企业管理和商业决策。
(2)Web数据挖掘的特点
计算机Web数据挖掘技术具有以下特点:一是用户不用提供主观的评价信息;二是用户“访问模式动态获取”不会过时;三是可以处理大规模的数据量,并且使用方便;四是与传统数据库和数据仓库相比,Web是一个巨大、分布广泛、全球性的信息服务中心。
(3)计算机web数据挖掘技术的类别
web数据挖掘技术共有三类:第一类是Web使用记录挖掘。就是通过网络对Web日志记录进行挖掘,查找用户访问Web页面的模式及潜在客户等信息,以此提高其站点所有服务的竞争力。第二类是Web内容挖掘。既是指从Web文档中抽取知识的过程。第三类是Web结构挖掘。就是通过对Web上大量文档集合的内容进行小结、聚类、关联分析的方式,从Web文档的组织结构和链接关系中预测相关信息和知识。
计算机web数据挖掘技术与电子商务的关系
借助计算机技术和网络技术的日臻成熟,电子商务正以其快速、便捷的特点受到越来越多的企业和个人的关注。随着电子商务企业业务规模的不断扩大,电子商务企业的商品和客户数量也随之迅速增加,电子商务企业以此获得了大量的数据,这些数据正成为了电子商务企业客户管理和销售管理的重要信息。为了更好地开发和利用这些数据资源,以便给企业和客户带来更多的便利和实惠,各种数据挖掘技术也逐渐被应用到电子商务网站中。目前,基于数据挖掘(特别是web数据挖掘)技术构建的电子商务推荐系统正成为电子商务推荐系统发展的一种趋势。
计算机web数据挖掘在电子商务中的具体应用
(1)电子商务中的web数据挖掘的过程
在电子商务中,web数据挖掘的过程主要有以下三个阶段:既是数据准备阶段、数据挖掘操作阶段、结果表达和解释阶段。如果在结果表达阶段中,分析结果不能让电子商务企业的决策者满意,就需要重复上述过程,直到满意为止。
(2)Web数据挖掘技术在电子商务中的应用
目前,电子商务在企业中得到广泛应用,极大地促进了电子商务网站的兴起,经过分析一定时期内站点上的用户的访问信息,便可发现该商务站点上潜在的客户群体、相关页面、聚类客户等数据信息,企业信息系统因此会获得大量的数据,如此多的数据使Web数据挖掘有了丰富的数据基础,使它在各种商业领域有着更加重要的.实用价值。因而,电子商务必将是未来Web数据挖掘的主攻方向。Web数据挖掘技术在电子商务中的应用主要包含以下几方面:
一是寻找潜在客户。电子商务活动中,企业的销售商可以利用分类技术在Internet上找到潜在客户,通过挖掘Web日志记录等信息资源,对访问者进行分类,寻找访问客户共同的特征和规律,然后从已经存在的分类中找到潜在的客户。
二是留住访问客户。电子商务企业通过商务网站可以充分挖掘客户浏览访问时留下的信息,了解客户的浏览行为,然后根据客户不同的爱好和要求,及时做出让访问客户满意的页面推荐和专属性产品,以此来不断提高网站访问的满意度,最大限度延长客户驻留的时间,实现留住老客户发掘新客户的目的。
三是提供营销策略参考。通过Web数据挖掘,电子商务企业销售商能够通过挖掘商品访问情况和销售情况,同时结合市场的变化情况,通过聚类分析的方法,推导出客户访问的规律,不同的消费需求以及消费产品的生命周期等情况,为决策提供及时而准确的信息参考,以便决策者能够适时做出商品销售策略调整,优化商品营销。
四是完善商务网站设计。电子商务网站站点设计者能够利用关联规则,来了解客户的行为记录和反馈情况,并以此作为改进网站的依据,不断对网站的组织结构进行优化来方便客户访问,不断提高网站的点击率。
结语
本文对Web数据挖掘技术进行了综述,讲述了其在电子商务中广泛应用。可以看出,随着计算机技术和数据库技术快速发展,计算机Web数据技术的应用将更加广泛,Web数据挖掘也将成为非常重要的研究领域,研究前景巨大、意义深远。目前,我国的Web数据应用还处于探索和起步阶段,还有许多问题值得深入研究。
摘要: 该文通过介绍电子商务及数据挖掘基本知识,分别从几个方面分析了电子商务中WEB数据挖掘技术的应用。
关键词: 电子商务;数据挖掘;应用
1概述
电子商务是指企业或个人以网络为载体,应用电子手段,利用现代信息技术进行商务数据交换和开展商务业务的活动。随着互联网的迅速发展,电子商务比传统商务具有更明显的优势,由于电子商务具有方便、灵活、快捷的特点,使它已逐渐成为人们生活中不可缺少的活动。目前电子商务平台网站多,行业竞争强,为了获得更多的客户资源,电子商务网站必须加强客户关系管理、改善经营理念、提升售后服务。数据挖掘是从数据集中识别出隐含的、潜在有用的、有效的,新颖的、能够被理解的信息和知识的过程。由数据集合做出归纳推理,从中挖掘并进行商业预判,能够帮助电子商务企业决策层依据预判,对市场策略调整,将企业风险降低,从而做出正确的决策,企业利润将最大化。随着电子商务的应用日益广泛,电子商务活动中会产生大量有用的数据,如何能够数据挖掘出数据的参考价值?研究客户的兴趣和爱好,对客户分门别类,将客户心仪的商品分别推荐给相关客户。因此,如何在电子商务平台上进行数据挖掘成为研究的热点问题。
2数据挖掘技术概述
数据挖掘(DataMining),也称数据库中的知识发现(KnowledgeDiscoveryinDatabase,KDD)。数据挖掘一般是指从海量数据中应用算法查找出隐藏的、未知的信息的过程。数据挖掘是一个在大数据资源中利用分析工具发现模型与数据之间关系的一个过程,数据挖掘对决策者寻找数据间潜在的某种关联,发现隐藏的因素起着关键作用。这些模式是有潜在价值的、并能够被理解的。数据挖掘将人工智能、机器学习、数据库、统计、可视化、信息检索、并行计算等多个领域的理论与技术融合在一起的一门多学科交叉学问,这些学科也对数据挖掘提供了很大的技术支撑。
3Web数据挖掘特点
Web数据挖掘就是数据挖掘在Web中的应用。Web数据挖掘的目的是从万维网的网页的内容、超链接的结构及使用日志记录中找到有价值的数据或信息。依据挖掘过程中使用的数据类别,Web数据挖掘任务可分为:Web内容挖掘、Web结构挖掘、Web使用记录挖掘。
1)Web内容挖掘指从网页中提取文字、图片或其他组成网页内容的信息,挖掘对象通常包含文本、图形、音视频、多媒体以及其他各种类型数据。
2)Web结构挖掘是对Web页面之间的结构进行挖掘,挖掘描述内容是如何组织的,从Web的超链接结构中寻找Web结构和页面结构中的有价值模式。例如从这些链接中,我们可以找出哪些是重要的网页,依据网页的主题,进行自动的聚类和分类,为了不同的目的从网页中根据模式获取有用的信息,从而提高检索的质量及效率。
3)Web使用记录挖掘是根据对服务器上用户访问时的访问记录进行挖掘的方法。Web使用挖掘将日志数据映射为关系表并采用相应的数据挖掘技术来访问日志数据,对用户点击事件的搜集和分析发现用户导航行为。它用来提取关于客户如何浏览和使用访问网页的链接信息。如访问了哪些页面?在每个页面中所停留的时间?下一步点击了什么?在什么样的路线下退出浏览的?这些都是Web使用记录挖掘所关心要解决的问题。
4电子商务中Web挖掘中技术的应用分析
1)电子商务中序列模式分析的应用
序列模式数据挖掘就是要挖掘基于时间或其他序列的模式。如在一套按时间顺序排列的会话或事务中一个项目有存在跟在另一个项目后面。通过这个方法,WEB销售商可以预测未来的访问模式,以帮助针对特定用户组进行广告排放设置。发现序列模式容易使客户的行为被电子商务的组织者预测,当用户浏览站点时,尽可能地迎合每个用户的浏览习惯并根据用户感兴趣的内容不断调整网页,尽可能地使每个用户满意。使用序列模式分析挖掘日志,可以发现客户的访问序列模式。在万维网使用记录挖掘应用中,序列模式挖掘可以用于捕捉用户路径之中常用的导航路径。当用户访问电子商务网站时,网站管理员能够搜索出这个访问者的对该网站的访问序列模式,将访问者感兴趣但尚未浏览的页面推荐给他。序列模式分析还能分析出商品购买的前后顺序,从而向客户提出推荐。例如在搜索引擎是发出查询请求、浏览网页信息等,会弹出与这些信息相关的广告。例如购买了打印机的用户,一般不久就会购买如打印纸、硒鼓等打印耗材。优秀的推荐系统将为客户建立一个专属商店,由每个客户的特征来调整网站的内容。也能由挖掘出的一些序列模式分析网站及产品促销的效果。
2)电子商务中关联规则的应用
关联规则是揭示数据之间隐含的相互关系,关联分析的任务是发现事物间的关联规则或相关程序。关联规则挖掘的目标是在数据项目中找出每一个数据信息的内在关系。关联规则挖掘就是要搜索出用户在服务器上访问的内容、页面、文件之间的联系,从而改进电子商务网站设计。可以更好在组织站点,减少用户过滤网站信息的负担,哪些商品顾客会可能在一次购物时同时购买?关联规则技术能够通过购物篮中的不同商品之间的联系,分析顾客的购物习惯。例如购买牛奶的顾客90%会同时还购买面包,这就是一条关联规则,如果商店或电子商务网站将这两种商品放在一起销售,将会提高它们的销量。关联规则挖掘目标是利用工具分析出顾客购买商品间的联系,也即典型购物篮数据分析应用。关联规则是发现同类事件中不同项目的相关性,例如手机加充电宝,鼠标加鼠标垫等购买习惯就属于关联分析。关联规则挖掘技术可以用相应算法找出关联规则,例如在上述例子中,商家可以依据商品间的关联改进商品的摆放,如果顾客购买了手机则将充电宝放入推荐的商品中,如果一些商品被同时购买的概率较大,说明这些商品存在关联性,商家可以将这些有关联的商品链接放在一起推荐给客户,有利于商品的销售,商家也根据关联有效搭配进货,提升商品管理水平。如买了灯具的顾客,多半还会购买开关插座,因此,一般会将灯具与开关插座等物品放在一个区域供顾客选购。依据分析找出顾客所需要的商品的关联规则,由挖掘分析结果向顾客推荐所需商品,也即向顾客提出可能会感兴趣的商品推荐,将会大大提高商品的销售量。
3)电子商务中路径分析技术的应用
路径分析技术通过对Web服务器的日志文件中客户访问站点的访问次数的分析,用来发现Web站点中最经常访问的路径来调整站点结构,从而帮助使用用户以最快的速度找到其所需要的产品或是信息。例如在用户访问某网站时,如果有很多用户不感兴趣的页面存在,就会影响用户的网页浏览速度,从而降低用户的浏览兴趣,同时也会使整个站点的维护成本提高。而利用路径分析技术能够全面地掌握网站各个页面之间的关联以及超链接之间的联系,通过分析得出访问频率最高的页面,从而改进网站结构及页面的设计。
4)电子商务中分类分析的应用
分类技术在根据各种预定义规则进行用户建模的Web分析应用中扮演着很重要的角色。例如,给出一组用户事务,可以计算每个用户在某个期间内购买记录总和。基于这些数据,可以建立一个分类模型,将用户分成有购买倾向和没有购买倾向两类,考虑的特征如用户统计属性以及他们的导航活动。分类技术既可以用于预测哪些购买客户对于哪类促销手段感兴趣,也可以预测和划分顾客类别。在电子商务中通过分类分析,可以得知各类客户的兴趣爱好和商品购买意向,因而发现一些潜在的购买客户,从而为每一类客户提供个性化的网络服务及开展针对性的商务活动。通过分类定位模型辅助决策人员定位他们的最佳客户和潜在客户,提高客户满意度及忠诚度,最大化客户收益率,以降低成本,增加收入。
5)电子商务中聚类分析的应用
聚类技术可以将具有相同特征的数据项聚成一类。聚类分析是对数据库中相关数据进行对比并找出各数据之间的关系,将不同性质特征的数据进行分类。聚类分析的目标是在相似的基础上收集数据来分类。根据具有相同或相似的顾客购买行为和顾客特征,利用聚类分析技术将市场有效地细分,细分后应可每类市场都制定有针对性的市场营销策略。聚类分别有页面聚类和用户聚类两种。用户聚类是为了建立拥有相同浏览模式的用户分组,可以在电子中商务中进行市场划分或给具有相似兴趣的用户提供个性化的Web内容,更多在用户分组上基于用户统计属性(如年龄、性别、收入等)的分析可以发现有价值的商业智能。在电子商务中将市场进行细化的区分就是运用聚类分析技术。聚类分析可根据顾客的购买行为来划分不同顾客特征的不同顾客群,通过聚类具有类似浏览行为的客户,让市场人员对顾客进行类别细分,能够给顾客提供更人性化的贴心服务。比如通过聚类技术分析,发现一些顾客喜欢访问有关汽车配件网页内容,就可以动态改变站点内容,让网络自动地给这些顾客聚类发送有关汽车配件的新产品信息或邮件。分类和聚类往往是相互作用的。在电子商务中通过聚类行为或习性相似的顾客,给顾客提供更满意的服务。技术人员在分析中先用聚类分析将要分析的数据进行聚类细分,然后用分类分析对数据集合进行分类标记,再将该标记重新进行分类,一直如此循环两种分析方法得到相对满意的结果。
5结语
随着互联网的飞速发展,大数据分析应用越来越广。商业贸易中电子商务所占比例越来越大,使用web挖掘技术对商业海量数据进行挖掘处理,分析客户购买喜好、跟踪市场变化,调整销售策略,对决策者做出有效决策及提高企业的市场竞争力有重要意义。
参考文献:
[1]庞英智.Web数据挖掘技术在电子商务中的应用[J].情报科学,2011,29(2):235-240.
[2]马宗亚,张会彦.Web数据挖掘技术在电子商务中的应用研究[J].现代经济信息,2014(6):23-24.
[3]徐剑彬.Web数据挖掘技术在电子商务中的应用[J].时代金融,2013(4):234-235.208
[4]周世东.Web数据挖掘在电子商务中的应用研究[D].北京交通大学,2008.
[5]段红英.Web数据挖掘技术在电子商务中的应用[J].陇东学院学报,2009(3):32-34.
数据挖掘的算法及技术的应用的研究论文
摘要: 数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中发现隐含的、规律性的、人们事先未知的, 但又是潜在有用的并且最终可被理解的信息和知识的非平凡过程。任何有数据管理和知识发现需求的地方都可以借助数据挖掘技术来解决问题。本文对数据挖掘的算法以及数据挖掘技术的应用展开研究, 论文对数据挖掘技术的应用做了有益的研究。
关键词: 数据挖掘; 技术; 应用;
引言: 数据挖掘技术是人们长期对数据库技术进行研究和开发的结果。起初各种商业数据是存储在计算机的数据库中的, 然后发展到可对数据库进行查询和访问, 进而发展到对数据库的即时遍历。数据挖掘使数据库技术进入了一个更高级的阶段, 它不仅能对过去的数据进行查询和遍历, 并且能够找出过去数据之间的潜在联系, 从而促进信息的传递。
一、数据挖掘概述
数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中发现隐含的、规律性的、人们事先未知的, 但又是潜在有用的并且最终可被理解的信息和知识的非平凡过程。
二、数据挖掘的基本过程
(1) 数据选择:选择与目标相关的数据进行数据挖掘。根据不同的数据挖掘目标, 对数据进行处理, 不仅可以排除不必要的数据干扰, 还可以极大地提高数据挖掘的效率。 (2) 数据预处理:主要进行数据清理、数据集成和变换、数据归约、离散化和概念分层生成。 (3) 模式发现:从数据中发现用户感兴趣的模式的过程.是知识发现的主要的处理过程。 (4) 模式评估:通过某种度量得出真正代表知识的模式。一般来说企业进行数据挖掘主要遵循以下流程——准备数据, 即收集数据并进行积累, 此时企业就需要知道其所需要的是什么样的数据, 并通过分类、编辑、清洗、预处理得到客观明确的目标数据。数据挖掘这是最为关键的步骤, 主要是针对预处理后的数据进行进一步的挖掘, 取得更加客观准确的数据, 方能引入决策之中, 不同的企业可能采取的数据挖掘技术不同, 但在当前来看暂时脱离不了上述的挖掘方法。当然随着技术的进步, 大数据必定会进一步成为企业的立身之本, 在当前已经在很多领域得以应用。如市场营销, 这是数据挖掘应用最早的领域, 旨在挖掘用户消费习惯, 分析用户消费特征进而进行精准营销。就以令人深恶痛绝的弹窗广告来说, 当消费者有网购习惯并在网络上搜索喜爱的产品, 当再一次进行搜索时, 就会弹出很多针对消费者消费习惯的商品。
三、数据挖掘方法
1、聚集发现。
聚集是把整个数据库分成不同的群组。它的目的是要群与群之间差别很明显.而同一个群之间的数据尽量相似.聚集在电子商务上的典型应用是帮助市场分析人员从客户基本库中发现不同的客户群, 并且用购买模式来刻画不同客户群的特征。此外聚类分析可以作为其它算法 (如特征和分类等) 的预处理步骤, 这些算法再在生成的簇上进行处理。与分类不同, 在开始聚集之前你不知道要把数据分成几组, 也不知道怎么分 (依照哪几个变量) .因此在聚集之后要有一个对业务很熟悉的人来解释这样分群的意义。很多情况下一次聚集你得到的分群对你的业务来说可能并不好, 这时你需要删除或增加变量以影响分群的方式, 经过几次反复之后才能最终得到一个理想的结果.聚类方法主要有两类, 包括统计方法和神经网络方法.自组织神经网络方法和K-均值是比较常用的`聚集算法。
2、决策树。
这在解决归类与预测上能力极强, 通过一系列的问题组成法则并表达出来, 然后经过不断询问问题导出所需的结果。典型的决策树顶端是一个树根, 底部拥有许多树叶, 记录分解成不同的子集, 每个子集可能包含一个简单法则。
四、数据挖掘的应用领域
4.1市场营销
市场销售数据采掘在销售业上的应用可分为两类:数据库销售和篮子数据分析。前者的任务是通过交互式查询、数据分割和模型预测等方法来选择潜在的顾客以便向它们推销产品, 而不是像以前那样盲目地选择顾客推销;后者的任务是分析市场销售数据以识别顾客的购买行为模式, 从而帮助确定商店货架的布局排放以促销某些商品。
4.2金融投资
典型的金融分析领域有投资评估和股票交易市场预测, 分析方法一般采用模型预测法。这方面的系统有Fidelity Stock Selector, LBS Capital Management。前者的任务是使用神经网络模型选择投资, 后者则使用了专家系统、神经网络和基因算法技术辅助管理多达6亿美元的有价证券。
结论:数据挖掘是一种新兴的智能信息处理技术。随着相关信息技术的迅猛发展, 数据挖掘的应用领域不断地拓宽和深入, 特别是在电信、军事、生物工程和商业智能等方面的应用将成为新的研究热点。同时, 数据挖掘应用也面临着许多技术上的挑战, 如何对复杂类型的数据进行挖掘, 数据挖掘与数据库、数据仓库和Web技术等技术的集成问题, 以及数据挖掘的可视化和数据质量等问题都有待于进一步研究和探索。
参考文献
[1]孟强, 李海晨.Web数据挖掘技术及应用研究[J].电脑与信息技术, 2017, 25 (1) :59-62.
[2]高海峰.智能交通系统中数据挖掘技术的应用研究[J].数字技术与应用, 2016 (5) :108-108.
浅谈基于大数据时代的机遇与挑战论文推荐
在学习和工作中,大家总少不了接触论文吧,论文的类型很多,包括学年论文、毕业论文、学位论文、科技论文、成果论文等。为了让您在写论文时更加简单方便,以下是我精心整理的浅谈基于大数据时代的机遇与挑战论文,仅供参考,希望能够帮助到大家。
浅谈基于大数据时代的机遇与挑战论文
1、大数据的基本概况
大数据(Big Data)是指那些超过传统数据库系统处理能力的数据,其具有以下四个基本特性,即海量性、多样性、易变性、高速性。同时数据类型繁多、数据价值密度相对较低、处理速度快、时效性要求高等也是其主要特征。
2、大数据的时代影响
大数据,对经济、政治、文化等方面都具有较为深远的影响,其可帮助人们进行量化管理,更具科学性和针对性,得数据者得天下。大数据对于时代的影响主要包括以下几个方面:
(1)“大数据决策”更加科学有效。如果人们以大数据分析作为基础进行决策,可全面获取相关决策信息,让数据主导决策,这种方法必将促进决策方式的创新和改变,彻底改变传统的决策方式,提高决策的科学性,并推动信息管理准则的重新定位。2009 年爆发的甲型H1N1 流感就是利用大数据的一个成功范例,谷歌公司通过分析网上搜索的大量记录,判断流感的传播源地,公共卫生机构官员通过这些有价值的数据信息采取了有针对性的行动决策。
(2)“大数据应用”促进行业融合。虽然大数据源于通信产业,但其影响绝不局限于通信产业,势必也将对其他产生较为深远的影响。目前,大数据正逐渐广泛应用于各个行业和领域,越来越多的企业开始以数据分析为辅助手段加强公司的日常管理和运营管理,如麦当劳、肯德基、苹果公司等旗舰专卖店的位置都是基于大数据分析完成选址的,另外数据分析技术在零售业也应用越来越广泛。
(3)“大数据开发”推动技术变革。大数据的应用需求,是大数据新技术开发的源泉。相信随着时代的不断发展,计算机系统的数据分析和数据挖掘功能将逐渐取代以往单纯依靠人们自身判断力的领域应用。借助这些创新型的大数据应用,数据的能量将会层层被放大。
另外,需要注意的是,大数据在个人隐私的方面,容易造成一些隐私泄漏。我们需要认真严肃的对待这个问题,综合运用法律、宣传、道德等手段,为保护个人隐私,做出更积极的努力。
3、大数据的应对策略
3.1 布局关键技术研发创新。
目前而言,大数据的技术门槛较高,在这一领域有竞争力的多为一些在数据存储和分析等方面有优势的信息技术企业。为促进产业升级,我们必须加强研究,重视研发和应用数据分析关键技术和新兴技术,具体可从以下几个方面入手:第一,夯实发展基础,以大数据核心技术为着手点,加强人工智能、机器学习、商业智能等领域的理论研究和技术研发,为大数据的应用奠定理论基础。二是加快基础技术(非结构化数据处理技术、可视化技术、非关系型数据库管理技术等)的研发,并使其与物联网、移动互联网、云计算等技术有机融合,为解决方案的制定打下坚实基础。三是基于大数据应用,着重对知识计算( 搜索) 技术、知识库技术、网页搜索技术等核心技术进行研发,加强单项技术产品研发,并保证质量的提升,同时促使其与数据处理技术的有机结合,建立科学技术体系。
3.2 提高软件产品发展水平。
一是促进以企业为主导的产学研合作,提高软件发展水平。二是运用云计算技术促进信息技术服务业的转型和发展,促进中文知识库、数据库与规则库的建设。三是采取鼓励政策引导软硬件企业和服务企业应用新型技术开展数据信息服务,提供具有行业特色的系统集成解决方案。四是以大型互联网公司牵头,并聚集中小互联网信息服务提供商,对优势资源进行系统整合,开拓与整合本土化信息服务。五是以数据处理软件商牵头,这些软件商必须具备一定的基础优势,其可充分发挥各自的数据优势和技术优势,优势互补,提高数据软件开发水平,提高服务内容的精确性和科学性。同时提高大数据解决方案提供商的市场能力和集成水平,以保障其大数据为各行业领域提供较为成熟的解决方案。
3.3 加速推进大数据示范应用。
大数据时代,我们应积极推进大数据的示范应用,可从以下几个方面进行实践:第一,对于一些数据量大的领域(如金融、能源、流通、电信、医疗等领域),应引导行业厂商积极参与,大力发展数据监测和分析、横向扩展存储、商业决策等软硬件一体化的行业应用解决方案。第二,将大数据逐渐应用于智慧城市建设及个人生活和服务领域,促进数字内容加工处理软件等服务发展水平的提高。第三,促进行业数据库(特别是高科技领域)的深度开发,建议针对不同的行业领域建立不同的专题数据库,以提供相应的内容增值服务,形成有特色化的服务。第四,以重点领域或重点企业为突破口,对企业数据进行相应分析、整理和清洗,逐渐减少和去除重复数据和噪音数据。
3.4 优化完善大数据发展环境。
信息安全问题是大数据应用面临的主要问题,因此,我们应加强对基于大数据的情报收集分析工作信息保密问题的研究,制定有效的防范对策,加强信息安全管理。同时,为优化完善大数据发展环境,应采取各种鼓励政策(如将具备一定能力企业的数据加工处理业务列入营业税优惠政策享受范围)支持数据加工处理企业的发展,促使其提高数据分析处理服务的水平和质量。三是夯实大数据的应用基础,完善相关体制机制,以政府为切入点,推动信息资源的集中共享。
做到上面的几点,当大数据时代来临的时候,面临大量数据将不是束手无策,而是成竹在胸,而从数据中得到的好处也将促进国家和企业的快速发展。
大数据为经营的横向跨界、产业的越界混融、生产与消费的合一提供了有利条件,大数据必将在社会经济、政治、文化等方面对人们生活产生巨大的影响,同时大数据时代对人类的数据驾驭能力也提出了新的挑战与机遇。面对新的挑战与发展机遇,我们应积极应对,以掌握未来大数据发展主动权。
结构
论文一般由名称、作者、摘要、关键词、正文、参考文献和附录等部分组成,其中部分组成(例如附录)可有可无。
1、论文题目
要求准确、简练、醒目、新颖。
2、目录
目录是论文中主要段落的'简表。(短篇论文不必列目录)
3、内容提要
是文章主要内容的摘录,要求短、精、完整。
4、关键词定义
关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作计算机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。
主题词是经过规范化的词,在确定主题词时,要对论文进行主题分析,依照标引和组配规则转换成主题词表中的规范词语。(参见《汉语主题词表》和《世界汉语主题词表》)。
5、论文正文
(1)引言:引言又称前言、序言和导言,用在论文的开头。引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。
(2)论文正文:正文是论文的主体,正文应包括论点、论据、论证过程和结论。主体部分包括以下内容:
a.提出问题-论点;
b.分析问题-论据和论证;
c.解决问题-论证方法与步骤;
d.结论。
6、参考文献
一篇论文的参考文献是将论文在研究和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方式按进行。
7、论文装订
论文的有关部分全部抄清完了,经过检查,再没有什么问题,把它装成册,再加上封面。论文的封面要朴素大方,要写出论文的题目、学校、科系、指导教师姓名、作者姓名、完成年月日。论文的题目的作者姓名一定要写在表皮上,不要写里面的补页上。
1、分析现状
分析现状是我们数据分析的基本目的,我们需要明确当前市场环境下,我们的产品市场占有率是多少,注册用户的来源有哪些,注册转化率是多少,购买转化率是多少,竞品是什么,竞品的发展现状如何。
我们和竞争对手相对,优势有哪些,不足又有哪些等等,都是属于对于现状的分析。这里包括两方面的内容,分析自己的现状和分析竞争对手的现状。
2、分析原因
分析原因是数据运营者用得比较多的了,做运营的人,在具体的业务中,不光要知道怎么了,还需要知道为什么如此。在业务上,我们经常会遇到某天用户突然很活跃,有时用户突然大量流失等,每一个变化都是有原因的,我们要做的就是找出这个原因,并给出解决办法,这些就是分析原因。
3、预测未来
数据分析的第三个目的就是预测未来,所谓未雨绸缪,用数据分析的方法预测未来产品的变化趋势,对于产品的运营者来说至关重要。
作为运营者,可根据最近一段时间产品的数据变化,根据趋势线和运营策略的力度,去预测未来的趋势,并用接下来的一段时间去验证这个趋势是否可行,而且实现数据驱动业务增长。
扩展资料:
大数据要分析的数据类型主要有四大类:
1、交易数据(TRANSACTION DATA)
大数据平台能够获取时间跨度更大、更海量的结构化交易数据,这样就可以对更广泛的交易数据类型进行分析,不仅仅包括POS或电子商务购物数据,还包括行为交易数据,例如Web服务器记录的互联网点击流数据日志。
2、人为数据(HUMAN-GENERATED DATA)
非结构数据广泛存在于电子邮件、文档、图片、音频、视频,以及通过博客、维基,尤其是社交媒体产生的数据流。这些数据为使用文本分析功能进行分析提供了丰富的数据源泉。
3、移动数据(MOBILE DATA)
能够上网的智能手机和平板越来越普遍。这些移动设备上的App都能够追踪和沟通无数事件,从App内的交易数据(如搜索产品的记录事件)到个人信息资料或状态报告事件(如地点变更即报告一个新的地理编码)。
4、机器和传感器数据(MACHINE AND SENSOR DATA)
这包括功能设备创建或生成的数据,例如智能电表、智能温度控制器、工厂机器和连接互联网的家用电器。这些设备可以配置为与互联网络中的其他节点通信,还可以自动向中央服务器传输数据,这样就可以对数据进行分析。
机器和传感器数据是来自新兴的物联网(IoT)所产生的主要例子。来自物联网的数据可以用于构建分析模型,连续监测预测性行为(如当传感器值表示有问题时进行识别),提供规定的指令(如警示技术人员在真正出问题之前检查设备)。
参考资料来源:百度百科—大数据
目的
数据分析的目的是把隐藏在一大批看来杂乱无章的数据中的信息集中和提炼出来,从而找出所研究对象的内在规律。在实际应用中,数据分析可帮助人们做出判断,以便采取适当行动。数据分析是有组织有目的地收集数据、分析数据,使之成为信息的过程。
这一过程是质量管理体系的支持过程。在产品的整个寿命周期,包括从市场调研到售后服务和最终处置的各个过程都需要适当运用数据分析过程,以提升有效性。例如设计人员在开始一个新的设计以前,要通过广泛的设计调查,分析所得数据以判定设计方向,因此数据分析在工业设计中具有极其重要的地位。
数据分析是一种统计方法,其主要特点是多维性和描述性。有些几何方法有助于揭示不同的数据之间存在的关系,并绘制出统计信息图,以更简洁的解释这些数据中包含的主要信息。其他一些用于收集数据,以便弄清哪些是同质的,从而更好地了解数据。
资料分析可以处理大量数据,并确定这些数据最有用的部分。本学科近年来的成功,很大程度上是因为制图技术的提高。这些图可以通过直接分析数据,来突出难以捕捉的关系;更重要的是,这些表达方法与基于现象分布的“先验”观念无关,与经典统计方法正相反。
资料分析的数学基础在20世纪早期就已确立,但直到计算机的出现才使得实际操作成为可能,并使得资料分析得以推广。资料分析是数学与计算机科学相结合的产物。
若是以固定时间为资料分析的颗粒单位,则称为时间序列分析,是主要作为销售数据商业分析的方法之一。
扩展资料:
分析工具
使用Excel自带的数据分析功能可以完成很多专业软件才有的数据统计、分析,其中包括:直方图、相关系数、协方差、各种概率分布、抽样与动态模拟、总体均值判断,均值推断、线性、非线性回归、多元回归分析、移动平均等内容。
在商业智能领域Cognos、Style Intelligence、Microstrategy、Brio、BO和Oracle以及国内产品如Yonghong Z-Suite BI套件等。
参考资料:百度百科-数据分析
主要是针对客户信息,为促进公司与顾客见关系的基础,挖掘潜在客户,保留客户忠诚。
目的是发现已存在但未被人知的规律,为人们决策提供指导性信息
python数据挖掘技术及应用论文选题如下:1、基于关键词的文本知识的挖掘系统的设计与实现。2、基于MapReduce的气候数据的分析。3、基于概率图模型的蛋白质功能预测。4、基于第三方库的人脸识别系统的设计与实现。5、基于hbase搜索引擎的设计与实现。6、基于Spark-Streaming的黑名单实时过滤系统的设计与实现。7、客户潜在价值评估系统的设计与实现。8、基于神经网络的文本分类的设计与实现。
关联规则挖掘吧,我刚做完相关的论文.用的是SQL Server2005中的智能挖掘平台.介绍一本书给你看下,就是图片里的那本书.里面有完整的使用sql server数据挖掘的过程.写论文十分辛苦,但一定会有收获!加油!