首页 > 学术发表知识库 > 氧化镧对钨烧结影响研究论文

氧化镧对钨烧结影响研究论文

发布时间:

氧化镧对钨烧结影响研究论文

我这里有很多材料,欢迎来537寻找!

——火焰原子吸收光谱法

任务描述

钨精矿中有害杂质按其等级不同所允许的含量并不同。根据标准要求,钨精矿分析除三氧化钨外,有害杂质为硫、磷、砷、钼、钙、锰、铜、锡、二氧化硅。钨精矿中钙含量的高低对仲钨酸铵(APT)生产工艺影响较大,因此需要准确测量钨精矿中钙的含量。钙的检测方法主要有EDTA容量法、AAS、ICP-AES。EDTA容量法主要用于钙含量大于4% 的测定,该法流程较长;ICP-AES法线性范围宽,快速,准确,但仪器昂贵,运行成本也较高;AAS对含量小于4% 的钙的测定具有准确、快速、成本低等优点,因此广泛应用于钨精矿中钙的测定。本任务旨通过实际操作训练,学会原子吸收光谱法测定钨精矿中的钙含量;能真实、规范记录原始记录并按有效数字修约进行结果计算。

任务实施

一、试剂和仪器准备

(1)盐酸AR(ρ=1.19g/mL)。

(2)硝酸GR(ρ=1.42g/mL)。

(3)高氯酸GR(ρ=1.67g/mL)。

(4)氯化锶溶液(15%):称取 75g 氯化锶(SrCl2·6H2O)溶于水中并稀释至500mL,摇匀。

(5)氧化镧溶液(5%):称取25g纯氧化镧(99.99% 以上),置于250mL烧杯中,加入100mL盐酸(1 +1),加热溶解完全,冷却,移入500mL容量瓶中,用水稀释至刻度,混匀。

(6)二氧化锰(1.6%):称取1.6g纯二氧化锰(99.99% 以上),置于250mL烧杯中,加入10mL盐酸,加热溶解完全,蒸发至体积约为5mL,冷却,移入100mL容量瓶中,用水稀释至刻度,混匀。

(7)铁溶液(1%):称取1.0g 纯铁(99.99% 以上),置于250mL 烧杯中,加入10mL盐酸,加热溶解完全,稍冷,加入3mL高氯酸,继续加热至冒浓白烟,冷却,移入100mL容量瓶中,用水稀释至刻度,混匀。

(8)钙标准溶液:称取0.2497g纯碳酸钙(99.99% 以上),置于250mL烧杯中,盖上表面皿,加入15mL盐酸(1 +3 ),微热溶解完全,冷却,移入1000mL容量瓶中,用水稀释至刻度,混匀。此溶液1mL含100μg钙,贮存于塑料瓶中。

移取0.00mL、1.50mL、3.00mL、6.00mL、9.00mL、12.00mL钙标准溶液,分别置于一组100mL容量瓶中,各加入2.0mL高氯酸,8.0mL氯化锶溶液,4.0mL氧化镧溶液,4.0mL二氧化锰溶液,4.0mL铁溶液,用水稀释至刻度,混匀,此标准工作溶液每毫升含钙分别为0、1.5μg、3.0μg、6.0μg、9.0μg、12.0μg。

(9)原子吸收分光光度计算,钙空心阴极灯。

二、分析步骤

称取0.1000~0.2000g样品于300mL烧杯中,加入50mL盐酸(ρ=1.19g/cm3)置于沸水浴上加热分解50min,取下,稍冷,加入15mL硝酸(ρ=1.42g/cm3),4mL高氯酸,加热直至冒浓厚白烟,溶液体积约为2mL(但勿蒸干),取下冷却,用水吹洗表面皿和烧杯壁,加入水至溶液体积约为30mL,煮沸使可溶性盐类溶解,加入8mL 氯化锶溶液、4mL氧化镧溶液,冷却后,移入100mL容量瓶中,以水稀释至刻度,摇匀。澄清后,在空气-乙炔火焰原子吸收分光光度计波长422.7 nm处,与标准系列同时,以二次水调零测量溶液吸光度。随同试样做空白试验。

三、分析结果的计算

按下式计算钙的百分含量:

岩石矿物分析

式中:w(Ca)为钙的质量分数,%;ρ为自工作曲线上查得试液中钙浓度,μg/mL;ρ0为自工作曲线上查得空白溶液中钙浓度,μg/mL;V为试样溶液的体积,mL;m为称取试样质量,g。

四、质量表格的填写

任务完成后,填写附录一质量表格3、4、7。

任务分析

一、方法原理

试样用盐酸、硝酸和高氯酸加热溶解至冒浓白烟以消除硫的干扰,并在适宜浓度的高氯酸介质中,以氯化锶和氧化镧消除铝、磷、硅、钛、硫酸根及部分铁、锰等杂质的干扰,于原子吸收光谱仪波长422.7 nm处,以空气—乙炔火焰测量钙的吸光度。

二、方法优点

原子吸收光谱法测定钨精矿中的钙具有快速、准确、成本低等优点,非常适合工矿企业的日常分析。

三、主要干扰及其消除

(1)钨基体干扰:钨基体对钙的测定信号有抑制作用,导致结果偏低。本方法采用钨酸沉淀将钨过滤除去。

(2)磷酸根的干扰:磷酸根和钙可以形成非常稳定的化合物,空气-乙炔火焰的温度不足以使它原子化。消除办法:加入含镧离子的溶液,镧离子可以和磷酸根形成更稳定的化合物,从而将钙释放出来。

(3)铝等阳离子的干扰:铝和钙可以形成化合物Ca(AlO2)2,该化合物熔点高,难以原子化。消除办法:加入含锶的溶液后,锶可以与铝形成更稳定的化合物,从而将钙释放出来。

四、影响原子吸收测量结果准确度的因素

原子吸收光谱分析是一种相对测量技术,影响其测量结果的准确度有许多因素,我们可以把这些因素概括成四大方面:标准溶液的准确性与校准方程的合理性、仪器的稳定性、样品与标准的匹配程度以及背景校正误差带来的影响(如果有背景的话)。表3 -9对这些因素进行了汇总。

表3-9 影响原子吸收测量结果准确度的因素

五、改善原子吸收光谱分析测定准确度的途径

1.确保工作标准的准确、可靠

工作标准的准确首先是储备液的准确。如果储备液是从标准制备单位买来的,一般可靠性通常是有保证的。如果储备液是由自己实验室用固体物质临时配制而成,则应该用尚未开瓶使用过的,确认准确可靠的同样浓度的储备液进行灵敏度对比测定。

工作标准的存放时间应按相应规定进行。对于一些特别容易受污染的元素如Na、K、Pb、Al、Ca、Mg、Si、Sn等必须保证容器、无机酸和水以及操作环境的干净。储备标准溶液的可靠性在于正确的储存方法和使用。另外要注意的是,最好避免直接将移液管插入储备液中。储备标准溶液初始的准确性应通过与将要用完的已知可靠的同浓度的标准溶液或更高级别的标准物质的比较来确认。

2.最大限度减小校准误差

要得到准确度较高的测量结果,最好选择线性校准方式。对于一个具体的分析任务,为了保证分析准确度应考虑以下几点:

(1)最好在吸光度信号与浓度关系的线性范围内,避免在灵敏度很小的区间进行测定;

(2)尽可能保证每一个样品吸光度信号在两点标准之间;

(3)如果有可能总是让样品溶液有较大的吸光度读数,这样可以减小测量数据的分辨率误差,传统上认为对于火焰法原子吸收来说,0.2~0.8 Abs是一个好的测定区间;

(4)尽量控制样品浓度在标准曲线的中间浓度位置。

3.使仪器工作在最佳状态

要消除或减小由于仪器稳定性造成的测定数据的误差就必须确保以下几点:

(1)实验室的条件完全充分地满足仪器的使用要求,包括环境温度、湿度、磁场、电源功率、气体纯度、压力、排风等,特别注意实验室在仪器使用时温度变化不大于3℃/h;

(2)仪器的重要部件如雾化原子化系统工作在最佳状况;

(3)仪器测定参数设定在最佳数值,如积分时间、乙炔流量、空气流量、燃烧头高度、试液提升量、灯电流等。

4.消除或降低样品的基体干扰

基体干扰是原子吸收光谱法的一种重要干扰,必须设法给予消除或减少。常用的方法有以下几种:

(1)合理稀释样品溶液:这是减少样品基体干扰的一个简单易行的方法,当基体被稀释到一定浓度以后,基体效应可减小到可以忽略的程度。但该法的缺点是会损失待测元素的灵敏度。

(2)基体匹配法:基体匹配法是在配制标准溶液系列时,加入与分析样溶液相同量的基体,使标准溶液系列主要成分与分析样相同或相近。但该法对基体的纯度要求较高,而且有时候基体的获得是非常困难的,特别是复杂基体样品。

(3)标准加入法:分析较高纯度样品时,基体匹配法需要有高纯基体,一般要比分析样纯度高1~2个数量级,有时难以得到高纯基体,这时可用标准加入法。

(4)化学分离法:若以上方法都不能很好地解决基体干扰问题,则可采用化学分离基体法。特别是分析高纯产品时,分离基体的同时可以富集杂质元素。

实验指南与安全提示

样品分解时,加入盐酸后要摇散试样,水浴加热时应每隔5min摇动一次烧杯,以防止样品结底。

钙属于易污染元素,因此应严格检查各种试剂的空白。

对于含钙量大于4% 的样品,应该采用EDTA容量法测定。

钙的测定在空气-乙炔火焰中常受溶液中 等阴离子的干扰,故应在标准及样品溶液中加入“释放剂”以克服干扰。常用的释放剂为锶盐和镧盐。

钢瓶应存放于通风良好、安全且避免日晒雨淋的场所,存储区温度不能超过40℃,贮存区不可放置可燃物质,严禁烟火,并远离人员进出的繁杂地区和紧急出口。

钢瓶应直立存放并适当锁紧阀出口盖,且瓶身应予固定,残量瓶、实满瓶应分开贮放,使用先进先出系统,避免贮放过期,定时记录库存量。

非使用时阀需紧闭。远离热源、发火源及不兼容物如氧化物8m以上,或者设置1.5m高、阻火速率至少0.5 h的防火墙。

使用不产生火花且接地的通风系统与电器设备,避免成为发火源。

定期检查钢瓶有无缺陷,如破损或溢漏等。保护钢瓶底部,防止接触潮湿的地面。

在适当处张贴警示标志。遵循易燃物及压缩气体的相关规定贮存与处理。

不要拖、拉、滚、踢钢瓶,应使用适当钢瓶专用手推车搬运钢瓶。禁止尝试利用瓶盖来吊升钢瓶。使用中钢瓶必须固定。

禁止粗暴或漫不经心地操作钢瓶,以防止损伤钢瓶或填充物。钢瓶跌倒会导致保险塞处泄露。钢瓶内尖锐的凹陷会扎破凹陷附近的填充物,产生空隙。自由乙炔会积聚在空隙处,并在钢瓶压力下分解。

使用逆止阀避免逆流进入钢瓶。严禁烟火,不可对瓶身任何地方加热。

当钢瓶连接到仪器时慢慢小心地打开钢瓶阀。打开瓶阀若遇到任何困难,应停止操作并通知供货商。不可用工具(如扳手、螺丝起子等)插进瓶盖两边开孔内打开瓶盖,因为这样会损坏瓶阀造成泄漏,应使用可调式环状链式扳手来打开过紧的瓶盖。乙炔钢瓶阀门不能开启得超过大约1.5圈。为了将液体溶剂的提取量减少到最小,在间断性使用中,乙炔的提取速度每小时不应超过钢瓶容积的十分之一。对于连续提取出钢瓶内的全部乙炔的情况,流速每小时不应超过钢瓶容积的五分之一。

确保使用充实乙炔的钢瓶,对于空瓶或残量瓶应有标识,以分辨钢瓶使用状况。

当钢瓶没有使用或是空瓶的时候,保持阀门关闭。为避免空气进入钢瓶内,请勿完全用尽气体,用毕请使用扭力扳手将阀出口盖锁回去。在下班或工作日结束的时候,关闭钢瓶阀门,放出调压器和仪器设备内的压力。需置备随时可用于灭火及处理泄漏的紧急应变装备。

如果乙炔钢瓶有尖锐或深的凹陷,金属被凿,或任何其他机械缺陷,用记号笔在缺陷处画个圆圈来警告供应商。除了钢瓶制造商以外,禁止任何人修理乙炔钢瓶。只能由有经验的人来处理废弃钢瓶。

操作钢瓶时,推荐使用安全眼镜、安全鞋和普通工作手套。

案例分析

最近几年,市场上出现了越来越多的成分复杂的钨精矿,这些矿已经和过去江西赣南矿山生产的钨精矿成分有较大的区别。特别是部分钨精矿中含有较高的钡,这给钨冶炼企业的生产工艺带来了很大的影响,大大影响钨的回收率。因此,广大分析工作者开始研究开发钨精矿中钡的测定方法。某实验室在用空气-乙炔火焰原子吸收光谱法测定钨精矿中的钡时,发现无论如何优化分析条件,总是达不到所要求的灵敏度。请你帮他分析一下其根本原因是什么。如果要用原子吸收光谱法测定钡的含量,有没有较好的解决办法?

拓展提高

一、钨制品分析简介

钨制品主要包括仲钨酸铵(APT)、偏钨酸铵(AMT)、蓝色氧化钨、黄色氧化钨、紫色氧化钨、钨粉、碳化钨粉、钨条等。钨制品的主要分析项目有:钾、钠、钼、磷、硫、镉、砷、硅、铝、锑、镁、铅、锰、镍、铬、铁、钴、铋、钛、锡、钙、钒、铜。钨制品的杂质分析,主要有可见分光光度法、原子吸收光谱法、直流电弧原子发射光谱法、电感耦合等离子体原子发射光谱法(ICP -AES )、电感耦合等离子体质谱法(ICP-MS)。在实际应用中,可见分光光度法主要用于测定非金属元素,如磷、硫等;原子吸收光谱法用于测定钾、钠;其他元素主要采用发射光谱和质谱法测定。其具体分析方法见表3-10。

表3-10 钨制品杂质元素常用分析方法

续表

而对于钨粉、碳化钨粉、蓝色氧化物,除了上述分析项目外,还有自己特定的分析项目,现列于表3-11。

表3-11 蓝钨、钨粉、碳化钨粉特殊分析项目

二、我国钨工业分析存在的问题

钨的工业分析,在冶金分析中是属于一个难度较大的领域,专业性强,涉及的面广。也正因为如此,给钨工业分析带来了无穷的魅力。近几年,随着分析化学特别是仪器分析的飞速发展,也促进了钨工业分析的发展。但因钨工业分析本身的特点,在有些分析项目中仍存在需要进一步解决和完善的难题,主要有以下几方面。

1.钨原料中钨的测定

近几年,随着钨矿的过度开采,钨资源已经越来越匮乏。也正因为如此,市场上出现了一些成分复杂的钨矿,有些矿品位低,杂质成分复杂甚至不明,这给钨原料中钨的测定带来了非常大的困难。比如河南洛阳栾川白钨矿具有钨品位较低、钼和磷含量较高等特点,在用钨酸铵灼烧法测定其中的钨量时,最大的问题是沉淀不完全,这可能是因为磷高所致。若采用8-羟基喹啉沉淀法,则沉淀中杂质元素较高。因此该类钨矿中钨的测定方法有待进一步改进。

2.钨产品中杂质元素的测定

钨产品中杂质元素的测定是一个非常重要的分析项目。目前对于杂质元素的分析,大致可分为三类:①磷、硫、氯等非金属元素主要采用可见分光光度法;②钾、钠采用原子吸收光谱法;③镉、砷、硅、铝、锑、镁、铅、锰、镍、铬、铁、钴、铋、钛、锡、钙、钒、铜等采用直流电弧原子发射光谱法。其存在的问题主要有两个:

(1)对于非金属元素磷、硫、氯等的测定,目前只能靠化学分析,分析流程长,劳动强度大。特别是磷,需采用萃取技术,毒害较大。

(2)直流电弧原子发射光谱法仍然是钨冶炼企业杂质元素分析的必备仪器,ICP-AES和ICP-MS仍然不能完全取代它。主要原因是样品处理技术、谱线干扰、基体干扰、质谱干扰等问题未能完全解决,因此只能作为补充方法。然而,直流电弧原子发射光谱法有其自身难以解决的缺点:对结果准确度影响因素多、重现性差、灵敏度不能满足痕量分析等。

随着钨工业的发展,对钨产品的纯度的要求越来越高,这无疑对钨产品中杂质元素的测定提出了更高的要求。因此寻求更准确、更灵敏的分析方法迫在眉睫。这些都有待广大分析工作者不断努力探索新的解决办法。

氢氧化铜对乙醇的影响研究论文

氢氧化铜能够跟多羟基的物质反应形成绛蓝色溶液,乙醇中只有一个羟基

乙醇无反应乙酸溶解乙醛加热后生成红色沉淀,醛基氧化甲酸加热后生成红色沉淀,并释放气体(二氧化碳)醛基氧化,生成碳酸加热释放二氧化碳。

乙醇:不反应,无明显现象乙酸:沉淀溶解 Cu(OH)2 + 2 CH3COOH ---> Cu(CH3COO)2 + 2H2O乙醛:加热后生成砖红色沉淀,醛有强还原性 CH3CHO + 2 Cu(OH)2 ---> CH3COOH + Cu2O(沉淀) +2H2O甲酸:加热后生成砖红色沉淀,并释放二氧化碳气体。醛基有强还原性,被氧化成碳酸受热分解放出二氧化碳。 HCOOH + 2 Cu(OH)2 ---> Cu2O(沉淀) + CO2(气体) +3H2O

先是氢氧化铜受热分解得到氧化铜Cu(OH)2=加热=CuO+H2O氧化铜再氧化乙醇变成乙醛CH3CH2OH+CuO=加热--->CH3CHO+Cu+H2O因此现象就是蓝色固体最后变成光亮的红色固体,并且有刺激性气味的物质产生,

钛合金氧化对组织的影响研究论文

关于钛合金的污染。当钛合金与氧等物质接触时候,就会发生氧化,将会使表面颜色发生变化,其具体变化视氧化程度和热处理温度而定。当氧化轻微时,钛合金表面金相观察会有氧化皮,当与基体发生作用时候,才会出现Alpha 层,因氧、铝等是Alpha稳定元素,所以发生氧化后,表面会富集Alpha相,也叫白亮Alpha层。使表面脆化

对磨损性能和结合力进行了测试。用用威虎氧化技术。在不同的电解液体系下,钛合金表面制备了陶瓷磨成通过扫描电镜和X射线颜色已进行分析,偏铝酸钠,磷酸钠,硅酸钠三种盐复合电解液体系下所得到的磨成耐腐蚀某种性能和结合力最优,硅酸盐的加入会让表面相对粗糙,表面孔径较大,磷酸盐的加入有利于金红石相形成,并且表面孔径较小。电解液是化学电池,电解电容使用的介质,主要用于不同行业代表的内容相差较大。

镍钛记忆合金其变形次数可以达到千万次不会断裂。表面光滑,尺寸高,塑性良好,冷加工变形量大可达到40%以上,经处理后可获得优异的超弹性,是制作高档立体组合眼镜架的理想材料。陕西格美特新材料有限公司专业生产各种镍钛记忆合金材料。

一般钛合金在800摄氏度以上热变形过程中发生的晶粒形成与长大的现象是动态再结晶 静态再结晶一般是冷变形后再次加热退火等热处理过程中变形拉长晶粒再次等轴化和长大的现象,也有可能是多次锻压过程中,锻压间隙会发生利用余热发生静态再结晶。

研究食品胶对烧饼的影响论文

食品加工质量安全管理工作是保障企业产品质量安全符合质量标准的关键、是维护企业市场信誉的关键,是企业在现代激烈市场竞争中赢得市场竞争力的关键。下面是我为大家推荐的食品加工论文,供大家参考。

食品加工论文 范文 一:食品工业泡沫分离技术的应用

泡沫分离又称泡沫吸附分离技术,是以气泡为介质,以各组分之间的表面活性差为依据,从而达到分离或浓缩目的的一种分离 方法 [1].20世纪初,泡沫分离技术最早应用于矿物浮选,后来应用于回收工业废水中的表面活性剂.直到20世纪70年代,人们开始将泡沫分离技术应用于蛋白质与酶的分离提取[2-3].目前,在食品工业中,泡沫分离技术已经应用于蛋白质与酶、糖及皂苷类有效成分的分离提取.由于大部分食品料液都有起泡性,泡沫分离技术在食品工业中的应用将越来越广泛.

1泡沫分离技术的原理及特点

1.1泡沫分离技术的原理

泡沫分离技术是依据表面吸附原理,基于液相中溶质或颗粒之间的表面活性差异性.表面活性强的物质先吸附于分散相与连续相的界面处,通过鼓泡形成泡沫层,使泡沫层与液相主体分离,表面活性物质集中在泡沫层内,从而达到浓缩溶质或净化液相主体的目的.

1.2泡沫分离技术的特点

1.2.1优点

(1)与传统分离稀浓度产品的方法相比,泡沫分离技术设备简单、易于操作,更加适合于稀浓度产品的分离.(2)泡沫分离技术分辨率高,对于组分之间表面活性差异大的物质,采用泡沫分离技术分离可以得到较高的富集比.(3)泡沫分离技术无需大量有机溶剂洗脱液和提取液,成本低、环境污染小,利于工业化生产.

1.2.2缺点

表面活性物质大多数是高分子化合物,消化量比较大,同时比较难回收.此外,溶液中的表面活性物质浓度不易控制,泡沫塔内的返混现象会影响到分离效果[4].

2泡沫分离技术在食品工业中的应用

2.1蛋白质的分离

在分离蛋白质的过程中,表面活性差异小的蛋白质,吸附效果受到气-液界面吸附结构的影响,因此蛋白质表面活性的强度是考察泡沫分离效果的主要指标.谭相伟等[5]研究了牛血清蛋白与酪蛋白在气-液界面的吸附,并发现酪蛋白对牛血清蛋白在气-液界面处的吸附有显著影响.此后,Hossain等[6]利用泡沫分离技术对β-乳球蛋白和牛血清蛋白进行分离富集,结果得到96%β-乳球蛋白和83%牛血清蛋白.Brown等[7]采用连续式泡沫分离技术从混合液中分离牛血清蛋白与酪蛋白,结果表明酪蛋白的回收率很高,而大部分的牛血清蛋白留在了溶液中.Saleh等[8]研究了利用泡沫分离法从乳铁传递蛋白、牛血清蛋白和α-乳白蛋白3种蛋白混合液中分离出乳铁传递蛋白,在牛血清蛋白和α-乳白蛋白的混合液中加入不同浓度的乳铁传递蛋白,并不断改变气速,优化了最佳工艺条件.结果得出:在最佳工艺条件下,87%的乳铁传递蛋白留在溶液中,98%牛血清蛋白和91%α-乳白蛋白存在于泡沫夹带液中.由此可见,利用泡沫分离法可以有效地从3种蛋白质混合液中分离出乳铁传递蛋白.Chen等[9]利用泡沫分离技术从牛奶中提取免疫球蛋白.考察了初始pH值、初始免疫球蛋白浓度、氮流量、柱的高度及发泡时间等因素对反应的影响,结果表明:采用泡沫分离方法可以有效地从牛奶中分离出免疫球蛋白.Liu等[10]从工业大豆废水浓缩富集大豆蛋白,最佳工艺条件:温度为50℃,pH值为5.0,空气流量为100mL?min-1,装载液体高度为400mm,得到大豆蛋白富集比为3.68.Li等[11]为了提高泡沫析水性,研发了一种新型的利用铁丝网进行整装填料的泡沫分离塔,利用铁丝网整体填料塔泡沫分离法对牛血清蛋白进行分离.通过研究填料对气泡大小、持液量、富集比和在不同条件下以牛血清蛋白水溶液作为一个参考物的有效收集率的影响,评价填料的作用.结果表明,填料可以加速气泡破裂、减少持液量、提高泡沫析水性和牛血清蛋白的富集比.研究表明,在积液量为490mL,空气流速为300mL?min-1,牛血清蛋白初始浓度为0.10g?L-1,填料床高度为300mm和初始pH值为6.2的条件下,最佳的牛血清蛋白富集比为21.78,是控制塔条件下富集比的2.44倍.刘海彬等[12]以桑叶为原料,采用泡沫分离法对桑叶蛋白进行分离,并分析了影响分离效果的主要因素,结果测得桑叶蛋白回收率为92.50%、富集比为7.63.由此可见,利用泡沫分离法对桑叶进行分离可得到含量较高的桑叶蛋白.与传统的叶蛋白分离方法如酸(碱)热法、有机溶剂法相比较[13-14],泡沫分离法分离效果好,避免了加热导致蛋白质变性以及减少有机溶剂带来的环境污染等问题.李轩领等[15]以亚麻蛋白浓度、NaCl浓度、原料液pH值以及装液量为主要考察因素,用响应面法优化了从未脱胶亚麻籽饼粕中泡沫分离亚麻蛋白的工艺条件.在最佳工艺条件下,得到95.8%的亚麻蛋白质,而多糖的损失率仅为6.7%.可见,采用泡沫分离技术可以从未脱胶亚麻籽饼粕中有效分离出亚麻蛋白.

2.2酶的分离

蛋白质属于生物表面活性剂,包含极性和非极性基团,在溶液中可选择性地吸附于气-液界面.因此,从低浓度溶液中可泡沫分离出酶和蛋白质等物质.Linke等[16]研究了从发酵液中泡沫分离胞外脂肪酶,考察了通气时间、pH值及气速等主要因素对回收率的影响,研究得出通气时间为50min、pH值为7.0及气速为60mL/min时,酶蛋白回收率为95%.Mohan等[17]从啤酒中泡沫分离回收酵母和麦芽等,结果表明,分离酵母和麦芽所需的时间不同,而且低浓度时更加容易富集.Holmstr[18]从低浓度溶液中泡沫分离出淀粉酶,研究发现在等电点处鼓泡,泡沫夹带液中的淀粉酶活性是原溶液中的4倍.Lambert等[19]采用泡沫分离技术考察了β-葡糖苷酶的pH值与表面张力之间的关系,研究表明,纤维素二糖酶和纤维素酶的最佳起泡pH值分别为10.5和6~9.Brown等[7]利用泡沫分离技术对牛血清蛋白与溶菌酶以及酪蛋白与溶菌酶的混合体系分别进行了分离纯化的研究.结果表明,溶菌酶不管与牛血清蛋白混合还是与酪蛋白混合,回收率都很低,但是由于溶菌酶可提高泡沫的稳定性,从而提高了牛血清蛋白与溶菌酶的回收率.Samita等[20]对牛血清蛋白与酪蛋白、牛血清蛋白与溶菌酶两种二元体系分别进行了研究,发现在牛血清蛋白与酪蛋白的蛋白质二元体系中酪蛋白在气-液界面处的吸附占了大部分的气-液界面,从而阻止了牛血清蛋白在气-液界面处的吸附.而在牛血清蛋白与溶菌酶的二元体系中,研究表明溶菌酶提高了牛血清蛋白的回收率,同时提高了泡沫的稳定性.针对这种现象,Noble等[21]也采用泡沫分离法分离牛血清蛋白与溶菌酶的二元体系,研究发现泡沫夹带液中存在少量的溶菌酶,提高了泡沫的稳定性,牛血清蛋白溶液在低浓度下本来不能产生稳定泡沫,溶菌酶的存在使得其也能产生稳定的泡沫.这些研究表明,泡沫分离技术可以在较低的浓度下分离具有表面活性的蛋白质,为泡沫分离技术在蛋白质分离中的应用研究开辟了新的领域.国内泡沫分离技术已应用在酶类物质分离中,范明等[22]设计了泡沫分离装置,利用泡沫分离技术分离脂肪酶模拟液和实际生产生物柴油的水相脂肪酶溶液,对水相脂肪酶进行回收并富集.考察了通气速度、进料酶浓度及水相脂肪酶溶液中pH值等主要因素对分离效果的影响,当通气速度为10L/(LH)、进料酶浓度为0.2g/L、pH值为7.0时,蛋白和酶活回收率接近于100%,富集比为3.67.研究表明,初始脂肪酶浓度对泡沫分离的富集比和蛋白回收率有显著影响,pH值对富集比、蛋白和酶活回收率无显著影响,而气速是影响蛋白回收速率的一个重要因素.回收水相脂肪酶的过程中酶活性无损失.可见,泡沫分离是一个回收液体脂肪酶的有效方法[22].

2.3糖的分离

糖一般存在于植物和微生物体内,可根据糖与蛋白质或者其他物质的表面活性差异性,利用泡沫分离技术对糖进行分离提取[23].Fu等[24]采用离心法从基隆产的甘薯块中分离提取可溶性糖和蛋白,得到的回收率分别为4.8%和33.8%;而采用泡沫分离法时,可溶性糖和蛋白的回收率分别为98.8%和74.1%.Sarachat等[25]采用泡沫分离法富集假单胞菌生产的鼠李糖脂,最佳工艺条件下得到鼠李糖脂97%,富集比为4.__洲[26]利用间歇式泡沫分离法从美味牛肝菌水提物中分离牛肝菌多糖,考察了pH值、原料液浓度、空气流速、表面活性剂用量及浮选时间等主要因素对分离效果的影响,以回收率为指标评价分离的效果,并优化了分离牛肝菌多糖的工艺条件.在最佳工艺条件下,牛肝菌多糖回收率为83.1%.国内关于食用菌多糖的提取一般利用水提醇析法,但是该法需要消耗大量的乙醇,操作周期长,能耗大[27-28],而泡沫分离法具有快速分离、设备简单、操作连续、不需高温高压及适合分离低浓度组分等优势,因此间歇式泡沫分离法是提取食用菌多糖的一种有效方法.

2.4皂苷类有效成分的分离

皂苷包含亲水性的糖体和疏水性的皂苷元,具有良好的起泡性,是一种优良的天然非离子型表面活性成分,因此可采用泡沫分离法从天然植物中分离皂苷[29].泡沫分离法已广泛用于大豆异黄酮苷元、人参皂苷、无患子皂苷、竹节参皂苷、文冠果果皮皂苷等有效成分的分离.

2.4.1大豆异黄酮苷元的分离Liu等[10]

采用泡沫分离与酸解方法从大豆乳清废水中分离大豆异黄酮苷元,指出从工业大豆乳清废水中提取的异黄酮苷元主要以β-苷元的形式存在,并利用傅里叶变换红外光谱分析发现大豆异黄酮和大豆蛋白以复合物的形式存在.研究结果表明,利用泡沫分离技术可以从大豆乳清废水中有效地富集大豆异黄酮,分离出大豆异黄酮苷元和β-苷元.

2.4.2无患子总皂苷的分离魏凤玉等[30]

分别采用间歇和连续泡沫分离法分离纯化无患子皂苷,利用正交试验,考察了原始料液浓度、气体流速、温度、pH值等因素对无患子皂苷回收率的影响,确定了泡沫分离最佳工艺条件.林清霞等[31]采用泡沫分离技术分离纯化无患子皂苷,利用紫外分光光度计测定无患子皂苷含量,通过富集比、纯度及回收率判断分离纯化的效果.在进料浓度为2.0g/L、进料量为150mL、气速为32L/h、温度为30℃、pH值为4.3时,得到富集比为2.153,纯度与回收率分别为74.68%和79.19%.研究结果表明:无患子皂苷的回收率随着进料浓度的增大而减小,随着气速、进料量的增大而增大;富集比随着进料浓度、气速及进料量的增大而减小,pH值对富集比的影响较小;纯度随着进料浓度、气速的增大而降低,进料量、pH值对纯度的影响较小.

2.4.3竹节参总皂苷的分离

竹节参的主要成分皂苷是一种优良的天然表面活性剂,而竹节参中的竹节参多糖、无机盐及氨基酸等是非表面活性剂,因此可根据表面活性的差异,采用泡沫分离技术对竹节参皂苷进行分离纯化[32-34].张海滨等[35]考察了气泡大小、pH值、原料液温度及电解质物质的量浓度等主要因素对泡沫分离竹节参总皂苷的影响,以富集比、纯度比及回收率等为指标分析分离纯化的效果,得出最佳工艺条件:气泡直径为0.4~0.5mm,pH值为5.5,温度为65℃,电解质NaCl浓度为0.015mol?L-1.在最佳工艺条件下,总皂苷富集比为2.1,纯度比为2.6,回收率为98.33%,能够得到较好的分离.张长城等[36]研究了利用泡沫分离技术对竹节参中皂苷进行分离纯化的方法与条件,指出泡沫分离技术分离纯化竹节参皂苷具有产品回收率高、工艺简单、能耗低及不使用有机溶剂等优点,为竹节参皂苷的开发利用提供了技术支持.

2.4.4文冠果果皮皂苷的分离

文冠果籽油是优质的食用油,含油率达35%~40%[37],同时可作为生物柴油的原料.文冠果果皮含有皂苷1.5%~2.4%.研究表明,文冠果果皮皂苷具有抗肿瘤、抗氧化及抗疲劳等功效[38].文冠果果皮皂苷的开发利用带来的附加价值可以有效地降低生物柴油的生产成本.在生产生物柴油的过程中需要处理大量的果皮,因此需要寻求一种简单可行、成本低、收率高以及对环境污染小的皂苷分离方法.吴伟杰等[39]使用自制起泡装置,研究了泡沫分离技术分离文冠果果皮总皂苷的可行性及最佳反应条件.研究得出泡沫分离文冠果皂苷的最佳工艺条件为:料液气体流速为2.5L?min-1,初始浓度为2mg?mL-1,温度为20℃,pH值为5.与泡沫分离人参、三七等皂苷的气体流速相比较,文冠果果皮的气体流速较低,这样可以更大限度地降低能耗、节约成本.同时,泡沫分离文冠果果皮皂苷可在室温条件下进行,降低了加热所需的能耗.此外,由于文冠果果皮皂苷的水溶液pH值在5左右,泡沫分离时无需调节pH值.在最佳工艺条件下,得到富集比为3.05,回收率为60.02%,纯度为63.35%.研究表明,泡沫分离文冠果果皮皂苷可以达到较高的富集比、回收率和纯度,对于大力开发利用生物能源、综合利用文冠果以及降低生物柴油的成本有着重要意义.

3展望

泡沫分离技术是一种很有发展前景的新型分离技术,在食品工业中的应用将会越来越广泛,今后在天然产物及稀有物质的分离提取等方面有着更加广泛的应用.同时,泡沫分离技术也存在一定的局限性,为促进泡沫分离技术在食品工业中的应用发展,应该在以下方面进行深入研究:(1)对泡沫分离复杂物料实际分离过程的泡沫形成情况建立理论模型,对标准表面活性剂的分离提取建立标准数据库,对标准表面活性剂和非表面活性物质间的分离建立指纹图谱;(2)如何减少泡沫分离非表面活性物质时的表面活性剂消耗量;(3)如何解决泡沫分离高浓度产品时回收率低的问题;(4)目前泡沫分离设备存在局限性,应研究开发新型的适合食品工业分离的泡沫分离设备,提高泡沫分离的效果[40].

食品加工论文范文二:食品工业废水处理节能研究

食品工业包括制糖、酿造、肉类、乳品加工等,食品工业的废水主要来源于原料的处理、洗涤、脱水、过滤、脱酸、脱臭和蒸煮过程中产生的,这些废水含有大量的有机物、蛋白质、有机酸和碳水化合物,具有很强的耗氧性,如果不经处理直接排入水体会大量消耗水中的溶解氧,从而造成水体缺氧,造成水生生物的死亡。食品工业废水油脂含量高,多伴随大量悬浮物随废水排出,其中动物性食品加工排出的废水还可能含有病菌,此外,这些废水还含有铜、锰、铬等金属离子。近年来,随着食品加工业的快速发展,每年由此产生的废水量也呈现快速增长态势,许多废水未经有效处理便被直接排放,给环境产生了十分严重的破坏。因此,探讨食品工业废水处理对于生态环境保护具有非常重要的现实意义。

1食品工业废水处理工艺现状

目前,国内外对于食品工业废水的处理过程中主要采用的是生物处理工艺,其中主要包括有好氧生物处理工艺、厌氧生物处理工艺,以及由好氧生物处理工艺与厌氧生物处理工艺相结合的处理工艺。在好氧生物处理工艺方面,主要有活性污泥法(目前实际应用较为广泛的主要有SBR法)和生物膜法(具有代表性的是曝气生物滤池法)。由于厌氧生物处理工艺相较于好氧生物处理工艺无论在后期的运行管理费用还是前期的基建投资方面的费用都有较大优势,其中比较具有典型的处理工艺有厌氧颗粒污泥膨胀床(EGSB)工艺、第三代厌氧处理工艺———厌氧内循环反应器(IC)被广泛应用到了食品工业废水处理中。此外,厌氧生物处理工艺在处理食品工业废水方面具有良好的处理效果[1]。

2各种工艺特点及应用效果分析

目前国内外,食品工业废水的处理以生物处理[2]为主。在实际中运用较广,技术较为成熟的主要有厌氧接触法、厌氧污泥床法、浅层曝气、延时曝气、曝气沉淀池法等等。

2.1好氧生物处理工艺

好氧生物处理是在不断供氧的环境中,利用好氧微生物来氧化有机物。在好氧过程中,微生物对复杂的有机物进行分解,一部分被转化为稳定的无机物CO2、H2O和NH3,一部分则由微生物合成为新细胞,最后去除污水中的有机物。

2.1.1SBR法,即间歇式活性污泥系统(又叫序批式间歇活性污泥法)。SBR法目前在国内外应用较为广泛,生物反应池中集中了生物降解过程、沉淀过程以及污泥回流功能为一体,这种工艺比较简单,它是在以前间歇式活性污泥工艺基础上发展来的一种新工艺,采用SBR法处理废水的运行过程一般包括了进水、充氧曝气、静止沉淀、排水和排泥五个步骤。与连续性活性污泥工艺相比,该工艺具有的有点主要有:曝气池兼具二沉池的功能,不设二沉池,也没有污泥回流设备,系统结构简单,易于管理;耐冲击负荷,一般无需设置调节池;反应推动力大,较为简便的得到优质出水水质;污泥沉淀性能好,SVI值较低,便于自控运行,后期维护管理也较为简便。居华[3]通过SBR法在酱油、酱菜食品废水处理中的应用研究后得出,原废水CODcr在2000mg/L~4000mg/L范围内,经SBR法处理后出水水质得到了二级标准,去除率达96%以上,没有出现污泥膨胀现象,而且操作管理方便,占地面积小,运行的费用也低。

2.1.2BAF法,即曝气生物滤池法。这种工艺最早可以追溯上个世纪80年代,是由欧美等国家应用和发展起来的,大连马栏河污水处理厂是我国最早采用BAF工艺。该工艺是在生物接触工艺基础上,在滤池中填装陶粒、石英砂等粒状填料,以填料及其附着生产生物膜为介质,发挥生物的代谢功能,通过物理过滤功能,发挥膜和填料的截留吸附作用从而实现污染物的高效处理。廖艳[4]等采用混凝—ABR与曝气生物滤池(BAF)联合处理工艺,对某市肉联厂高浓度废水化学需氧量和氨氮的去除研究后发现,化学需氧量和氨氮的去除效果从原水时的1500mg/L~4500mg/L、30mg/L~85mg/L,经处理后出水COD<100mg/L,氨氮<50mg/L,达到了国家一、二级排放标准,取得良好的环境和社会效益。

2.1.3MBR法,即膜生物反应器法。是上个世纪90年代逐渐发展起来的一种废水处理技术,该工艺是将膜组件替代传统的二沉池,实现固相和液相分离。其实质是把细菌和微生物以生物膜的方式附着在固体表面上,以污水中的有机物为营养物进行新陈代谢和生长繁殖,从而达到实现净化污水的效果。该工艺具有较强的抗冲击力,对水质和水量变化具有较强适应性;污泥产量较低且沉降性能优,易于固液分离;对于低浓度污水也可以进行处理,在正常运行时可以把原水中的BOD5由20mg/L~30mg/L降至5mg/L~10mg/L;运行费用也不高,管理方便。张亮平,王峰[5]以MBR在湖北某食品厂废水处理中的应用为例进行研究后发现,采用MBR-活性炭-杀菌联合工艺,出水COD和BOD的去除率达到了99%以上,系统工艺能耗低,运行稳定。

2.2厌氧生物处理工艺

在食品废水处理过程中,厌氧处理法与好氧处理法相比由于产生的污泥少,动力流耗小,管理简便,既能节能又能降低成本,逐渐在高浓度有机废水行业———食品工业广泛推崇。

2.2.1UASB法,即升流式厌氧污泥床法。该种工艺是由高活性厌氧菌体构成的粒状污泥,在UASB装置内随上升的气流呈向上流动的状态。处理效率高、性能可靠、能耗低,也不需要填料和载体,运行成本低等优点,既可以处理高负荷废水,也不会产生堵塞等优点。也是当前应用最为广泛的高速反应器之一。王炜,何好启[6]研究发现,食品废水经由UASB+接触氧化法工艺处置后,CODcr、BOD5、SS和植物油由原水浓度的1170mg/L、570mg/L、600mg/L、150mg/L,处置后的效果为60.2mg/L、15.5mg/L、40mg/L和3mg/L,出水水质达到了《污水综合排放标准》中的一级标准,且工程的经济运行效益也良好,总运行费用约为0.54元/m3,工艺占地小,处理成本低,运行方式灵活,值得推广。

2.2.2EGSB反应器,即膨胀颗粒污泥床反应器。该工艺是在UASB基础上发展起来的一种新厌氧工艺,与UASB工艺相比,EGSB增加了出水的回流,提升了反应器中水流的速度,其速度可以达到5m/h~10m/h,比UASB的0.6m/h~0.9m/h高出近10倍。李克勋[7]等以天津某淀粉厂采用EGSB处理淀粉废水为例,EGSB的厌氧反应器对COD的去除率超过了85%,出水水质达到了国家一级排放标准,大量有机物被去除,后续单元的处理压力被减轻,此外,厌氧反应器的介入使用,可以产生沼气作为能源进行二次利用,降低运行费用(总运转费用为0.73元/m3?d),具有良好的环境效益和社会效益。

2.2.3ASBR法,即厌氧序批式活性污泥法。ASBR厌氧序批式活性污泥法最早诞生于上世纪90年代的美国,是在SBR基础上发展起来的,该工艺的显著特点是以序批间歇运行,按次序分为进水、反应、沉淀和排水四个步骤,与连续流厌氧反应器相比,该工艺由于不需要大阻力的配水系统,因此极大地减少了系统的能耗,也不会产生断流和短流,运行灵活,抗击能力较强,实现厌氧功能,也同时兼有了SBR的优点。

3厌氧生物处理工艺优势分析

与好氧生物处理工艺相比,在食品工业废水处理方面,厌氧生物处理工艺具有很多优势:工艺运行时污泥的剩余量非常少,由于不需要附加氧源而降低运行管理费用;食品工业废水有机物浓度高,而厌氧生物处理工艺拥有良好的抗高浓度有机物的冲击负荷力优势,能够做到间接性排放;另外,厌氧生物处理工艺能够产生沼气,实现资源的二次利用,真正实现了 变废为宝 ,降低能耗,因此,厌氧处理工艺在食品工业废水处理中是一种节能型废水处理工艺。作为低能耗而且能够产生二次能源的厌氧生物处理工艺必将成为食品工业废水处理的主流方向[8]。

食用胶在肉制品中使用的种类非常多,其来源也非常多,但是食用胶的主要来源还是从植物与海藻还有微生物以及一些动物类物质中提取的,都是健康的。现在在世界上被允许使用的食用胶有六十多种,但是在我国被允许的只有四十多种,我国肉制品中使用比较多食用胶主要有卡拉胶、黄原胶以及一些明胶、琼胶等等,下面了解一下比较常见的几种食用胶的使用方法。卡拉胶这种食用胶主要是多糖物质,主要来源于红色的海藻,是纯植物胶,主要用作增稠剂还有凝胶形成剂。在使用的时候我们把卡拉胶还有一些淀粉进行混合,注意只需要少量的淀粉就可以,然后我们慢慢的撒入冷水里面,注意在撒的时候要一边撒然后一般搅拌,之后进行加热,直至煮沸,然后经过十到二十分钟时候,等到完全溶解就可以了。这样直接加入配料然后在添加在肉丸中就可以了。食用明胶是胶原的水解产物,是一种无脂肪的高蛋白,且不含胆固醇,是一种天然营养型的食品增稠剂。食用后既不会使人发胖,也不会导致体力下降[1]。明胶还是一种强有力的保护胶体,乳化力强,进入胃后能抑制牛奶、豆浆等蛋白质因胃酸作用而引起的凝聚作用,从而有利于食物消化。食用明胶是水溶性蛋白质混合物,皮肤、韧带、肌腱中的胶原经酸或碱部分水解或在水中煮沸而产生,无色或微黄透明的脆片或粗粉状,在35~40℃水中溶胀形成凝胶(含水为自重5~10倍),是营养不完全蛋白质,缺乏某些必需氨基酸,尤其是色氨酸,广泛用于食品和制作黏合剂、感光底片、滤光片等[1]。酸奶、果冻等食物里都会有食用明胶,就是因为其有吸水性强、粘度高的理化特性,再加上是一种无脂肪的高蛋白,不含胆固醇,食用明胶就成为了一种天然营养型的食品增稠剂。从动物的胶原质中,通过部分酸法水解(A型),或者部分碱法水解(B型),甚至还可以通过酶解,提纯而获 明胶制品得的胶原蛋白。

食用胶对身体没有害。“食用胶”是一大类食品原料,多数是碳水化合物,分子结构跟淀粉很类似,也有一些是蛋白质,最常见的是明胶。常用的食用胶其实都是“天然产物”:琼脂和卡拉胶是海藻的提取物;明胶是从动物的皮或者骨头水解熬制而来。果胶主要来源是橘子皮和苹果榨汁后的残渣;阿拉伯胶、瓜尔豆胶、槐豆胶,都是从相应植物的种子中提取而来的;黄原胶由微生物发酵得到,类似于酱油、酒、醋、味精等。 扩展资料:食用胶的作用:1.许多蛋白质在酸性条件下不溶解,而很多人又喜欢酸性饮料的口味。加入适当的果胶,可以让其和蛋白质连接,就可能使蛋白质在酸性条件下溶解,从而获得清澈透明的酸性饮料。2.在面条中加入适量的食用胶,也可能使得面条更筋道,也是一种改善。3.有一些食用胶本身也被当作膳食纤维,比如果胶、瓜尔豆胶、琼脂等。膳食纤维能够提供饱腹感,但是不产生热量,对减肥有帮助。参考资料:人民网-食用胶能放心吃

这个问题我是这样想的:可“食用”指的是没有对身体造成毒副危害的成分,同时,你要了解,食用胶是一种食品添加剂,不是一种主食,或者营养成分,知识为了让食品更加粘稠美观等,对身体即使无害也说不上有益。另外,食用胶不一定都是人工合成的,像是食品添加剂中常用的琼脂、卡拉胶都是从海藻中提取的,其中琼脂价格较高,从医学角度将是有一些有益于健康的因素,卡拉胶则会导致高血糖等的发生,也是廉价的果冻、火腿中的成分。胶类物质最好少吃,因为他较难被消化,而且会以胶的性质吸附在胃粘膜上,导致胃液的分泌和蠕动都收到影响,影响对其他东西的消化。

对烧结矿最终烧结性能的研究论文

烧结的目的及意义是使其致密性能更好。随着钢铁工业的快速发展,金属填料天然富矿在产量和质量上都远远不能满足高炉冶炼的要求,而大量贫矿经选矿后得到的精矿粉却不能直肠子接人炉冶炼,只能通过人工方法将这些粉矿制成块状的人造富矿供高炉使用。目的生产人造富矿的方法主要有烧结法和球团法。烧结法生产的人造富矿称为烧结矿,球团法生产的人造畜矿称为球团矿,烧结矿和球团矿统称为熟料。铁矿粉在一定的高温作用下.部分颗粒表面发生软化和熔化,产生一定量的液相,并与其它末熔矿石颗粒作用,冷却后,液相将矿粉颗粒藏结成块,这个过程称为烧结。显然,烧结过程是一个高温物理化学反应的造块过程。铁矿粉烧结是目前最重要的造块技术。由于开采时产生大量铁矿粉,蓄热蜂窝陶瓷特别是贫铁矿富选促进了铁精矿粉的生产发展,使铁矿粉烧结成为规模较大的造块作业。其物料的处理量约占钢铁联合企业第二位(仅次于炼铁生产),能耗仪次于炼铁及轧钢而居第三位,成为现代钢铁工业中重要的生产序。铁矿粉烧结要求饶结矿有很好的物理、冶金性能。由于现代炼铁设备的大型化,炉料倒运次数多、落差大,要求烧结矿有较高的冷强度,如抗压强度等。烧结矿经历冶炼中的高温过程.要求具备一定的热强度,即在高温还原气氛下抗压、耐磨及耐急热爆裂性能s烧结矿在高炉内经历物理化学反应,要求它具有良好的冶金性能,金属鲍尔环如还原性、软化性、熔滴性等。铁矿粉烧结技术的困难还在于追求合理的经济效果,因此,铁矿粉炊结是一门技术复杂的专门学科。

《影响烧结矿强度的因素分析及改进措施》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《影响烧结矿强度的因素分析及改进措施》。第一篇:影响烧结矿强度的因素分析及改进措施烧结矿强度攻关组烧结强度攻关分析一、影响烧结矿强度的因素分析1、烧结矿中FeO含量:过高直接还原增加,过低强度不好;碳高时容易还原生成FeO,形成强度很好但还原性很差的铁橄榄石和钙铁橄榄石,因此生产时既要保证有一定的还原性,又要保证机械强度。2、烧结矿化学成份:MgO、Al2O3的影响。3、烧结混合料混匀程度:圆筒混合机中的三种运动状态——翻动、滚动、滑动,其中滑动对混料是没有效果的,需要控制;混合后碳粒的存在形式有三种——被矿粉包裹在中心形成的颗粒、与矿粉一起包裹在核表面形成的颗粒、单独存在的颗粒,因此要防止烧结矿强度攻关组状,具有一定的强度但发脆,此种物质还原性很差。该物质生成温度高,需配碳也多,也起烧结燃烧带变宽,阻力增大,影响烧结机台时产量提高。同时由于生成温度高,因而燃料消耗也多,据日本试验和生产的经验数据统计,烧结矿FeO 增减1%,影响固体燃料消耗增减2~5kg/t。对高炉的影响也是很大的,根据生产统计数据和经验数据表明,FeO 波动1%,影响高炉焦比1~1.5%,影响产1~1.5%。因此在保证烧结矿强度的情况下,应尽量降低烧结矿FeO。现在我国重点厂烧结矿FeO在10%左右,有个别厂达到7%。三、攻关措施1)、提高熔剂和燃料质量,对保供焦粉筛加强检查,焦粉量进行控制,保证粒度,这是保证烧好烧透的基础。2)、稳定混合料固定碳,及时调整碳。3)、控制返矿平衡,减小混合料水碳波动,建立制度,加强考核。4)、提高配料准确性:进行配料计算培训,加强配料指导;加强计量检查,采用跑盘检验并记录;加强矿和焦粉水份的检测(根据天气变化)。5)、稳定烧结矿碱度在1.6~1.8间。6)、在保证机械强度的基础上,降低FeO含量,控制合理的FeO在8~12间。7)、分析研究烧结矿自然粉化的原因。8)、进一步加强打水制粒,改进烧结工艺。第二篇:烧结矿强度下降原因及改进措施烧结矿转鼓强度下降的原因及改进措施王素涛 赵 成 王 斌 邱学先(宣钢炼铁厂)摘 要入烧精粉率降低、富矿粉增加引起烧结过程变化,使烧结矿转鼓强度降低,为改善强度,在生产中采取优化参数控制,改善混匀制粒,提高料层厚度、压料、稳定机速控制,改善燃料粒度组成等措施,使烧结矿质量指标趋于稳定。关键词 转鼓强度 下降原因 改进措施 前 言宣钢西铁区目前有4台36m2步进式烧结机,从2006年到2008年9月,烧结矿转鼓强度一直保持在80%以上。从2008年10月,入烧原料结构由大比例精粉率烧结向全富矿粉烧结过渡,造成烧结矿强度降低,尤其在10月下旬转鼓强度一度降至76%左右,烧结矿粒级组成变差,含粉率升高,小于10mm的粒级含量由15%增至17%以上,给高炉冶炼带来很大影响。为保证高炉稳定顺行,我厂在烧结生产中对引起烧结矿转鼓强度下降的原因作了全面分析,并采取一系列措施,使烧结矿强度逐步恢复稳定在79%以上。和矿物组成,SiO2、MgO和Al2O3等化学成分的影响,又有配碳量和FeO含量、热返矿粒度和返矿量、熔剂和燃料粒度、配矿及反应性的影响,还有料层厚度、抽风负压等工艺操作参数的影响。我们通过对实际烧结生产中存在的问题和主要技术指标的对比分析,认为2008年10月份以来的转鼓强度降低主要是配矿结构变化、碱度、燃料粒度和部分工艺参数控制的影响所致,从表1的入烧结构情况看,10—12月较1—9月精粉率降低了21.04%,外粉率增加了15.84%,各种杂料组成的混匀料配比增加了4.98%。从表2可知:10—12月烧结矿的碱度较1—9月降低了0.13倍,而碱度对烧结矿的强度影响很大,因此,首先从入烧结构变化引起的烧结参数控制上做文章,改进配矿和工艺参数控制。2 转鼓强度变化前后指标对比根据以往行业研究成果可知,烧结矿强度及粒级组成的影响因素是多方面的,既有碱度表1 1—9月份与10—12月份入烧结构对比(%)时间 1-9月 10-12月 比较 精粉 33.07 12.03-21.04 外粉 24.04 39.88 +15.84返矿 16.68 17.51 +0.83混匀料 8.73 13.71 +4.98钙灰 10.02 8.27-1.75镁灰 2.98 3.71 +0.73燃料 4.48 4.89 +0.41表2 1—9月份与10—12月份主要技术指标对比(%)时间 1-9月 10-12月 比较 SiO2 6.24 6.25 +0.01 Tfe 51.87 52.12 +0.25FeO 10.36 10.71 +0.35MgO 3.20 3.23 +0.03R2 2.25 2.12-0.13强度 81.12 79.32-1.80含粉 5.34 5.77 +0.435~10mm 15.17 16.29 +1.12 3 转鼓强度下降的原因及采取颗粒间的点接触粘结,用手即可掰开、强度极差;成品矿5-10mm粒级也明显增加,造成热返矿粒度和返矿量增大,引起混合料水分波动和成球率下降,造成烧结矿强度恶性循环,最终烧结矿强度由80—81%降低到76%。11月初,在总入烧外粉比例保持保持不变(40%)的基础上,把FMG粉配比降至10%,同时增加8%烧结性能较好的扬迪粉和7%的60印粉。入烧结构调整后,烧结状况改善,烧结矿强度逐步回升。入烧结构变化前后对比见表3 的措施3.1入烧结构的变化为降低烧结矿成本,从2008年10月13日起宣钢西铁区烧结生产开始配加FMG粉,由于这种外粉在我公司首次用于烧结,在没有使用经验的情况下,最初的入烧比例却达到了20%左右,导致水份、配碳、料层厚度等烧结参数均调整不及时、不到位,造成烧结状况逐步恶化,烧结断面结构疏松,大部分为原生矿物表3 入烧结构变化对比表(%)时 间 外粉比例增加前 外粉比例增加后调整后 半自熔 16.05 11.20 9.68 外粉 22.05 18.18 23.25外蒙粉 11.66 0 8.63(扬迪)返矿 19.35 21.05 18.43混匀料 13.42 14.24 15.11FMG粉 0 20.38 9.12钙灰 9.70 6.73 7.91镁灰 3.41 3.53 3.24燃料 4.36 4.69 4.63 3.2 工艺操作的影响 3.2.1 料层控制不当从2008年10月中旬起西铁区烧结生产在公司限产保价的措施下实施2#机单机生产,由于2#机烧结进风管路和点火器内壁磨损严重、烧嘴变形,制约着料层厚度的提高,料层厚度一直控制在600mm。外粉比例增加后,随着骨架料的大幅度增加,料层透气性过好,更加突出了烧结蓄热能力不足的问题。对此,采取增加料层厚度至680 mm,同时采取压料与松料相结合,有针对性地降低料层透气性、且适当降低机速延长烧结时间的方法,有效保证了烧结温度,促进液相生成量。3.2.2 燃料粒度组成的影响在烧结过程中,固体燃料<3mm的粒度合格率、粒度组成对烧结矿转鼓强度都有较大影响。燃料粒度过大或过小都不利于烧结过程的进行,燃料粒度应与混合料中铁料粒度相适宜。在大比例增配外粉、降低精粉率后,混合料粒度变粗,同时外粉中大比例的FMG粉在低温条件下液相流动性较差,在烧结过程中需要较高的温度,而在原有燃料粒度合格率﹥75%的条件下,产生高温的时间较短,不能提供物料熔融所需的热量,因此使成品率和烧结矿转鼓强度下降。通过分析采取适当放宽燃料粒度,燃料的合格率由75%以上下调到65—70%;另外勤检查四辊辊皮磨损情况,合理控制﹥3mm 和﹤0.5mm的燃料量, 每天测一至两次粒度,发现不合格时及时督促整改。燃料粒度均匀,保证燃料沿料层高度均匀分布,改善料层中气流分布;燃料粒度适当放宽,有利于加快垂直烧结速度。3.3 碱度的影响10月下旬,由于入炉酸料减少,要求烧结矿R2由2.15倍下调至2.0倍,钙灰配加量从9.5%下降到5.7%,烧结料料温随之下降了近20℃,同时影响混合料成球;另一方面,碱度的降低不利于强度和还原性均最好的铁酸钙矿物相的生成,直接造成烧结矿强度降低。为了保证烧结矿质量,根据不同阶段的入烧结构,将碱度逐步由2.0倍调整为2.05——2.10倍。3.4 燃料质量的影响从2008年9月份起,在入烧焦粉中配入了部分库存次质煤粉,圆盘分析显示燃料灰分高达20%,固定碳仅为71%左右,且质量波动较大,造成烧结矿中FeO波动。另外,进入冬季生产后,气温较低造成燃料下料不畅,粘仓时有发生,下料量不准。针对这一影响因素,停配劣质煤粉,进行全焦粉烧结,同时加强工艺巡点检,增加入烧燃料的分析频次,及时发现并处理因燃料问题造成的燃料质量波动,保证其配加量的准确性。3.5 添加剂的影响在低成本要求下,2008年10月11日停配烧结添加剂,烧结状况表现出:垂直烧结速度降低,烧结终点滞后,烧结总管废气温度降低3-5℃,负压升高0.2-0.4Kpa,固体燃料比升高0.32%,转鼓强度降低约0.2%。结 语影响烧结矿转鼓强度的因素是很多的,不同情况下不同的因素所发挥的作用不同。2008年10月份宣钢西铁区烧结矿转鼓强度变化的主要原因有:高比例使用烧结性能较差的外粉、烧结矿碱度的降低、工艺操作调整不到位、燃料质量波动等。通过采取合理优化原料结构,改进入烧原料和燃料粒级,提高烧结料层、严格控制烧结矿的亚铁等操作上的改进,烧结矿转鼓强度逐步稳定在79%以上。参考文献 孙丽明等.不同焦粉粒度对烧结过程影响的探讨.烧结球团.2000,25(2):20第三篇:影响速冻水饺冻裂因素分析及改进措施影响速冻水饺冻裂因素分析及改进措施随着人们的生活方式亦发生变化。近年来,速冻水饺行业作为“朝阳行业”得到很快的发展,但是一些企业还存在着水饺冻裂率高,生产成本难以控制等因素,制约了行业的发展。本文就影响速冻水饺冻裂率的因素进行分析,并根据水饺裂口形状对生产工艺可能存在的缺陷作一简单分析,希望能能够起到抛砖引玉的作用,并和业内人士共同探讨。造成速冻水饺冻裂的原因主要是以下两点:1.我们都知道,水在0℃以下结冰,体积膨胀9%左右,在这个过程中,会对周围束缚它的水饺皮产生一个巨大的压力,当水饺皮不能够承受如此巨大的压力时,将会产生破裂;2.水饺皮内的水分流失也会造成表面干裂。因此,要想控制速冻水饺的冻裂问题,关键是要控制水饺中的水分: 1.如果将水饺中的水分以细小颗粒状态均匀分布在面皮中,单位体积水分结冰体积膨胀较小,对水饺皮表面造成的压力也较小;2.如果水饺皮表面的水分在冻结和物流过程中不流失或者流失较少,就可以避免由于表面水分流失所造成的表面干裂;根据以上原因,并通过大量实验总结,得出影响产品冻裂率的几个因素: 1.面粉的选择。作为速冻水饺专用的面粉,应该具备以下几个特点:1)灰分低。灰分主要是面粉加工精度的反映,其主要构成成分是纤维素,在和面过程中,纤维素在面筋网络中形成节点,破坏了面筋网络的强度;并且由于纤维素吸水较快且较多,在面筋网络中形成水分聚集点,导致水饺冻结过程中破裂率提高。2)蛋白质质量好。一些厂家片面追求面筋数量而忽视了蛋白质质量的优劣也是影响水饺冻裂率的一个因素。蛋白质形成面筋后,应该具有一定的延伸性和弹性,只有这样才可以在水饺冻结过程中减轻由于水分结冰体积膨胀造成的对表皮的压力。2.添加剂的选择。没有添加剂就没有现代食品工业,因此正确认识和选择合适的添加剂对降低水饺冻裂率也有一定的帮助。应用在速冻水饺中的添加剂必须具备以下特点:1)能够完善面筋网络形成:面筋网络完善有利于增强水饺皮自身的强度,抵抗由于水分结冰体积膨胀所造成的压力;2)提高面皮保水性:利用保水性较好的添加剂可以降低表面水分在加工、物流过程中的水分散失,避免由于表面水分流失所造成的表面干裂; 3)较好的亲水性:较好的亲水性可以使面皮中的水分以细小颗粒状态均匀分布在面皮中,降低水分在冻结时对面皮的压力; 3.加工工艺的确定。完善的加工工艺有助于改善速冻水饺的冻裂状况。1)和面加水量:过多的水分虽然有利于面筋网络形成,但是容易造成水分聚集,不利于冻结过程中冻裂率的降低;加水量少则会使面皮表面较干,不利于水饺皮内水分的保持。2)和面时间:若和面时间短,面筋网络形成不完善,水分吸收不均匀、不充分,则无法抵抗由于结冰时体积膨胀所造成的压力;和面时间过长,则已经形成的面筋网络又被机械破坏,降低面皮强度。3)水饺馅的选择:水饺馅的品种也会对冻裂率造成一定的影响。因为脂肪在冻结时体积缩小,脂肪含量较高的品种冻裂率相对较低;蔬菜中水分含量较高并且难于彻底脱去,因此蔬菜馅水饺冻裂率相对会较高。4)冷冻温度的选择:隧道前段冷冻温度过低会造成水饺进入后温差太大而导致表面迅速冻结变硬,内部冻结时体积变化表皮不能提供更多的退让空间而出现裂纹。5)风速、风量、风向的确定:风速、风量过大,会使水饺皮表面的水分干燥升华,使表皮破裂;过小,则不能提供速冻所需要的冷量,不利于控制水饺中冰结晶的生成和成长。风向不合理,可能导致在隧道中某个局部或水饺某个部位出现较多冻裂。4.包装形式的选择:带托盘包装的水饺中,托盘和水饺接触处有一空间,在速冻过程中,该空间内部空气流通较慢,热交换较少,导致该处冻结速率较慢,影响了水饺的冻结。5.其他原因:如水饺制皮机表面粗糙,对水饺皮表面有较大破坏;馅中含水量过大;皮馅比不合理等原因也会对水饺的冻裂率有一定影响。如何根据水饺皮的裂口形状来判断生产过程中工艺缺陷:水饺皮裂口大致有以下几种形状,根据裂口形状分析工艺缺陷有助于生产厂家控制产品质量,降低生产成本。1.大裂口:可能是由于水饺馅中含水量较高或者初始冷冻温度过低造成的; 2.小裂纹:水饺表皮含水量过低或隧道中风速、风量不合理; 3.底部裂口:可能是冻结过程中,盛放水饺的托盘底部有水造成的; 4.单侧裂口:可能是隧道中单侧风量过大造成的;5.隧道中某特定位置裂口较多:可能是该位置风道设计不合理而造成的。通过以上分析,生产厂家可以根据裂口状况调整生产工艺,有效降低生产成本。也希望本文观点可以给生产厂家带来启发,为速冻食品行业发展尽自己微薄之力。第四篇:室内空气品质的影响因素及改进措施室内空气品质的影响因素及改进措施摘要:介绍了空气品质的概念,分析 了室内空气品质的 影响 因素及提高室内空气品质的国内外 研究近况;阐述了作者对我国室内空气品质 问题 的看法。关键词:室内空气品质 通风 病态建筑综合症 空气污染 1前言近二十年来,生活在 现代 建筑物内的人们呈现出某些较为严重的病态反应,这一问题引起了专家学者的广泛关注。于是,病态建筑(Sick Building和病态建筑综合症(SBS, Sick Building Syndrome的概念出现了。同时,也出现许多空调综合症(如眼睛发红、流鼻涕、嗓子疼、头痛、发困等)。从而使人们的身心健康受到了很大的影响,降低了工作效率,病休及医疗费用上升等问题也随之出现了。因此,室内空气品质(IAQ)间题已成为当前建筑环境领域新的研究热点。本文讨论影响室内空气品质的主要因素及改进措施。2空气品质的概念最初关于室内空气品质定义是指一系列污染物的浓度指标。然而,随着研究的不断深人,发现这种定义已不能完全涵盖室内空气品质的 内容。在89室内空气品质讨论会上,丹麦哥本哈根大学P.O.Fanger教授提出:所谓品质就是反映满足人们要求的程度,如人们满意,就是高品质;不满意就是低品质。英国的CIBSE(Charted Instituteof Building Services Engineers)认为:如果室内少于50%的人能够觉察到任何气味,少于20%的人感觉不舒服,少于10%的人感觉豁膜刺激,并且少于5%的人在不足2%的时间内感到烦躁,那么此时的室内空气品质是可以接受的。这两者的共同点就是将室内空气品质完全变成了人们的主观感受。在ASHRAE标准62一1989R中,提出可接受的室内空气品质(acceptable indoor air quality)和感受到可接受室内空气品质(acceptable perceived in-door air gualitg)的概念。可接受的室内空气品质定义为:空调房中的绝大多数人对空气没有表示不满意,并且空气中没有已知的污染物达到了可能对人体健康产生严重威胁浓度。感受到可接受室内空气品质定义为:空调房中的绝大多数人没有因为气味或刺激性而表示不满,它是可接受的室内空气品质的必要条件,不是充分条件。有些气体如co,氛等,对人体的危害非常大,但无刺激,故仅仅用感受到可接受室内空气品质是不够的。3室内空气品质问题的起因引起室内空气品质问题的原因一般有两类:一是暖通空调(HVAC)系统设计或运行不当;二是各类污染源产生的污染物的作用。第一类原因一般包括:①通风和气流组织问题,如新风不足,室内气流组织不好等;②热舒适间题,当室内未达到希望的温湿度时,人们就会对室内空气品质抱怨。第二类原因包括:①室外大气的恶化(由新风人口或门窗等进人的污染物);②交叉污染,由于设计时各房间的压力分布不当而导致地下停车场、打印室、吸烟区、餐厅等散发的污染物流人建筑的其它区域;③室内污染,如室内办公设备、家具、装演、人员等产生的污染物;④微生物污染,常由空调凝水或漏水造成的。室内空气品质问题可分为主观和客观两个方面:室内的各种物理参数,如温湿度、气体污染物的浓度等客观因素对室内空气品质产生影响(尽管人们还没有完全明白其是如何产生影响及究竟产生多大影响);同时,人们的心理状态、对外界的反应敏感程度、性别等主观因素差异也会造成对室内空气品质的不同反应。3影响室内空气品质的因素3.1建筑因素3.1.1室内污染源普遍认为室内污染源主要来源于以下4个方面:①建筑围护结构及其表层材料;②室内环境状况;③室内人员数量及其活动情况;④暖通设备及系统。对于建筑结构表层材料中有害物质的散发机理、散发 规律、定量 计算 及抑制和测量 方法 已有一些研究成果,但不是很完善。随着研究的进一步深人将有利于控制室内的空气污染。3.1.2室外环境的影响室外环境与室内是有联系的,室外的污染必定影响室内。室外在没有 工业 污染的条件下主要受 交通 车辆散发的VOC气体影响。研究表明,无论室内还是室外,总是离地面越高VOC的含量越低。一般认为建筑物的一层受到室外的影响较大。同时发现室内的一系列污染源所造成的VOC总是高于室外,如巴西里约热内卢的室内平均VOC浓度为304.3一1679.9 mg/m3,而室外则为22一643·2 mg/m3。3.2非建筑因素3.2.1新风问题由于设计或运行不当引起的新风问题包括新风量及新风清洁度两个方面。新风量是空调设计中有关室内空气品质考虑最多的一个问题,在空调 发展 不同阶段,相应的通风标准也不同。传统的观念认为,新风是为了清除人所产生的生物污染,所以房间的最小新风量的确定仅由每人的最小新风量指标确定。然而,随着 科技 的发展,发现现代建筑中的装演材料、家具、某些办公用品及通风空调系统本身就是污染源,并且其气味远远超过人所产生的。因此,在ASHRAE标准62一1989R中,认为用以确定新风量的污染物来自人员和室内气体污染源两个方面,所以房间的最小新风量应由每人最小新风指标和每平方面积所需最小新风指标一起确定。另外,在空调运行中,随着室内负荷及换气效率的变化,为了减少能耗,室内的送风量也会发生相应的变化,但为了满足人们的舒适健康而确定的新风量不应该发生太大的变化。ASHRAE标准62一1989R中有关变风量控制的内容明确指出,在整个变风量运行中,新风量要始终保持在设计新风量的90%以上。新风清洁程度近来也受到人们的关注。这主要源于室外环境的逐步恶化,空气污染严重,新风质量下降。因此有关新风处理的讨论也不断出现,新风三级过滤设想也就应运而生。所谓新风三级过滤就是将传统新风机组中只含粗效过滤器的状况,变为除含粗效过滤器外,还含有中效甚至高效过滤器的设计模式。这种设计最大的优点是极大降低由新风带人室内的尘菌浓度,同时在一定程度上延长系统部件的寿命。不过室内空气品质除涉及到室外污染物外,更多的是受室内的微生物污染和气态污染的影响。因此,新风三级过滤对室内空气品质问题解决的作用到底有多大,新风过滤器是否应考虑其它室外污染物的过滤问题,有待进一步研究。3.2.2污染物的 影响 非建筑因素的污染物来源也较多,包括了固体颗粒、微生物和有害气体。因一般微生物多依附于固体颗粒或液体传播,所以把污染物分为颗粒污染物和有害气体污染物。颗粒污染物依据其颗粒大小,分别会感染人体呼吸道和肺部。气态污染物的种类更多,除CO,C02,NH3和氧等人们熟知的外,还有有机化合物(挥发性)。一般认为这些污染物对人体的呼吸系统、心血管系统及神经系统有较大的影响,甚至致癌。不过调查显示,即使人们抱怨很频繁,但在大多数情况下并没有某种污染物单独超标。这一结果的最好解释是由于多种而不是单一污染物的影响而导致对室内空气品质的抱怨,同时也使人们对现有污染物浓度指标的 科学 性和全面性提出怀疑。4改善室内空气品质的措施概括起来有以下三个方面:一是建筑设计与施工特别是表层材料的选用如何完善,二是保证足够的新风量和加强新风与回风的过滤,三是切实保证空调系统的正确设计和严格的运行管理与维护。4.1国外已提出一些规定细则要求在房屋建造和取材时必须选用坚固耐久而不散发有害物质的材料,不得采用热带木材,围护结构和材料必须防水隔潮。对通风空调提出如下规定:(1)建筑必须很好保温,并保证良好的气密性;(2)设计时必须考虑南向开窗以获得能量;(3)避免冷表面,不渗风;(4)尽可能在北向取人新风;(5)外部污染决定新风入口位臵;(6)适当的换气量和回风量,空气直送到人;(7)应有再分配人室内的可能性,特别是夜间送到卧室;(8)必须避免在风道中滋生微生物并且有清扫的可能;(9)使用户易于明了如何实现和保持清洁通风。此外也有一些专家提出健康建筑应该达到的目标为:(1)最小的悬浮微粒和生物污染;(2)控制室内相对湿度水平;(3)最小的渗风量;(4)减少VOC的挥发;(5)提高能量利用效率和资源利用效率;(6)为居住者提供对通风的控制。这些规定是相当严格的,要达到就要求各项技术具有高水平和各项工程质量严格把关。4.2关于新风量在许多有关室内空气品质调查结论都提到新风量供应不足。有的在空调系统的改造中加大了新风量,这 自然 有利于改善室内空气品质。前面已经提到在ASHRAE新标准中新风量要求按人体和稀释室内污染所需来确定。问题 是新风往往受到空调系统污染而质量变坏,在这种情况下,即使增大新风量也难以改变室内空气品质。另外,由于送入的空气中混有相当比例的回风,而一般过滤器难以清除回风中所含有的低浓度VOC气体和细菌等,从这一角度看,减少回风和加大新风量甚至采用全新风系统,有利于改善室内空气品质。5几点看法综上所述,国外对室内空气品质问题是十分重视和十分认真对待的。下面结合国内的一些情况谈谈自己的看法:(1)我国对室内空气品质的 研究 刚刚起步,有的同行已经发表一些成果,开展了一些活动,取得了一定的成绩,但总体上来说关注和宣传程度是不够的。(2)建筑和暖通人员需要转变观念,建立新意识,在设计一开始就要慎重选材,考虑建筑因素污染,建立卫生空调观点,改变对空气的单一热湿处理,加人生物化学处理,积极开发新技术和新产品。在设计中考虑送风实效,采用缩短送风凤管和通风效率高、新风接近人的气流组织形式。(3)最好是组织人力进行现场实测,监测空调系统对空气的污染状况,监测室内建筑材料和器具设备放散的有害物质及其对室内空气的污染。要争取有关专业的配合,还要争取环保部门、卫生保健部门的支持。(4)建议对暖通空调设计规范中的有关章节进行必要修改、增删。(5)空调系统的运行维护管理非常重要,系统内部必须定期清理,避免污染送风气流。对此应制定严格管理和运行法规,并严格执行。参考 文献 1沈晋明,等.室内空气品质的新定义与新风直接人室的实验测试暖通空调,1995,(6).2沈晋明,室内污染物与空气品质评价.通风除尘.1995,(4).3李先庭,等.室内空气品质研究与进展.暖通空调.2000,(3).4 BescomB.Indoor air quality in school.5 Beary David W.Indoor airquality and HVAC system.Liewis pub.1993.6赵荣义.关于热“舒适”的讨论.暖通空调.2000,(3).7马仁民.国外非 工业 建筑室内空气品质研究动态.暖通空调.1999,(2).8第五篇

烧结矿强度和粒级组成影响因素分析2008年全国炼铁技术交流会论文集烧结矿强度和粒级组成影响因素分析刘福泉 王树立 顾爱军(宣钢炼铁厂)摘 要:本文结合宣钢炼铁厂及相关单位的研究成果,综合分析了影响烧结矿强度和粒度组成的因素和对策。关键词:烧结矿 强度 粒度组成1 前言烧结矿强度及粒级组成是烧结矿质量的重要内容,没有合格的强度和适宜的粒级组成,就很难谈得上烧结矿的质量,烧结矿强度及粒级组成对高炉冶炼有着明显的影响,根据日本、前苏联、首钢、本钢的生产统计,烧结矿-5mm粒级每增加1%,将影响高炉焦比0.5%,影响高炉产量0.5-1.0%。 根据一些专家研究成果表明,烧结矿强度及粒级组成的影响因素是多方面的和复杂的,既有碱度和矿物组成,SiO、MgO和AlO等化学成分方面的影响,又有配碳量和FeO含量,热返矿粒度和返223矿量、熔剂和燃料粒度、配矿及反应性的影响,还有料层厚度、抽风负压和冷却速度等工艺操作参数方面的影响。2 宣钢炼铁厂烧结矿强度及粒级组成与同类型企业比较表1烧结矿粒级组成 %碱度 2厂家 烧结机面积m FeO% 强度% 倍 +40 40-25 25-16 16-10 10-5 -5柳钢 50 1.70 6.03 20.85 27.51 39.41 12.21 69.5湘钢 50 2.0 6.70 4.46 14.24 17.96 28.63 28.56 6.07三明 24×5 8.5 10.72 15.19 4 8.17 22.47 3.45 67.61唐钢 60×3 5.6 20.3 56.30 13.70 4.1 78.30济钢 36×2 8.03 24.62 52.53 10.34 4.66 85.81 太钢一烧 90 9.54 27.69 28.92 18.61 13.01 12.51 4.06 69.87 太钢二烧 90 9.39 22.50 18.81 11.64 14.47 25.00 9.33 73.058台累 1.90 7.48 13.59 21.78 23.09 17.63 17.68 5.21 77.08 武钢烧结厂 入炉粒级 8.69 12.65 50.42 25.81 2.43 首钢二烧 78 1.91 9.12 13.36 21.70 38.23 23.29 3.42 87.37 宣钢一烧 86×2 2.30 9.32 7.98 17.95 28.51 28.68 13.13 3.75 78.60 宣钢二烧 64×2 2.30 9.28 6.53 15.97 27.15 30.93 15.87 3.55 78.20 宣钢三烧 36×4 2.30 7.47 20.71 25.52 22.56 16.81 6.93 80.6 宣钢四烧 36×2 24.09 33.22 20.81 12.48 6.85 2.54 81.2说明由于各烧结厂家测定烧结矿强度、粒级的地点、采样方法不统一,数据可比性不强。从表中数据看出,一烧和二烧CH1(即二烧装车烧结矿)烧结矿粒级相当,优于武钢水平;二烧CH7烧结矿、一、二烧落地矿烧结矿中小粒级含量较大,处于后列;三、四烧由于是步进式烧结机,实际烧结时间长,中小粒级少,颗粒大。3 宣钢炼铁厂烧结矿强度及粒级组成影响因素的对比分析12008年全国炼铁技术交流会论文集3.1碱度和矿物组成对烧结矿强度及粒级组成的影响。碱度和矿物组成是影响烧结矿强度及粒级组成的主要因素,在相同工艺操作条件下,不同的碱度和矿物组成,就有不同的强度及粒级组成。试验结果表明烧结矿强度与其矿物组成直接相关,不同矿物组成的瞬时强度指标列于表2。由表2可知,为了提高烧结矿强度,我们希望得到较多的铁酸钙的矿物相,不希望得到较多的枪晶石和玻璃相的矿物相,由于高碱度烧结矿的矿物相以铁酸钙为主,自熔性烧结矿的矿物相以橄榄石为主,因此高碱度烧结矿明显优于自熔性烧结矿。铁酸钙不仅强度高,而且较铁橄榄石还原性明显优良,因此,烧结矿要坚持生产高碱度的方向不动摇。涞钢和太钢不同碱度烧结矿的矿物组成见表3、4;我厂2005年1-3月一、二烧烧结矿的矿物组成见表5。邯钢不同碱度时烧结矿的粒度组成见表6。2不同矿物组成的瞬时强度指标(Kg/mm) 表2铁酸钙 磁铁矿 赤铁矿 钙铁橄榄石 铁橄榄石 铁酸二钙 枪晶石 玻璃相 CaO.FeO FeO FeO CaO.FeOSiO 2FeSiO 2CaO.FeO 3CaO.2SiO.CaF SiO结晶 233423 2。22322237.0 36.9 26.7 23.3 20.26 14.2 7.77 5.18涞钢不同碱度烧结矿的矿物组成 表3CaO.Fe2O3 CaO/ SiO2 Fe3O4 Fe2O3 2CaO. SiO2 玻璃相 未矿化熔剂 (SFCA)1.35 10-12 50-55 7-10 3 20-25 1-21.60 15 50 7-10 6-8 15-17 2-3 1.80 25 45 7-10 6-8 10-12 1-22.10 35 40 5-7 5-7 7-8 3-5太钢不同碱度烧结矿的矿物组成 表4CaO.Fe2O3 2CaO. 。CaO/ SiO2 Fe3O4 Fe2O3 玻璃相 未矿化熔剂 (SFCA) SiO2 1.31 10-15 50-55 7-10 3-5 20 未见 1.78 35-40 30-35 10-15 10 3-5 小于3 1.96 40 25-30 15 10 2-3 3-52.15 45 30 7-10 10-15 1-2 3-52005年1-3月宣钢炼铁厂一、二烧烧结矿的矿物组成测定 表5CaO/ CaO.Fe2O3 2CaO. 。 Fe3O4 Fe2O3 玻璃相 未矿化熔剂 SiO2 (SFCA) SiO2一烧 2.30 22 55 9 6 8 未见2.10 21 56 7 7 9 未见 二烧 2.10 19 56 8 7 10 未见22008年全国炼铁技术交流会论文集邯钢不同碱度时烧结矿的粒度组成 表6碱度 +20 20-10 10-5 -5 -10合计1.65 36.90 32.40 26.70 3.90 30.601.69 39.60 20.80 32.90 6.70 39.601.72 36.00 32.70 27.60 3.70 31.301.75 49.80 26.80 19.00 5.80 24.801.79 40.54 24.80 27.90 5.90 33.801.80 32.20 37.10 27.10 3.70 30.801.83 38.40 32.40 25.30 3.90 29.201.85 36.37 36.10 23.40 4.20 27.601.87 40.80 32.90 23.00 3.30 26.301.88 37.60 38.00 20.80 3.60 24.401.90 39.90 35.30 22.30 2.50 24.801.95 33.00 29.70 27.80 3.50 31.30北科大的研究结论:碱度和矿物组成是影响烧结矿强度及粒级组成的基本因素。宣钢炼铁厂烧结矿属高碱度烧结矿,但仍属于高温型烧结矿,一、二烧烧结矿矿物组成中与太钢比铁酸钙含量低15,20%,玻璃相高5-6%,硅酸二钙达到7%左右,铁酸钙含量有待进一步提高。 3.2 FeO和配碳的影响烧结矿FeO含量与混合料配碳直接相关,配碳高者,属高温型烧结,含FeO高。对自熔性烧结矿而言,它的矿物组成主要是磁铁矿、铁橄榄石和钙铁橄榄石,FeO呈固熔状态存在,烧结矿的强度随FeO增加而升高,成品矿强度及粒级组成得到改善,但还原性和软熔性能明显变差。对高碱度烧结矿而言,它的主要矿物为赤铁矿和铁酸钙,铁酸钙中的铁主要以Fe2O3形式存在,FeO含量仅占1%,因此强度和FeO不直接相关,一般随FeO升高(配C增加)造成Fe2O3分解,使矿物Fe3O4增加,铁酸钙含量降低,从而成品矿的强度下降,同时高温型烧结得到的往往不是针状铁酸钙,而是柱壮甚至块状铁酸钙,这种成品矿在冷却过程中会出现大量裂纹,造成粒度碎化和还原强度降低。配碳高,FeO含量升高,会造成高碱度烧结矿强度低和粒度细化。宣钢炼铁厂烧结矿属于高碱度、中钛、高镁、高温型烧结矿,烧结矿强度和粒度组成相当程度上依赖于FeO含量和液相数量,同时由于熔剂当中钙灰等总体粒度偏粗,影响烧结矿矿化和液相质量的改善,影响烧结矿强度和粒级水平。目前条件下,应继续保持FeO在,,,,,控制水平。同时应进一步采取措施改善熔剂质量,创造条件降低FeO含量。3.3 SiO2含量的影响SiO2是烧结过程形成粘结相的主要元素,其含量高低对烧结矿强度和性能有举足轻重的影响。烧结矿SiO2含量在8%以上,由于正硅酸钙在冷却过程中相变,体积膨胀,会造成严重自然粉化,降低烧结矿强度。烧结矿SiO2含量在5%以下,一些厂家烧结矿强度降低。低SiO2条件下获得高强度烧结矿技术是目前各厂家研究的课题之一。济钢SiO2、FeO与转鼓指数的变化见表7。我厂一32008年全国炼铁技术交流会论文集烧2003年低硅烧结试验显示烧结矿SiO2降低至4.6%时,强度也有所降低(见表8)。济钢SiO、FeO与转鼓指数的变化 表7 2碱度 倍 2.10 1.98 1.91 1.82 1.83TFe % 51.73 53.49 54.28 55.26 56.26SiO% 7.28 6.85 6.20 6.18 5.80 2FeO % 11.66 13.33 7.34 6.54 6.71转鼓 % 85.94 87.17 86.52 85.39 83.80宣钢炼铁厂一烧2003年低硅烧结试验相关指标 表8烧结系数 品位 碱度 含粉 转鼓强度 FeO SiO2 项目 (t/m2.h) (%) (倍) 率(%) (%) (%) (%) 基准期 1.53 55.56 2.0 4.97 75.03 8.91 5.31 第一阶段 1.55 56.57 2.01 4.42 74.8 9.01 4.96 第二阶段 1.59 57.08 2.00 4.43 75.65 8.85 4.89 第三阶段 1.57 57.67 2.03 4.21 75.97 9.27 4.61 第四阶段 1.52 57.36 2.00 4.57 73.87 9.10 4.65 3.4MgO和Al2O3的影响MgO和Al2O3是影响烧结矿强度和粒度组成的重要因素,MgO有利于改善烧结矿的热稳定性,提高烧结矿的还原强度,在高炉内一定的MgO含量有利于改善炉渣流动性和提高脱硫能力。但由于MgO熔点高达2799?,在烧结过程中,部分固熔于磁铁矿形成镁磁铁矿,MgO含量高后,会降低烧结矿中铁酸钙含量,从而不利于烧结矿的冷强度,提高MgO含量会降低烧结矿冷强度。Al2O3是烧结矿化学成分不可缺少的成分,因为一定的铝硅比(Al2O3/ SiO2)=0.1-0.4是烧结过程形成铁酸钙的必要条件。因此烧结矿成分不能没有Al2O3,但含量高了有害无益。Al2O3熔点为2042?,在烧结过程中除了生成复合铁酸盐外,不能单独熔化,烧结矿的合理含量应低于1.8%,高了会降低烧结矿的冷强度,还会恶化烧结矿的低温还原粉化指数。我厂一、二烧烧结矿MgO控制在2.8-3.0%较国内厂家(一般在,,,,)处于较高水平,造成燃耗偏高,对烧结矿强度有一定影响。3.5料层厚度的影响低C、厚料层、低FeO高还原性是烧结工艺追求的方向,而厚料层是基础。八钢不同料层高度时烧结矿的粒度组成变化见表9。八钢不同料层高度时烧结矿的粒度组成 表9料层高度mm +40 40-25 25-16 16-10 10-5 平均粒级430 12.45 14.05 17.25 23.02 33.23 19.81480 14.56 12.25 20.66 21.91 30.61 20.64580 16.80 11.96 23.73 20.30 27.20 21.8342008年全国炼铁技术交流会论文集目前宣钢炼铁厂一烧料层控制最高料层,600mm,二烧料层一般控制在600-650mm,不能长时间保持700 mm料层烧结。3.6热返矿粒度和返矿量的影响热返矿粒度和返矿量增大后,引起混合料水分波动和成球率下降,从而烧结矿强度下降,粒度变小。宣钢炼铁热返矿粒度和返矿量目前也是造成烧结区烧结矿FeO、强度粒级波动、产量波动的重要因素之一,车间应继续高度重视冷、热筛筛板的管理,控制好更换周期,控制适宜热返矿粒度和返矿量。3.7熔剂、燃料粒度影响熔剂和燃料粒度过粗,会造成其在混合料中分布不均匀。造成强度和结块不均匀,熔剂粒度-3mm应达到90%。否则造成烧结矿白点,冷却过程中吸水,造成自然粉化。目前,宣钢炼铁按熔剂粒度-3mm达到,,%,钙灰粒度-5mm达到87%考核,熔剂粒度较粗,白点较严重,影响强度、粒级及成分指标。故应继续加强对钙、镁灰粒级及质量的考核,以改善生石灰粒级。燃料粒度过粗,布料偏析加重,且造成燃烧带过宽,阻力增大,产量下降;燃料粒度过细会造成燃烧速度过快,燃烧带高温停留时间短,降低烧结矿强度和成品率。宣钢炼铁厂相关单位应做好燃料破碎,控制适宜燃料粒度,减少过粉碎。酒钢混合料粒级及燃料偏析 表10位置 -3mm 3-5 mm 5-8 mm 8-10 mm +10 mm C固 %上层 13.44 5.51 48.02 30.40 2.64 4.08中层 10.53 4.26 42.11 39.85 3.26 3.30下层 5.25 2.78 40.74 48.15 3.09 1.873.8配矿和反应性的影响据相关研究表明,铁矿粉的同化性是粉矿造块赖以形成的基础,没有铁矿粉与CaO的同化,就不可能产生液相,矿粉也就不可能成块。烧结配矿时,要充分考虑矿粉的同化性能,使烧结过程具有适当的热水平。如果配矿不恰当,就可能造成烧结过程对某种铁矿粉温度显得偏高,使其过分同化,液相变得稀薄,形成薄壁大孔结构,而另一种铁矿粉温度显得偏低,尚不能同化,难以形成液相,以上两种情况均会造成烧结矿强度明显降低,影响产质量指标。目前我公司尚未有矿物同化性、反应性试验和资料。3.9总管负压和冷却速度的影响总管负压和冷却速度是烧结过程状态参数,总管负压过高和冷却速度过快会影响烧结矿强度和粒级水平。宣钢炼铁一、二烧总管负压和冷却速度主要受原料结构及烧结透气性的影响,是相对稳定的。一、二烧在组织提高环冷机冷却效果攻关过程中,应充分考虑烧结矿冷却速度提高对烧结矿质量的影响。4 改善宣钢炼铁烧结矿强度和粒级组成的几点看法52008年全国炼铁技术交流会论文集,)相关生产单位应将进一步烧结矿强度和粒级指标作为首控质量指标加以控制。,)一定的原料结构、一定的工艺条件、一定的操作控制水平,对应相对稳定的烧结矿强度和粒级组成。车间在生产组织中应重点加强热返矿数量及粒级控制,加强混合料混匀制粒控制,加强漏风治理,提高烧结料层;控制好烧结终点,杜绝机尾出现生料;控制好燃料和熔剂适宜粒级;保持FeO稳定。3)进一步摸索我厂原料条件下,烧结矿适宜的SiO、碱度、MgO、AlO水平。 2236¥5.9百度文库VIP限时优惠现在开通,立享6亿+VIP内容立即获取烧结矿强度和粒级组成影响因素分析烧结矿强度和粒级组成影响因素分析2008年全国炼铁技术交流会论文集烧结矿强度和粒级组成影响因素分析刘福泉 王树立 顾爱军(宣钢炼铁厂)摘 要:本文结合宣钢炼铁厂及相关单位的研究成果,综合分析了影响烧结矿强度和粒度组成的因素和对策。关键词:烧结矿 强度 粒度组成1 前言第 1 页烧结矿强度及粒级组成是烧结矿质量的重要内容,没有合格的强度和适宜的粒级组成,就很难谈得上烧结矿的质量,烧结矿强度及粒级组成对高炉冶炼有着明显的影响,根据日本、前苏联、首钢、本钢的生产统计,烧结矿-5mm粒级每增加1%,将影响高炉焦比0.5%,影响高炉产量0.5-1.0%。 根据一些专家研究成果表明,烧结矿强度及粒级组成的影响因素是多方面的和复杂的,既有碱度和矿物组成,SiO、MgO和AlO等化学成分方面的影响,又有配碳量和FeO含量,热返矿粒度和返223矿量、熔剂和燃料粒度、配矿及反应性的影响,还有料层厚度、抽风负压和冷却速度等工艺操作参数方面的影响

  • 索引序列
  • 氧化镧对钨烧结影响研究论文
  • 氢氧化铜对乙醇的影响研究论文
  • 钛合金氧化对组织的影响研究论文
  • 研究食品胶对烧饼的影响论文
  • 对烧结矿最终烧结性能的研究论文
  • 返回顶部