The interaction between man and computer activities of daily life is increasingly becoming an important part of, especially in recent years, with the rapid development of computer technology to study the habits of the new line interpersonal communication interpersonal interaction techniques become very active at the same time also made encouraging progress, these studies include face recognition, facial expression recognition, gesture recognition, etc.. Gesture is a natural, intuitive, easy to learn human-computer interaction means. Manual directly as computer input devices, human-computer communication between the middle of the media will no longer need, the user can simply define an appropriate gesture to the surrounding machine control, therefore, gesture recognition is a human and robot interaction an important tool, but also human-computer interaction, virtual reality, an important component. However, the gesture itself, the diversity, ambiguity and the staff is a complex deformation body and the visual is inherently uncertain, coupled with staff is a complex deformation of their body and visual discomfort qualitative, making vision-based gesture recognition is a very challenging interdisciplinary research topic. This article focuses on the general context of gesture segmentation and the use of BP neural network to recognize the gesture. Gestures are defined in advance, and the input to the neural network was trained, and then collected through the use of color image opencv extract-based skin color, the color images from complex background, hand in the image, further processing and enter the neural network identification.
==你是本科还是硕士啊论文的话应该主要是算法的研究和改进吧……问题比如:你采用了哪种人脸识别算法你对这种算法的改进在哪里(你不只要说明改进在哪里可能还需要做一些实验收集下数据来对比说明算法在改进后对性能有了提升)新算法比其他算法好在哪里(还是通过实验收集数据对比一下)分析下算法的复杂度(时间复杂度和空间复杂度可能都会要求毕竟图像分析很占空间)然后是怎样进行优化的实验采用的样本是哪些(我们当时用的UCIrvineMachineLearningRepository下面会有CMUFaceImages大家一般都用这个库来作为样本)怎样对实验结果进行量化比较的(标准是什么)如果是模式识别的话还可能关心怎样选的特征值和特征空间(计算量大的话是怎样减少计算量的)训练样本采用的什么算法实验的识别率是多少算法的性能是不是稳定……==我想到的都是本科的问题如果是研究生的话可能还会问的更难
我帮你寻找了一个下午的毕业论文设计与实现,我也知道太多假的了,现在我网盘给你了 记得采纳哦1-CRM客户关系管理系统-ssh2-户籍管理系统-jsp3-Java聊天室的设计与实现-swing4-进销存管理系统的设计与实现-springboot5-超市积分管理系统-jsp6-基于JSP的网上购书系统-ssh7-基于SSH的婴幼儿产品销售系统的开发与设计8-基于WEB的网上购物系统的设计与实现-ssh源码9-网上手机销售系统-jsp10-Java网上体育商城的设计与实现-ssh11-基于JSP+Servlet开发高校社团管理系统12-Java在线考试系统-ssh13-java开发电影订票网站系统-ssh14-JavaWeb校园二手平台项目+论文-ssh15-百货中心供应链管理系统+论文-ssh16-固定资产管理系统+论文-ssh17-网络考试系统的设计与实现+论文-jsp18-基于JSP+Servlet开发简单的新闻发布系统19-基于JSP+Servlet开发在线租车系统20-基于JSP+Servlet开发火车票网上订票系统21-基于JSP+Servlet开发简单的医院预约挂号系统22-基于SSM开发在线考试系统23-基于Struts2开发公司职工管理系统+说明书+任务书+方案书24-基于S2SH开发彩票购买系统的设计与实现毕业设计+论文25-基于Struts2+Hibernate开发小区物业管理系统26-基于S2SH开发学生考勤管理系统+报告27-基于S2SH开发车辆租赁管理系统的设计与实现+论文28- 基于S2SH开发银行个人业务管理系统29-基于JavaSwing开发简单的银行管理系统30-基于JavaSwing开发银行信用卡管理系统31-基于JSP+Servlet开发简单的家居购物商城系统32-基于JSP+Servlet开发手机销售购物商城系统33-基于JSP+Servlet开发物流管理系统34-基于JSP机票预定系统35-基于S2SH开发病房管理系统的设计与实现36-基于S2SH开发就业招聘管理系统37-基于S2SH开发图书管理系统(新本版)+论文38-基于S2SH开发学生公寓(宿舍)管理系统39-基于SSM开发大学食堂采购管理系统40-基于SSM开发学生信息管理系统41-基于SSM开发在线家教预约系统42-基于SSM开发自行车在线租赁管理系统43-基于Struts2+Hibernate开发社区蔬菜、食品交易平台+论文44-基于Struts2开发快递收发系统45-基于Struts2开发校园二手购物商城46-基于Struts2开发学生信息管理系统47-基于Struts2开发学生宿舍管理系统48-基于JSP+Servlet+bootstrap开发电影院购票系统49-基于JSP+Servlet开发学生成绩管理系统+实验报告50-基于JSP+Servlet开发超市日常管理系统51-基于JSP+Servlet开发开放实验室预约系统+论文52-基于JSP+Servlet开发网上服装销售购物商城系统+论文+PPT+任务书+检查表53-基于JSP+Servlet开发旅游(景点宾馆)系统54-基于JSP+Servlet开发图书管理系统+PPT+讲解视频55-基于JSP+Servlet开发学生选课系统+论文56-基于JSP开发云餐厅自助点餐系统(前台+后台) 讲解视频57-基于JSP+Servlet开发药品管理系统58-基于JSP+Servlet开发快递管理系统+UML图59-基于JSP+Servlet开发小型酒店管理系统的设计与实现60-基于JSP+Servlet开发在线聊天系统+论文+PPT61-基于JSP+Servlet开发教师工资管理系统62-基于JSP+Servlet开发汽车配件销售管理系统的设计与实现+论文63-基于SSM开发仓库库存管理系统64-基于SSM开发学生请假管理系统65-基于S2SH开发彩票购买系统的设计与实现毕业设计+论文66-基于SSM开发餐饮业点餐系统67-基于SSM开发学生信息管理系统68-基于SSM开发校园外卖零食购物商城系统69-基于S2SH开发医院挂号预约系统70-基于S2SH开发企业人事管理系统(新本版)71-基于S2SH开发学生公寓(宿舍)管理系统72-基于S2SH开发网上书店购物商城系统
人脸识别签到属于虚拟现实技术在教育中的应用场景。
人脸识别签到必须得体现出独有的技术优势:
1、最新AI技术加持。会场超炫酷,活动更精彩!
2、超过99.7%的准确率,有效避免了非受邀人出席的情况。精准签到,数据有保障。
3、一对一身份验证,嘉宾自助完成签到识别,节省大量服务人力。主办方可以省却部分志愿者费用,节省志愿者培训精力。
4、只需数秒验证即可通过,快速入场,避免了长时间停留导致的拥挤与混乱。
人脸识别其他功能:
拒绝死板要自由,人脸识别可不是只有一种签到设备的搭配方式,它与ipad、闸机、落地大屏等硬件都能成为完美拍档,从而满足大会不同的场景需求。搭配LED屏,实现与参会者的互动,提升参与者体验感;搭配闸机,严格控制入场权限,杜绝黄牛和身份顶替,保障会议质量。
人脸识别签到系统可以将参会者身份及生物信息自动存入云端,支持多人协同分权限管理、云端处理,并可追溯操作路径,分工明确责任到人,工作人员交接工作更加顺畅、效率更高!
海天瑞声的“天籁数据中心”应该有啊,你去注册会员,看看是否有免费数据下载。如果没有的话,给他们写邮件或打电话,一般都会给你的
==你是本科还是硕士啊论文的话应该主要是算法的研究和改进吧……问题比如:你采用了哪种人脸识别算法你对这种算法的改进在哪里(你不只要说明改进在哪里可能还需要做一些实验收集下数据来对比说明算法在改进后对性能有了提升)新算法比其他算法好在哪里(还是通过实验收集数据对比一下)分析下算法的复杂度(时间复杂度和空间复杂度可能都会要求毕竟图像分析很占空间)然后是怎样进行优化的实验采用的样本是哪些(我们当时用的UCIrvineMachineLearningRepository下面会有CMUFaceImages大家一般都用这个库来作为样本)怎样对实验结果进行量化比较的(标准是什么)如果是模式识别的话还可能关心怎样选的特征值和特征空间(计算量大的话是怎样减少计算量的)训练样本采用的什么算法实验的识别率是多少算法的性能是不是稳定……==我想到的都是本科的问题如果是研究生的话可能还会问的更难
可以。 毕业论文是可以用别人训练出来的,但是自己也要有创新,不能全部使用,不然是不会过的。毕业论文(graduation study)是专科及以上学历教育为对本专业学生集中进行科学研究训练而要求学生在毕业前撰写的论文。毕业论文一般安排在修业的最后一学年(学期)进行,论文题目由教师指定或由学生提出,学生选定课题后进行研究,撰写并提交论文,目的在于培养学生的科学研究能力,加强综合运用所学知识、理论和技能解决实际问题的训练,从总体上考查学生大学阶段学习所达到的学业水平。
计算机软件毕业论文的题目都好写啊
1 KM-1 键混器的设计 1 Sw3204V监控器的设计 1 基于射频遥控型(单片机)交通灯的设计1 Sw802V视频切换器的设计 1 无线数控多相位灯从机的设计1 基于RS232遥控型交通灯的设计1 Sw802A音频切换器的设计1 Sw6408V监控器的设计 1 KM-3键混器的设计1 无线数控多相位灯主机的设计1 SW162V数字视频切换器的设计1 基于RS232监控切换器1 SW401V 数字视频切换器的设计1 基于单片机的多路数据采集系统1 RS485转RS232的模块设计1 基于LCD显示的波形发生器的设计1 4-20mA转RS-485模块的设计 1 基于RS232流量计的设计 1 基于PTR2000的交通灯控制器主机的设计1 基于RS485量水仪的设计1 压力采集控制器的设计 1 数字量转4-20mA模拟量输出的模块设计1 正弦波形发生器的设计1 基于PTR2000的交通灯控制器从机的设计1 基于RS485视频切换器的设计1 LCD车速里程表电路设计1 LED车速里程表电路设计1 MSK通信系统的仿真设计1 员工信息管理系统 1 计算机文化基础考试系统的设计和开发1 人事工资管理系统1 员工信息管理系统设计1 超市进销存管理系统的VB实现1 基于单片机的多波形发生器的应用1 基于单片机电动自行车控制器设计1 个人理财管理系统1 基于CAN总线火灾监控系统的研究1 基于DSP平台的FIR滤波器设计1 于Matlab的FIR数字滤波器设计与仿真1 基于TMS320VC5402-DSP的最小系统硬件设计1 基于单片机的热水控制器 1 基于单片机的路灯控制系统的设计1 于单片机远程控制家用电器系统的设计1 基于液晶显示的乘法口诀测试仪的设计1 实验室设备管理系统毕业设计开题报告1 用AT89C51做PLC.doc1 洗衣机全自动控制.doc1 数显频率计的设计.doc1 数控车间温度湿度控制系统设计.doc1 三角波斜率测试仪设计.doc1 人脸几何特征提取1 全自动洗衣机的控制程序设计.doc1 乞丐论文.doc1 教学楼毕业设计.doc1 建立海上风电场的技术要求分析与探讨.doc1 基于凌阳61A的数字式温湿度检测仪.doc1 基于几何匹配和分合算法的人脸识别.doc1 基于单片机数字钟的设计.doc1 基于单片机数据通用采集器的设计.doc1 基于单片机数据采集器.doc1 基于单片机的自动报警器的设计.doc1 基于单片机的终端设计.doc1 基于单片机的路灯控制系统控制系统的设计.doc1 基于单片机的交通灯的设计.doc1 基于单片机的简易计算器的设计.doc1 基于单片机的家用安保系统的设计.doc1 基于VHDL的数字频率计.doc1 基于SystemView的OFDM系统仿真设计.doc1 基于SystemView的OFDM系统仿真设计1.doc1 基于PLC的烧结配料控制系统设计.doc1 基于MSP430的温度检测系统设计1.doc1 基于MATLAB工具箱的数字滤波器设计.doc1 基于MATLAB的扩频通信系统仿真研究.doc1 基于GSM短信息通信方式的路灯无线监控系统.doc1 基于FPGA的信号源设计.doc1 基于EPP协议的AVR与PC并行通信系统的设计0.doc1 单片机交通灯.doc1 单片机多点温度巡回检测系统的设计.doc1 单片机的温湿度检测系统A.doc1 单路口交通信号PLC控制系统的设计.doc1 城市路口多相位自寻优交通信号控制设计.doc1 陈洁(螺旋瓶盖的设计).doc1 八路竞赛抢答器.doc1 matlab信号与系统.doc1 GSM系统的研究与SystemView仿真.doc1 蒯申红智能语音报站系统设计5.301 MT8888在家庭安全电话报警系统中的应用设计1 基于FPGA的频率与功率因数在线测量1 基于FPGA的误码测试仪如果需要定做的话系 Q 273546756
学术堂整理了十五个好写的计算机软件毕业论文题目,供大家进行参考:1、基于西门子S7-1200电梯控制系统设计与实现2、基于ArcGIS Engine工程施工自动规划系统设计与实现3、基于云平台的光伏监控系统设计与实现4、基于移动终端的变电站导航系统设计与实现5、人造板在线同步图像采集系统设计与实现6、基于LoRa的园区能耗管理系统设计与实现7、电厂机组一次调频参数在线监测系统设计与实现8、基于组件技术的船舶导航系统设计与实现9、智能家居控制系统设计与实现10、大型地面光伏电站综合自动化系统设计与实现11、无人驾驶喷雾机电控系统设计与试验12、国产重力输液过程智能监控系统设计与临床转化应用研究13、大型医院医技检查自动预约系统的设计与应用14、高校计算机教学综合管理系统设计与实现15、基于移动物联网的智慧教室设计与实现
URL: 论文pdf Google出品。亚毫秒级的移动端人脸检测算法。移动端可达200~1000+FPS速度。主要以下改进: 在深度可分离卷积中,计算量主要为point-wise部分,增加depth-wise部分卷积核大小并不会明显增加成本。因此本文在depth-wise部分采用了5x5的卷积核,已获得更大的感受野,故此可以降低在层数上的需求。 此外,启发于mobilenetV2,本文设计了一个先升后降的double BlazeBlock。BlazeBlock适用于浅层,double BlazeBlock适用于深层。 16x16的anchor是一样的,但本文将8x8,4x4和2x2的2个anchor替换到8x8的6个anchor。此外强制限制人脸的长宽为1:1。 由于最后一层feature map较大(相对于ssd),导致预测结果会较多,在连续帧预测过程中,nms会变导致人脸框变得更加抖动。本文在原始边界框的回归参数估计变为其与重叠概率的加权平均。这基本没有带来预测时间上的消耗,但在提升了10%的性能。 效果好速度快的方法想不想要?
姓名:张钰 学号:21011210154 学院:通信工程学院 【嵌牛导读】Frequency-aware Discriminative Feature Learning Supervised by Single-Center Loss for Face Forgery Detection论文阅读笔记 【嵌牛鼻子】Deepfake人脸检测方法,基于单中心损失监督的频率感知鉴别特征学习框架FDFL,将度量学习和自适应频率特征学习应用于人脸伪造检测,实现SOTA性能 【嵌牛提问】本文对于伪造人脸检测的优势在哪里体现 【嵌牛正文】 转自:
llery images是用于训练还是测确比较多
ai软件提取不到人脸或者识别一直失败有网络状况、光线状况、软件版本等原因;1.网络状况:设备没有链接网络,或信号太差,无法把录入的数据上传到终端,不能执行下一步指令;2.光线状况:在人脸识别时,所处环境较暗,设备无法清晰辨别人脸;3.系统推送最新的软件版本,设备没有更新,影响数据传送到终端。
在回答题主的问题的时候,我觉得应该注意做『科研』和做『产品』之间的区别。论文中汇报的人脸识别技术是属于科研的行列。比如在LFW上99.7%,这种数字的意义更多是让搞研究的那个圈子里面的人更加直观的了解到一些情况,你也知道,通常来说这个准确率是非常高的了,所以我们可以说『人脸识别技术在LFW上已经很成熟了』,但是一模一样的技术,拿到真实环境下得到的准确率可能只有75%……也许会有些人觉得这是很可笑的,不,请不要笑,这是科研圈里朋友的普遍做法,不是没有苦衷的。捣腾过LFW的朋友其实心里都清楚,这并不是一个很好的数据库。图片都是从网上下载的,人脸的质量也是千差万别,有人说这样才接近真实情况……但实际上距离大部分的实际应用场景还是太远了。目前评价科研中算法的优劣的唯一方法就是找一个数据集,然后大家一起对比,数据集的不同算法得到的结果也会不同,然而……论文上通常是有报喜不报忧的恶习的,所以常常会有不公平的对比存在,随着越来越多更大的人脸数据集的慢慢增加,对于算法的评价会可能会变得稍微公平一些……即便是这样,论文里所谓的人脸识别技术,跟可用的『产品』之间的差距仍然很大。这并不是说论文的算法不好,而是『产品』的天性。大部分产品都是针对性的解决一类或几类问题,产品讲究是速度,稳定性,成本,等等,不同的产品通常可以加入不同的先验甚至额外的硬件来提升产品的可用性。这是做『产品』和做『科研』的区别。举两个容易理解的例子:某著名手机厂商想开发一个自己的人脸解锁功能,在第一次使用手机的时候,经过一个人脸注册的过程,记录下手机主人的样子,在之后的使用中如果被触发,就进行人脸验证,解锁。这里你如果上来一个几十层网络的卷积网络,这个是不行的……因为速度很重要,内存也重要,如果你一个网络模型一上来就已经几十兆几百兆了,产品经理会疯的。做产品的往往是想在保证用户体验的情况下,使用最少的资源。所以最后的产品可能是……下面是我瞎掰的……检测到人脸,检测五官的基本landmark,然后通过几何关系约束来缩小识别范围,再用简单的特征比如LBP,在一个一千张主人人脸的数据库进行验证,验证里可能有各种trick,并且这个一千张人脸的数据库也是实时更新的,比如当前识别正确了,那么就加入进去,如果识别错了,就把这个数据提取特征作为反例存起来……一个可用的产品总是包含了很多看似没有道理的trick的,但是就是这些构成了产品的核心技术。另外一个例子,做人脸识别,但是是做煤矿工的……请自行脑补一脸煤的辛苦矿工。在这个场景下面,你连人脸检测都没法弄啊……加上光照和脸上煤的干扰,论文上的算法基本上是没办法用的。如果是你,你怎么去做识别?做一个产品的时候,思路是需要很开阔的。比如人脸的检测实际上是可以通过双目视觉来做的,两个廉价摄像头,简单的算法通过三角化得到一个稀疏的深度图,利用深度信息来做人脸的检测,然后基于眼睛和嘴唇来做识别,眼睛和嘴的识别可以用卷积网络来做,但是真是的产品里面可能还会考虑身高信息,当然,在洞里还需要考虑补光的问题……
写设计系统方面的就可以了。之前也是苦于写不出,还是学姐给的文方网,写的《人脸识别系统的研究与实现——图像获取、定位、特征提取和特征识别》,很专业的说人寿保险老业务综合处理系统的设计与实现输油泵机组远程监测及诊断系统设计与实现FORTRAN语言题库管理系统的设计与实现大中型企业网络会计信息系统的设计与实现住房改革管理信息系统的设计与实现DMS-2002型轮机模拟器船舶电力系统故障模拟的研制与实现利用MATLAB基于频率法实现系统串联校正基于红外线检测的停车场智能引导系统研究与实现网络选课系统研究与实现基于人脸识别技术的身份认证系统实现简介基于三维技术的城市工程地质信息系统设计与实现大型烧结机整粒自动控制系统的实现基于B/S模式的药品信息咨询系统的设计与实现使用UML实现学生注册管理系统需求建模基于UML实现三层C/S结构系统的架构基于MuitiGen机载导弹地面训练虚拟现实系统的实现基于Web Service技术实现大型系统集成图书管理系统的设计与实现基于Lucene的电子文档管理系统的设计与实现编组钩计划演示系统设计与实现网络型监控系统的设计与实现热量计多路数据采集系统的设计与实现铁路计量管理信息系统的设计与实现基于ARM的嵌入式绣花机系统的软件实现机载SAR监控系统的设计与实现基于B/S模式的教师信息管理系统的设计与实现一种教学机器人控制系统的设计与实现基于智能Agent的用户个性化检索系统的实现矿井通风实验装置监测监控系统软件的设计与实现基于J2EE的网上考试系统设计与实现基于21554的无主多处理器系统实现列车接近防护系统的设计与实现研究生教育网络管理系统的设计与实现嵌入式电力监控系统的研究与实现博硕士论文远程提交及检索系统功能模块的组成和实现基于Extranet和构件的造纸企业产品数据管理系统设计与实现DVB-C系统中两种滤波器的FPGA实现VC++实现基于工控机与单片机串行通讯的监控系统ERP系统用户权限的全动态配置研究及实现政府宏观决策信息网络系统的设计与实现基于CC1020芯片无线传输系统的设计与实现具有主动功能的连锁经营企业配送中心管理信息系统的设计与实现DLP背投系统的研究及在高速公路监控系统的实现学生评教系统的设计与实现微小型电动无人机动力系统试验台的设计与实现全集成船舶主机遥控系统的研究及实现
人脸识别的原理是使用者首先需要采集自己的人脸特征信息,在应用的过程中,使用摄像头获取当前人物的面相特征。最后将当前捕获到的人像特征与之前存储的人脸数据档案进行对比。人脸识别技术经历了20多年的发展历史,从最初的2D识别到现在的3D识别,识别精度达到了99%以上,未来以3D是主流,而且会是融合方案,就是为了提高识别的精准度和应用场景,他会同时用多个摄像头。人脸识别主要是靠硬件进步+AI来推动,在硬件方面主要是这几种:1、3D结构光:通过近红外激光器,将具有一定结构特征的光线投射到被拍摄物体上,再由专门的红外摄像头进行采集。这种具备一定结构的光线,会因被摄物体的不同深度区域,而采集不同的图像相位信息,然后通过运算单元将这种结构的变化换算成深度信息,以此来获得三维结构。3D结构光的好处就是精准度高,但是有个bug就是,对距离有要求,要隔得近才能识别,大家可以试试自己手机的识别距离,所以适合做前置摄像头。2、TOF是飞行时间(Time of Flight)技术的缩写,其原理是:传感器发出经调制的脉冲红外光,遇物体后反射,传感器通过计算光线发射和反射时间差或相位差,来换算被拍摄景物的距离,以产生深度信息,此外再结合传统的相机拍摄,就能将物体的三维轮廓以不同颜色代表不同距离的地形图方式呈现出来