首页 > 学术发表知识库 > 本科生目标检测算法研究论文

本科生目标检测算法研究论文

发布时间:

本科生目标检测算法研究论文

论文名称:Rich feature hierarchies for accurate object detection and semantic segmentation 提出时间:2014年 论文地址: 针对问题: 从Alexnet提出后,作者等人思考如何利用卷积网络来完成检测任务,即输入一张图,实现图上目标的定位(目标在哪)和分类(目标是什么)两个目标,并最终完成了RCNN网络模型。 创新点: RCNN提出时,检测网络的执行思路还是脱胎于分类网络。也就是深度学习部分仅完成输入图像块的分类工作。那么对检测任务来说如何完成目标的定位呢,作者采用的是Selective Search候选区域提取算法,来获得当前输入图上可能包含目标的不同图像块,再将图像块裁剪到固定的尺寸输入CNN网络来进行当前图像块类别的判断。 参考博客: 。 论文题目:OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks 提出时间:2014年 论文地址: 针对问题: 该论文讨论了,CNN提取到的特征能够同时用于定位和分类两个任务。也就是在CNN提取到特征以后,在网络后端组织两组卷积或全连接层,一组用于实现定位,输出当前图像上目标的最小外接矩形框坐标,一组用于分类,输出当前图像上目标的类别信息。也是以此为起点,检测网络出现基础主干网络(backbone)+分类头或回归头(定位头)的网络设计模式雏形。 创新点: 在这篇论文中还有两个比较有意思的点,一是作者认为全连接层其实质实现的操作和1x1的卷积是类似的,而且用1x1的卷积核还可以避免FC对输入特征尺寸的限制,那用1x1卷积来替换FC层,是否可行呢?作者在测试时通过将全连接层替换为1x1卷积核证明是可行的;二是提出了offset max-pooling,也就是对池化层输入特征不能整除的情况,通过进行滑动池化并将不同的池化层传递给后续网络层来提高效果。另外作者在论文里提到他的用法是先基于主干网络+分类头训练,然后切换分类头为回归头,再训练回归头的参数,最终完成整个网络的训练。图像的输入作者采用的是直接在输入图上利用卷积核划窗。然后在指定的每个网络层上回归目标的尺度和空间位置。 参考博客: 论文题目:Scalable Object Detection using Deep Neural Networks 提出时间:2014年 论文地址: 针对问题: 既然CNN网络提取的特征可以直接用于检测任务(定位+分类),作者就尝试将目标框(可能包含目标的最小外包矩形框)提取任务放到CNN中进行。也就是直接通过网络完成输入图像上目标的定位工作。 创新点: 本文作者通过将物体检测问题定义为输出多个bounding box的回归问题. 同时每个bounding box会输出关于是否包含目标物体的置信度, 使得模型更加紧凑和高效。先通过聚类获得图像中可能有目标的位置聚类中心,(800个anchor box)然后学习预测不考虑目标类别的二分类网络,背景or前景。用到了多尺度下的检测。 参考博客: 论文题目:DeepBox: Learning Objectness with Convolutional Networks 提出时间:2015年ICCV 论文地址: 主要针对的问题: 本文完成的工作与第三篇类似,都是对目标框提取算法的优化方案,区别是本文首先采用自底而上的方案来提取图像上的疑似目标框,然后再利用CNN网络提取特征对目标框进行是否为前景区域的排序;而第三篇为直接利用CNN网络来回归图像上可能的目标位置。创新点: 本文作者想通过CNN学习输入图像的特征,从而实现对输入网络目标框是否为真实目标的情况进行计算,量化每个输入框的包含目标的可能性值。 参考博客: 论文题目:AttentionNet: AggregatingWeak Directions for Accurate Object Detection 提出时间:2015年ICCV 论文地址: 主要针对的问题: 对检测网络的实现方案进行思考,之前的执行策略是,先确定输入图像中可能包含目标位置的矩形框,再对每个矩形框进行分类和回归从而确定目标的准确位置,参考RCNN。那么能否直接利用回归的思路从图像的四个角点,逐渐得到目标的最小外接矩形框和类别呢? 创新点: 通过从图像的四个角点,逐步迭代的方式,每次计算一个缩小的方向,并缩小指定的距离来使得逐渐逼近目标。作者还提出了针对多目标情况的处理方式。 参考博客: 论文题目:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition 提出时间:2014年 论文地址: 针对问题: 如RCNN会将输入的目标图像块处理到同一尺寸再输入进CNN网络,在处理过程中就造成了图像块信息的损失。在实际的场景中,输入网络的目标尺寸很难统一,而网络最后的全连接层又要求输入的特征信息为统一维度的向量。作者就尝试进行不同尺寸CNN网络提取到的特征维度进行统一。创新点: 作者提出的SPPnet中,通过使用特征金字塔池化来使得最后的卷积层输出结果可以统一到全连接层需要的尺寸,在训练的时候,池化的操作还是通过滑动窗口完成的,池化的核宽高及步长通过当前层的特征图的宽高计算得到。原论文中的特征金字塔池化操作图示如下。 参考博客 : 论文题目:Object detection via a multi-region & semantic segmentation-aware CNN model 提出时间:2015年 论文地址: 针对问题: 既然第三篇论文multibox算法提出了可以用CNN来实现输入图像中待检测目标的定位,本文作者就尝试增加一些训练时的方法技巧来提高CNN网络最终的定位精度。创新点: 作者通过对输入网络的region进行一定的处理(通过数据增强,使得网络利用目标周围的上下文信息得到更精准的目标框)来增加网络对目标回归框的精度。具体的处理方式包括:扩大输入目标的标签包围框、取输入目标的标签中包围框的一部分等并对不同区域分别回归位置,使得网络对目标的边界更加敏感。这种操作丰富了输入目标的多样性,从而提高了回归框的精度。 参考博客 : 论文题目:Fast-RCNN 提出时间:2015年 论文地址: 针对问题: RCNN中的CNN每输入一个图像块就要执行一次前向计算,这显然是非常耗时的,那么如何优化这部分呢? 创新点: 作者参考了SPPNet(第六篇论文),在网络中实现了ROIpooling来使得输入的图像块不用裁剪到统一尺寸,从而避免了输入的信息丢失。其次是将整张图输入网络得到特征图,再将原图上用Selective Search算法得到的目标框映射到特征图上,避免了特征的重复提取。 参考博客 : 论文题目:DeepProposal: Hunting Objects by Cascading Deep Convolutional Layers 提出时间:2015年 论文地址: 主要针对的问题: 本文的作者观察到CNN可以提取到很棒的对输入图像进行表征的论文,作者尝试通过实验来对CNN网络不同层所产生的特征的作用和情况进行讨论和解析。 创新点: 作者在不同的激活层上以滑动窗口的方式生成了假设,并表明最终的卷积层可以以较高的查全率找到感兴趣的对象,但是由于特征图的粗糙性,定位性很差。相反,网络的第一层可以更好地定位感兴趣的对象,但召回率降低。 论文题目:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 提出时间:2015年NIPS 论文地址: 主要针对的问题: 由multibox(第三篇)和DeepBox(第四篇)等论文,我们知道,用CNN可以生成目标待检测框,并判定当前框为目标的概率,那能否将该模型整合到目标检测的模型中,从而实现真正输入端为图像,输出为最终检测结果的,全部依赖CNN完成的检测系统呢? 创新点: 将当前输入图目标框提取整合到了检测网络中,依赖一个小的目标框提取网络RPN来替代Selective Search算法,从而实现真正的端到端检测算法。 参考博客 :

之前也是为论文苦恼了半天,网上的范文和能搜到的资料,大都不全面,一般能有个正文就不错了,而且抄袭的东西肯定不行的,关键是没有数据和分析部分,我好不容易搞出来一篇,结果还过不了审。 还好后来找到文方网,直接让专业人士帮忙,效率很高,核心的部分帮我搞定了,也给了很多参考文献资料。哎,专业的事还是要找专业的人来做啊,建议有问题参考下文方网吧 下面是之前文方网王老师发给我的题目,分享给大家: 基于深度学习的无人机地面小目标算法研究 基于视觉的智能汽车面向前方车辆的运动轨迹预测技术研究 模拟射击训练弹着点检测定位技术研究 基于深度卷积神经网络的空中目标识别算法的研究 基于可见光图像的飞行器多目标识别及位置估计 无人驾驶车辆手势指令识别研究与实现 车载毫米波雷达目标检测技术研究 基于多传感融合的四足机器人建图方法 中老年人群跌倒风险评估的数据采集系统 基于深度学习的视觉SLAM闭环检测方法研究 真实图片比较视觉搜索任务的年龄效应及对策研究 室内复杂场景下的视觉SLAM系统构建与研究 基于双目内窥镜的软组织图像三维重建 学习资源画面色彩表征影响学习注意的研究 毫米波雷达与机器视觉双模探测关键技术的研究 语义地图及其关键技术研究 多重影响因素下的语音识别系统研究 基于卷积神经网络的自主空中加油识别测量技术研究 基于视觉语义的深度估计、实例分割与重建 重复视觉危险刺激——本能恐惧反应的“二态型”调控机制研究 低成本视觉下的三维物体识别与位姿估计 面向非规则目标的3D视觉引导抓取方法及系统研究 基于物体识别地理配准的跨视频行人检测定位技术研究 基于结构光的非刚体目标快速三维重建关键技术研究 基于机器视觉的动物交互行为与认知状态分析系统 关于单目视觉实时定位与建图中的优化算法研究 动态场景下无人机SLAM在智慧城市中的关键技术研究 面向视觉SLAM的联合特征匹配和跟踪算法研究 基于深度学习的显著物体检测 基于平面波的三维超声成像方法与灵长类动物脑成像应用研究 基于物体检测和地理匹配的室内融合定位技术研究 基于多模态信息融合的人体动作识别方法研究 基于视觉惯性里程计的SLAM系统研究 基于语义信息的图像/点云配准与三维重建 基于种子点选取的点云分割算法研究 基于深度学习的场景文字检测与识别方法研究 基于运动上下文信息学习的室内视频烟雾预警算法研究 基于深度学习的垃圾分类系统设计与实现 面向手机部件的目标区域检测算法的设计与实现 电路板自动光照检测系统的设计与实现 基于机器视觉的工件识别与定位系统的设计与实现 基于深度学习的物件识别定位系统的设计与实现 基于视觉四旋翼无人机编队系统设计及实现 基于视觉惯导融合的四旋翼自主导航系统设计与实现 面向城市智能汽车的认知地图车道层生成系统 基于深度学习的智能化无人机视觉系统的设计与仿真 基于知识库的视觉问答技术研究 基于深度学习的火灾视频实时智能检测研究 结构化道路车道线检测方法研究 基于机器视觉的带式输送机动态煤量计量研究 基于深度学习的小目标检测算法研究 基于三维激光与视觉信息融合的地点检索算法研究 动态环境下仿人机器人视觉定位与运动规划方法研究 瓷砖铺贴机器人瓷砖空间定位系统研究 城市街景影像中行人车辆检测实现 基于无线信号的身份识别技术研究 基于移动机器人的目标检测方法研究 基于深度学习的机器人三维环境对象感知 基于特征表示的扩展目标跟踪技术研究 基于深度学习的目标检测方法研究 基于深度学习的复杂背景下目标检测与跟踪 动态扩展目标的高精度特征定位跟踪技术研究 掩模缺陷检测仪的图像处理系统设计 复杂场景下相关滤波跟踪算法研究 基于多层级联网络的多光谱图像显著性检测研究 基于深度结构特征表示学习的视觉跟踪研究 基于深度网络的显著目标检测方法研究 基于深度学习的电气设备检测方法研究 复杂交通场景下的视频目标检测 基于多图学习的多模态图像显著性检测算法研究 基于面部视频的非接触式心率检测研究 单幅图像协同显著性检测方法研究 轻量级人脸关键点检测算法研究 基于决策树和最佳特征选择的神经网络钓鱼网站检测研究 基于深度学习的场景文本检测方法研究 RGB-D图像显著及协同显著区域检测算法研究 多模态融合的RGB-D图像显著目标检测研究 基于协同排序模型的RGBT显著性检测研究 基于最小障碍距离的视觉跟踪研究 基于协同图学习的RGB-T图像显著性检测研究 基于图学习与标签传播优化模型的图像协同显著性目标检测 姿态和遮挡鲁棒的人脸关键点检测算法研究 基于多模态和多任务学习的显著目标检测方法研究 基于深度学习的交通场景视觉显著性区域目标检测 基于生物视觉机制的视频显著目标检测算法研究 基于场景结构的视觉显著性计算方法研究 精神分裂症患者初级视觉网络的磁共振研究 基于fMRI与TMS技术研究腹侧视觉通路中结构优势效应的加工 脑机接口游戏神经可塑性研究 基于YOLOV3算法的FL-YOLO多目标检测系统 基于深度与宽度神经网络显著性检测方法研究 基于深度学习的零件识别系统设计与研究 基于对抗神经网络的图像超分辨算法研究 基于深度学习复杂场景下停车管理视觉算法的研究与实现 镍电解状态视觉检测与分析方法研究 跨界训练对提升舞者静态平衡能力的理论与方法研究 施工现场人员类型识别方法的研究与实现 基于深度学习的自然场景文字检测方法研究 基于嵌入式的交通标志识别器的设计 基于视觉感知特性与图像特征的图像质量评价

能不能给我发一份呢?

目标检测科研论文

论文原文:

YOLO(you only look once)是继RCNN、faster-RCNN之后,又一里程碑式的目标检测算法。yolo在保持不错的准确度的情况下,解决了当时基于深度学习的检测中的痛点---速度问题。下图是各目标检测系统的检测性能对比:

如果说faster-RCNN是真正实现了完全基于深度学习的端到端的检测,那么yolo则是更进一步,将 目标区域预测 与 目标类别判断 整合到单个神经网络模型中。各检测算法结构见下图:

每个网格要预测B个bounding box,每个bounding box除了要回归自身的位置之外,还要附带预测一个confidence值。这个confidence代表了所预测的box中含有object的置信度和这个box预测的有多准两重信息,其值是这样计算的:

其中如果有object落在一个grid cell里,第一项取1,否则取0。第二项是预测的bounding box和实际的groundtruth之间的IoU值。

每个bounding box要预测(x, y, w, h)和confidence共5个值,每个网格还要预测一个类别信息,记为C类。即SxS个网格,每个网格除了要预测B个bounding box外,还要预测C个categories。输出就是S x S x (5*B+C)的一个tensor。(注意:class信息是针对每个网格的,即一个网格只预测一组类别而不管里面有多少个bounding box,而confidence信息是针对每个bounding box的。)

举例说明: 在PASCAL VOC中,图像输入为448x448,取S=7,B=2,一共有20个类别(C=20)。则输出就是7x7x30的一个tensor。整个网络结构如下图所示:

在test的时候,每个网格预测的class信息和bounding box预测的confidence信息相乘,就得到每个bounding box的class-specific confidence score:

等式左边第一项就是每个网格预测的类别信息,第二三项就是每个bounding box预测的confidence。这个乘积即encode了预测的box属于某一类的概率,也有该box准确度的信息。

得到每个box的class-specific confidence score以后,设置阈值,滤掉得分低的boxes,对保留的boxes进行NMS(非极大值抑制non-maximum suppresssion)处理,就得到最终的检测结果。

1、每个grid因为预测两个bounding box有30维(30=2*5+20),这30维中,8维是回归box的坐标,2维是box的confidence,还有20维是类别。其中坐标的x,y用bounding box相对grid的offset归一化到0-1之间,w,h除以图像的width和height也归一化到0-1之间。

2、对不同大小的box预测中,相比于大box预测偏一点,小box预测偏一点肯定更不能被忍受的。而sum-square error loss中对同样的偏移loss是一样。为了缓和这个问题,作者用了一个比较取巧的办法,就是将box的width和height取平方根代替原本的height和width。这个参考下面的图很容易理解,小box的横轴值较小,发生偏移时,反应到y轴上相比大box要大。其实就是让算法对小box预测的偏移更加敏感。

3、一个网格预测多个box,希望的是每个box predictor专门负责预测某个object。具体做法就是看当前预测的box与ground truth box中哪个IoU大,就负责哪个。这种做法称作box predictor的specialization。

4、损失函数公式见下图:

在实现中,最主要的就是怎么设计损失函数,坐标(x,y,w,h),confidence,classification 让这个三个方面得到很好的平衡。简单的全部采用sum-squared error loss来做这件事会有以下不足:

解决方法:

只有当某个网格中有object的时候才对classification error进行惩罚。只有当某个box predictor对某个ground truth box负责的时候,才会对box的coordinate error进行惩罚,而对哪个ground truth box负责就看其预测值和ground truth box的IoU是不是在那个cell的所有box中最大。

作者采用ImageNet 1000-class 数据集来预训练卷积层。预训练阶段,采用网络中的前20卷积层,外加average-pooling层和全连接层。模型训练了一周,获得了top-5 accuracy为0.88(ImageNet2012 validation set),与GoogleNet模型准确率相当。

然后,将模型转换为检测模型。作者向预训练模型中加入了4个卷积层和两层全连接层,提高了模型输入分辨率(224×224->448×448)。顶层预测类别概率和bounding box协调值。bounding box的宽和高通过输入图像宽和高归一化到0-1区间。顶层采用linear activation,其它层使用 leaky rectified linear。

作者采用sum-squared error为目标函数来优化,增加bounding box loss权重,减少置信度权重,实验中,设定为\lambda _{coord} =5 and\lambda _{noobj}=0.5 。

作者在PASCAL VOC2007和PASCAL VOC2012数据集上进行了训练和测试。训练135轮,batch size为64,动量为0.9,学习速率延迟为0.0005。Learning schedule为:第一轮,学习速率从0.001缓慢增加到0.01(因为如果初始为高学习速率,会导致模型发散);保持0.01速率到75轮;然后在后30轮中,下降到0.001;最后30轮,学习速率为0.0001。

作者还采用了dropout和 data augmentation来预防过拟合。dropout值为0.5;data augmentation包括:random scaling,translation,adjust exposure和saturation。

YOLO模型相对于之前的物体检测方法有多个优点:

1、 YOLO检测物体非常快

因为没有复杂的检测流程,只需要将图像输入到神经网络就可以得到检测结果,YOLO可以非常快的完成物体检测任务。标准版本的YOLO在Titan X 的 GPU 上能达到45 FPS。更快的Fast YOLO检测速度可以达到155 FPS。而且,YOLO的mAP是之前其他实时物体检测系统的两倍以上。

2、 YOLO可以很好的避免背景错误,产生false positives

不像其他物体检测系统使用了滑窗或region proposal,分类器只能得到图像的局部信息。YOLO在训练和测试时都能够看到一整张图像的信息,因此YOLO在检测物体时能很好的利用上下文信息,从而不容易在背景上预测出错误的物体信息。和Fast-R-CNN相比,YOLO的背景错误不到Fast-R-CNN的一半。

3、 YOLO可以学到物体的泛化特征

当YOLO在自然图像上做训练,在艺术作品上做测试时,YOLO表现的性能比DPM、R-CNN等之前的物体检测系统要好很多。因为YOLO可以学习到高度泛化的特征,从而迁移到其他领域。

尽管YOLO有这些优点,它也有一些缺点:

1、YOLO的物体检测精度低于其他state-of-the-art的物体检测系统。

2、YOLO容易产生物体的定位错误。

3、YOLO对小物体的检测效果不好(尤其是密集的小物体,因为一个栅格只能预测2个物体)。

运动目标检测与跟踪算法研究 视觉是人类感知自身周围复杂环境最直接有效的手段之一, 而在现实生活中 大量有意义的视觉信息都包含在运动中,人眼对运动的物体和目标也更敏感,能 够快速的发现运动目标, 并对目标的运动轨迹进行预测和描绘。 随着计算机技术、 通信技术、图像处理技术的不断发展,计算机视觉己成为目前的热点研究问题之 一。 而运动目标检测与跟踪是计算机视觉研究的核心课题之一, 融合了图像处理、 模式识别、人工智能、自动控制、计算机等众多领域的先进技术,在军事制导、 视觉导航、视频监控、智能交通、医疗诊断、工业产品检测等方面有着重要的实 用价值和广阔的发展前景。 1、国内外研究现状 1.1 运动目标检测 运动目标检测是指从序列图像中将运动的前景目标从背景图像中提取出来。 根据运动目标与摄像机之间的关系, 运动目标检测分为静态背景下的运动目标检 测和动态背景下的运动目标检测。 静态背景下的运动目标检测是指摄像机在整个 监视过程中不发生移动; 动态背景下的运动目标检测是指摄像机在监视过程中发 生了移动,如平动、旋转或多自由度运动等。 静态背景 静态背景下的运动目标检测方法主要有以下几种: (1)背景差分法 背景差分法是目前最常用的一种目标检测方法, 其基本思想就是首先获得一个 背景模型,然后将当前帧与背景模型相减,如果像素差值大于某一阈值,则判断 此像素属于运动目标,否则属于背景图像。利用当前图像与背景图像的差分来检 测运动区域,一般能够提供比较完整的特征数据,但对于动态场景的变化,如光 照和外来无关事件的干扰等特别敏感。 很多研究人员目前都致力于开发不同的背 景模型,以减少动态场景变化对运动目标检测的影响。背景模型的建立与更新、 阴影的去除等对跟踪结果的好坏至关重要。 背景差分法的实现简单,在固定背景下能够完整地精确、快速地分割出运动 对象。不足之处是易受环境光线变化的影响,需要加入背景图像更新机制,且只 对背景已知的运动对象检测比较有效, 不适用于摄像头运动或者背景灰度变化很 大的情况。 (2)帧间差分法 帧间差分法是在连续的图像序列中两个或三个相邻帧间, 采用基于像素的时 间差分并阈值化来提取图像中的运动区域。 帧间差分法对动态环境具有较强的自 适应性,但一般不能完全提取出所有相关的特征像素点,在运动实体内部容易产 生空洞现象。因此在相邻帧间差分法的基础上提出了对称差分法,它是对图像序 列中每连续三帧图像进行对称差分,检测出目标的运动范围,同时利用上一帧分 割出来的模板对检测出来的目标运动范围进行修正, 从而能较好地检测出中间帧 运动目标的形状轮廓。 帧间差分法非常适合于动态变化的环境,因为它只对运动物体敏感。实际上 它只检测相对运动的物体,而且因两幅图像的时间间隔较短,差分图像受光线 变化影响小,检测有效而稳定。该算法简单、速度快,已得到广泛应用。虽然该 方法不能够完整地分割运动对象,只能检测出物体运动变化的区域,但所检测出 的物体运动信息仍可用于进一步的目标分割。 (3)光流法 光流法就充分的利用了图像自身所携带的信息。在空间中,运动可以用运动 场描述,而在一个图像平面上,物体的运动往往是通过图像序列中图像灰度分布 的不同来体现,从而使空间中的运动场转移到图像上就表示为光流场。所谓光流 是指空间中物体被观测面上的像素点运动产生的瞬时速度场, 包含了物体表面结 构和动态行为等重要信息。 基于光流法的运动目标检测采用了运动目标随时间变 化的光流特性,由于光流不仅包含了被观测物体的运动信息,还携带了物体运动 和景物三位结构的丰富信息。 在比较理想的情况下,它能够检测独立运动的对象, 不需要预先知道场景的任何信息,可以很精确地计算出运动物体的速度,并且可 用于动态场景的情况。 但是大多数光流方法的计算相当复杂,对硬件要求比较高, 不适于实时处理,而且对噪声比较敏感,抗噪性差。并且由于遮挡、多光源、透明 性及噪声等原因,使得光流场基本方程——灰度守恒的假设条件无法满足,不能 正确求出光流场,计算方也相当复杂,计算量巨大,不能满足实时的要求。 动态背景 动态背景下的运动目标检测由于存在着目标与摄像机之间复杂的相对运动, 检测方法要比静态背景下的运动目标检测方法复杂。常用的检测方法有匹配法、 光流法以及全局运动估计法等。 2、运动目标跟踪 运动目标跟踪是确定同一物体在图像序列的不同帧中的位置的过程。 近年来 出现了大批运动目标跟踪方法,许多文献对这些方法进行了分类介绍,可将目标 跟踪方法分为四类:基于区域的跟踪、基于特征的跟踪、基于活动轮廓的跟踪、 基于模型的跟踪,这种分类方法概括了目前大多数跟踪方法,下面用这种分类方 法对目前的跟踪方法进行概括介绍。 (1)基于区域的跟踪 基于区域的跟踪方法基本思想是: 首先通过图像分割或预先人为确定提取包 含目标区域的模板,并设定一个相似性度量,然后在序列图像中搜索目标,把度 量取极值时对应的区域作为对应帧中的目标区域。 由于提取的目标模板包含了较 完整的目标信息,该方法在目标未被遮挡时,跟踪精度非常高,跟踪非常稳定, 但通常比较耗时,特别是当目标区域较大时,因此一般应用于跟踪较小的目标或 对比度较差的目标。该方法还可以和多种预测算法结合使用,如卡尔曼预测、粒 子预测等,以估计每帧图像中目标的位置。近年来,对基于区域的跟踪方法关注 较多的是如何处理运动目标姿态变化引起的模板变化时的情况以及目标被严重 遮挡时的情况。 (2)基于特征的跟踪 基于特征的跟踪方法基本思想是:首先提取目标的某个或某些局部特征,然 后利用某种匹配算法在图像序列中进行特征匹配,从而实现对目标的跟踪。该方 法的优点是即使目标部分被遮挡,只要还有一部分特征可以被看到,就可以完成 跟踪任务,另外,该方法还可与卡尔曼滤波器结合使用,实时性较好,因此常用 于复杂场景下对运动目标的实时、 鲁棒跟踪。 用于跟踪的特征很多, 如角点边缘、 形状、纹理、颜色等,如何从众多的特征中选取最具区分性、最稳定的特征是基 于特征的跟踪方法的关键和难点所在。 (3)基于活动轮廓的跟踪 基于活动轮廓的跟踪方法基本思想是:利用封闭的曲线轮廓表达运动目标, 结合图像特征、曲线轮廓构造能量函数,通过求解极小化能量实现曲线轮廓的自 动连续更新,从而实现对目标的跟踪。自Kass在1987年提出Snake模型以来,基 于活动轮廓的方法就开始广泛应用于目标跟踪领域。相对于基于区域的跟踪方 法,轮廓表达有减少复杂度的优点,而且在目标被部分遮挡的情况下也能连续的 进行跟踪,但是该方法的跟踪结果受初始化影响较大,对噪声也较为敏感。 (4)基于模型的跟踪 基于模型的跟踪方法基本思想是: 首先通过一定的先验知识对所跟踪目标建 立模型,然后通过匹配跟踪目标,并进行模型的实时更新。通常利用测量、CAD 工具和计算机视觉技术建立模型。主要有三种形式的模型,即线图模型、二维轮 廓模型和三维立体模型口61,应用较多的是运动目标的三维立体模型,尤其是对 刚体目标如汽车的跟踪。该方法的优点是可以精确分析目标的运动轨迹,即使在 目标姿态变化和部分遮挡的情况下也能够可靠的跟踪, 但跟踪精度取决于模型的 精度,而在现实生活中要获得所有运动目标的精确模型是非常困难的。 目标检测算法,至今已提出了数千种各种类型的算法,而且每年都有上百篇相 关的研究论文或报告发表。尽管人们在目标检测或图像分割等方面做了许多研 究,现己提出的分割算法大都是针对具体问题的,并没有一种适合于所有情况的 通用算法。 目前, 比较经典的运动目标检测算法有: 双帧差分法、 三帧差分法(对 称差分法)、背景差法、光流法等方法,这些方法之间并不是完全独立,而是可 以相互交融的。 目标跟踪的主要目的就是要建立目标运动的时域模型, 其算法的优劣直接影响 着运动目标跟踪的稳定性和精确度, 虽然对运动目标跟踪理论的研究已经进行了 很多年,但至今它仍然是计算机视觉等领域的研究热点问题之一。研究一种鲁棒 性好、精确、高性能的运动目标跟踪方法依然是该研究领域所面临的一个巨大挑 战。基于此目的,系统必须对每个独立的目标进行持续的跟踪。为了实现对复杂 环境中运动目标快速、稳定的跟踪,人们提出了众多算法,但先前的许多算法都 是针对刚体目标,或是将形变较小的非刚体近似为刚体目标进行跟踪,因而这些 算法难以实现对形状变化较大的非刚体目标的正确跟踪。 根据跟踪算法所用的预 测技术来划分,目前主要的跟踪算法有:基于均值漂移的方法、基于遗传算法的 方法、基于Kalman滤波器的方法、基于Monto Carlo的方法以及多假设跟踪的方 法等。 运动检测与目标跟踪算法模块 运动检测与目标跟踪算法模块 与目标跟踪 一、运动检测算法 1.算法效果 算法效果总体来说,对比度高的视频检测效果要优于对比度低的视频。 算法可以比较好地去除目标周围的浅影子,浅影的去除率在 80%以上。去影后目标的 完整性可以得到较好的保持,在 80%以上。在对比度比较高的环境中可以准确地识别较大 的滞留物或盗移物。 从对目标的检测率上来说,对小目标较难进行检测。一般目标小于 40 个像素就会被漏 掉。对于对比度不高的目标会检测不完整。总体上来说,算法在对比度较高的环境中漏检率 都较低,在 0.1%以下,在对比度不高或有小目标的场景下漏检率在 6%以下。 精细运动检测的目的是在较理想的环境下尽量精确地提取目标的轮廓和区域, 以供高层 进行应用。同时在分离距离较近目标和进行其它信息的进一步判断也具有一定的优势。 反映算法优缺点的详细效果如下所示: 去影子和完整性 效果好 公司内视频 左边的为去影前,右边的 为去影后的结果,可以看出在 完整 性和去影率上 都有所 突 出。 这两个视频的共周特点 城市交通 是,影子都是浅影子,视频噪 声不太明显。目标与背景的对 比度比较高。 效果差 这两个视频的特点是影子 都是深影子。虽然影子没有去 掉,但是物体的完整性是比较 高的。主要原因就是场景的对 路口,上午 十点 比度比较高。 滞留物检测和稳定性 效果好 会议室盗移 效果好的原因,一是盗移或 滞留目标与背景对比度较大,二 是目标本身尺寸较大。 另外盗移物或滞留物在保持 各自的状态期间不能受到光照变 化或其它明显运动目标的干扰, 要不然有可能会造成判断的不稳 定。 效果差 会议室 遗留 物 大部分时间内,滞留的判断 都是较稳定的,但是在后期出现 了不稳定。主要原因是目标太小 的原故。 因此在进行滞留物判断时, 大目标,对比度较高的环境有利 于判断的稳定性和准确性。 漏检率 效果好 城市交通 在对比度高的环境下, 目标相对都较大的情况下 (大于 40 个像素) 可以很 , 稳定的检测出目标。 在这种 条件下的漏检率通常都是 非常低的,在 0.1%以下。 效果差 行人-傍晚 和“行人”目录下 的 其 它 昏 暗 条件 下的视频 在对 比度较低的 情况 下,会造成检测结果不稳 定。漏检率较高。主要原因 是由于去影子造成的。 这种 对比度下的漏检率一般在 6%以下。 除了 对比度低是 造成 漏检的原因外, 过小的目标 也会造成漏检,一般是 40 个像素以下的目标都会被 忽略掉。 1.2 算法效率内存消耗(单位:b) .MD_ISRAM_data .MD_ISRAM_bss .MD_SDRAM_data 0x470 0x24 0x348 .MD_SDRAM_bss .MD_text 0x1a8480 0x6d40 速度 ms 运动区域占 2/3 左右时 CPU 占用率 一帧耗时 Max:57% Min:2.8% Avg:37.5% Max:23 Min:1.14 Avg:15 运动区域占 1/3 左右时 Max:45% Min:2.8% Avg:20% Max:18 Min:1.14 Avg:8 1.3 检测参数说明 检测参数说明 检测到的滞留物或盗走物的消失时间目前分别设定在 200 帧和 100 帧, 可以通过参数来 自行调整。 目前目标与背景的差异是根据局部光照强度所决定的, 范围在 4 个像素值以上。 目前参 数设置要求目标大小要在 20 个像素以上才能被检测到,可以通过参数来自行调整。 目标阴影的去除能力是可以调整的, 目前的参数设置可以去除大部分的浅影子和较小的 光照变化。 1.4 适用环境推荐光照条件较好(具有一定的对比度)的室内环境或室外环境。不易用它去检测过小的目 标,比如小于 40 个像素的目标。室外环境不易太复杂。输出目标为精细轮廓目标,可以为 后面高层应用提供良好的信息。 二、目标跟踪 2.1 稳定运行环境要求此版本跟踪算法与运动检测算法紧密结合, 对相机的架设和视频的背景环境和运动目标 数量运动方式有一定要求: 背景要求: 由于运动跟踪是基于运动检测的结果进行的, 所以对背景的要求和运动检测一样, 背景要求: 运动目标相对于背景要有一定反差。 运动目标:由于运动检测中,对较小的目标可能过滤掉。所以运动目标的大小要符合运动检 运动目标: 测的要求。运动目标的速度不能太大,要保证前后帧运动目标的重合面积大于 10 个像素。此阈值可修改(建议不要随意修改,过小,可能把碎片当成原目标分 裂出来的小目标,过大,可能失去跟踪。当然可试着调节以适应不同场景)。该 算法对由于运动检测在地面上产生的碎片抗干扰性比较差, 运动目标和碎片相遇 时,容易发生融合又分离的现象,造成轨迹混乱。消失目标和新生目标很容易当 成同一目标处理,所以可能出现一个新目标继承新生目标的轨迹。 运动方式: 运动目标的最大数量由外部设定。 但运动跟踪对运动目标比较稀疏的场景效果比 运动方式: 较好。 算法对由于运动检测在运动目标上产生的碎片有一定的抗干扰。 算法没对 物体的遮挡进行处理。对于两运动目标之间的遮挡按融合来处理。 拍摄角度: 拍摄角度:拍摄视野比较大,且最好是俯视拍摄。

计算机本科毕业论文答辩目标检测

你的论文准备往什么方向写,选题老师审核通过了没,有没有列个大纲让老师看一下写作方向? 老师有没有和你说论文往哪个方向写比较好?写论文之前,一定要写个大纲,这样老师,好确定了框架,避免以后论文修改过程中出现大改的情况!!学校的格式要求、写作规范要注意,否则很可能发回来重新改,你要还有什么不明白或不懂可以问我,希望你能够顺利毕业,迈向新的人生。 (一)选题毕业论文(设计)题目应符合本专业的培养目标和教学要求,具有综合性和创新性。本科生要根据自己的实际情况和专业特长,选择适当的论文题目,但所写论文要与本专业所学课程有关。(二)查阅资料、列出论文提纲题目选定后,要在指导教师指导下开展调研和进行实验,搜集、查阅有关资料,进行加工、提炼,然后列出详细的写作提纲。(三)完成初稿根据所列提纲,按指导教师的意见认真完成初稿。(四)定稿初稿须经指导教师审阅,并按其意见和要求进行修改,然后定稿。一般毕业论文题目的选择最好不要太泛,越具体越好,而且老师希望学生能结合自己学过的知识对问题进行分析和解决。不知道你是否确定了选题,确定选题了接下来你需要根据选题去查阅前辈们的相关论文,看看人家是怎么规划论文整体框架的;其次就是需要自己动手收集资料了,进而整理和分析资料得出自己的论文框架;最后就是按照框架去组织论文了。你如果需要什么参考资料和范文我可以提供给你。还有什么不了解的可以直接问我,希望可以帮到你,祝写作过程顺利毕业论文选题的方法: 一、尽快确定毕业论文的选题方向 在毕业论文工作布置后,每个人都应遵循选题的基本原则,在较短的时间内把选题的方向确定下来。从毕业论文题目的性质来看,基本上可以分为两大类:一类是社会主义现代化建设实践中提出的理论和实际问题;另一类是专业学科本身发展中存在的基本范畴和基本理论问题。大学生应根据自己的志趣和爱好,尽快从上述两大类中确定一个方向。二、在初步调查研究的基础上选定毕业论文的具体题目在选题的方向确定以后,还要经过一定的调查和研究,来进一步确定选题的范围,以至最后选定具体题目。下面介绍两种常见的选题方法。 浏览捕捉法 :这种方法就是通过对占有的文献资料快速地、大量地阅读,在比较中来确定论文题目地方法。浏览,一般是在资料占有达到一定数量时集中一段时间进行,这样便于对资料作集中的比较和鉴别。浏览的目的是在咀嚼消化已有资料的过程中,提出问题,寻找自己的研究课题。这就需要对收集到的材料作一全面的阅读研究,主要的、次要的、不同角度的、不同观点的都应了解,不能看了一些资料,有了一点看法,就到此为止,急于动笔。也不能“先入为主”,以自己头脑中原有的观点或看了第一篇资料后得到的看法去决定取舍。而应冷静地、客观地对所有资料作认真的分析思考。在浩如烟海,内容丰富的资料中吸取营养,反复思考琢磨许多时候之后,必然会有所发现,这是搞科学研究的人时常会碰到的情形。 浏览捕捉法一般可按以下步骤进行: 第一步,广泛地浏览资料。在浏览中要注意勤作笔录,随时记下资料的纲目,记下资料中对自己影响最深刻的观点、论据、论证方法等,记下脑海中涌现的点滴体会。当然,手抄笔录并不等于有言必录,有文必录,而是要做细心的选择,有目的、有重点地摘录,当详则详,当略则略,一些相同的或类似的观点和材料则不必重复摘录,只需记下资料来源及页码就行,以避免浪费时间和精力。 第二步,是将阅读所得到的方方面面的内容,进行分类、排列、组合,从中寻找问题、发现问题,材料可按纲目分类,如分成: 系统介绍有关问题研究发展概况的资料; 对某一个问题研究情况的资料; 对同一问题几种不同观点的资料; 对某一问题研究最新的资料和成果等等。 第三步,将自己在研究中的体会与资料分别加以比较,找出哪些体会在资料中没有或部分没有;哪些体会虽然资料已有,但自己对此有不同看法;哪些体会和资料是基本一致的;哪些体会是在资料基础上的深化和发挥等等。经过几番深思熟虑的思考过程,就容易萌生自己的想法。把这种想法及时捕捉住,再作进一步的思考,选题的目标也就会渐渐明确起来。

基于Python的SIFT和KCF的运动目标匹配与跟踪 毕业论文+项目源码基于Python决策树算法的学生学习行为数据分析 设计报告+代码及数据基于Sring+bootstrap+MySQL的住房公积金管理系统 课程报告+项目源码及数据库文件基于C++的即时通信软件设计 毕业论文+项目源码

计算机毕业设计 基于Python的SIFT和KCF的运动目标匹配与跟踪 毕业论文+项目源码 基于Python决策树算法的学生学习行为数据分析 设计报告+代码及数据 基于Sring+bootstrap+MySQL的住房公积金管理系统 课程报告+项目源码及数据库文件 基于C++的即时通信软件设计 毕业论文+项目源码 基于JavaWeb+MySQL的图书管理系统 课程报告+项目源码及数据库文件 基于Android Studio+Android SDK的手机通讯录管理软件设计 课程报告+项目源码 基于JSP+MySQL的校园网上订餐系统 毕业论文+项目源码及数据库文件 基于AndroidStudio的花艺分享平台APP设计 报告+源码及APK文件 基于Python的酒店评论情感分析 课程报告+答辩PPT+项目源码 基于QT的教务选课管理系统设计与实现 毕业论文+项目源码 基于Android+Springboot+Mybatis+Mysql的个人生活APP设计 说明书+项目源码 基于Vue.js+Go的Web3D宇宙空间数据可视化系统 设计报告+前后端源码及数据 基于java+android+SQLite的保健型果饮在线销售APP设计 毕业论文+源码数据库及APK文件 基于Vue.js+SpringBoot+MyBatis+MySQL的高校综合资源发布分享社交二手平台 毕业论文+项目源码及数据库文件+演示视频 基于Delphi+MySQL的大学生竞赛发布及组队系统 设计报告+源码数据库及可执行文件+使用说明书 基于Android的名片信息管理系统设计与实现 毕业论文+任务书+外文翻译及原文+演示视频+项目源码 基于Python的电影数据可视化分析系统 设计报告+答辩PPT+项目源码 基于JavaWeb的企业公司管理系统设计与实现 毕业论文+答辩PPT+演示视频+项目源码 高校成绩管理数据库系统的设计与实现 毕业论文+项目源码 基于JavaWeb的家庭食谱管理系统设计与实现 毕业论文+项目源码及数据库文件 基于Python+SQLSERVER的快递业务管理系统的设计与实现 毕业论文+项目源码及数据库文件 基于Python的语音词频提取云平台 设计报告+设计源码 在推荐系统中引入 Serendipity 的算法研究 毕业论文+参考文献+项目源码 基于Html+Python+Django+Sqlite的机票预订系统 毕业论文+项目源码及数据库文件 基于Python的卷积神经网络的猫狗图像识别系统 课程报告+项目源码 基于C++的云安全主动防御系统客户端服务端设计 毕业论文+项目源码 基于JavaSSM的学生成绩管理APP系统设计与实现 毕业论文+答辩PPT+前后台源码及APK文件 基于JavaSwing+MySQL的清朝古代名人数据管理系统设计 毕业论文+任务书+项目源码及数据库文件 基于Python_Django的社会实践活动管理系统设计与实现 毕业论文 基于Servlet WebSocket MySQL实现的网络在线考试系统 毕业论文+项目源码 基于JavaWEB+MySQL的学生成绩综合管理系统 毕业论文+项目源码及数据库文件 基于SpringBoot+Vue和MySQL+Redis的网络课程平台设计与实现 毕业论文+任务书+开题报告+中期报告+初稿+前后台项目源码 基于Java的毕业设计题目收集系统 课程报告+项目源码 基于Java+Python+html的生产者与消费者算法模拟 毕业论文+任务书+项目源码 基于JavaWeb+MySQL的学院党费缴费系统 毕业论文+项目源码及数据库文件 基于Java+MySQL的学生成绩管理系统 毕业论文+任务书+答辩PPT+项目源码及数据库文件 基于Java+MySQL的学生和客户信息管理系统 课程报告+项目源码及数据库文件 基于Java的长整数加减法算法设计 毕业论文+项目源码 基于vue+MySQL的毕业设计网上选题系统 毕业论文+项目源码 基于背景建模和FasterR-CNN的视频前景和目标检测 毕业论文+答辩PPT+项目源码 基于Python的智能视频分析之人数统计的多种实现 毕业论文+答辩PPT+项目源码 基于C#+SQL server的校园卡消费信息管理系统 毕业论文+项目源码及数据库文件

计算机专业毕业论文答辩程序及要点

时间稍纵即逝,充满意义的大学生活即将结束,毕业论文是大学生都必须通过的,毕业论文是一种有准备的检验大学学习成果的形式,如何把毕业论文做到重点突出呢?以下是我收集整理的计算机专业毕业论文答辩程序及要点,希望能够帮助到大家。

一,毕业论文答辩的一般程序

1、学员必须在论文答辩会举行之前半个月,将经过指导老师审定并签署过意见的毕业论文一式三份连同提纲,草稿等交给指导教师,并拟出需要提问的问题及答案。

2、在答辩会上,先让学员用15分钟左右的时间概述论文的标题以及选择该论题的原因,较详细地介绍论文的主要论点,论据和写作体会。

3、主答辩老师提问。主答辩老师一般提三个问题。老师提问完后,可以让学生独立准备15—20分钟后,再来当场回答,根据学员回答的具体情况,主答辩老师和其他答辩老师随时可以有适当的插问。

4、学员逐一回答完所有问题后退场,答辩委员会集体根据论文质量和答辩情况,商定通过还是不通过,并拟定成绩和评语。

5、召回学员,由主答辩老师当面向学员就论文和答辩过程中的情况加以小结,肯定其优点和长处,指出其错误或不足之处,并加以必要的补充和指点,同时当面向学员宣布通过或不通过。至于论文的成绩,一般不当场宣布。

二,主答辩老师的提问方式

1、提问要贯彻先易后难原则。

主答辩老师给每位答辩者一般要提三个或三个以上的问题,这些要提的问题以按先易后难的次序提问为好。所提的第一个问题一般应该考虑到是学员答得出并且答得好的问题。学员第一个问题答好,就会放松紧张心理,增强"我"能答好的信心,从而有利于在以后几个问题的答辩中发挥出正常水平。

2、提问要实行逐步深入的方法。

为了正确地检测学员的专业基础知识掌握的情况,有时需要把一个大问题分成若干个小问题,并采取逐步深入的提问方法。

3、当答辩者的观点与自己的观点相左时,应以温和的态度,商讨的语气与之开展讨论,

即要有"长者"风度,施行善术,切忌居高临下,出言不逊。不要以"真理"掌握者自居,轻易使用"不对","错了","谬论"等否定的断语。要记住"是者可能非,非者可能有是"的格言,要有从善如流的掂量。不必将自己的观点强加于人,只要把自己的观点亮出来,供对方参考就行。

4、当学员的回答答不到点子上或者一时答不上来的问题,应采用启发式,引导式的提问方法。

参加过论文答辩委员会的老师可能都遇到过这样的情况:学员对你所提的问题答不上来,有的就无可奈何地"呆"着;有的是东拉西扯,与你绕圈子,其实他也是不知道答案。碰到这种情况,答辩老师既不能让学员尴尬地"呆"在那里,也不能听凭其神聊,而应当及时加以启发或引导。只有通过启发和引导仍然答不出或答不到点子上的,才可判定他确实不具备这方面的知识。

三,学员答辩要注意的问题

学员要顺利通过答辩,并在答辩时真正发挥出自己的水平,除了在答辩前充分作好准备外,还需要了解和掌握答辩的要领和答辩的艺术。

(一)携带必要的资料和用品:

首先,学员参加答辩会,要携带论文的底稿和主要参考资料。在答辩会上,主答辩老师提出问题后,学员可以准备一定时间后再当面回答,在这种情况下,携带论文底稿和主要参考资料的必要性是不言自明的。其次,还应带上笔和笔记本,以便把主答辩老师所提出的.问题和有价值的意见,见解记录下来。通过记录,不仅可以减缓紧张心理,而且还可以更好地吃透老师所提问的要害和实质是什么,同时还可以边记边思考,使思考的过程变得很自然。

(二)要有自信心,不要紧张:

在作了充分准备的基础上,大可不必紧张,要有自信心。树立信心,消除紧张慌乱心理很重要,因为过度的紧张会使本来可以回答出来的问题也答不上来。只有充满自信,沉着冷静,才会在答辩时有良好的表现。而自信心主要来自事先的充分准备。

(三)听清问题后经过思考再作回答:

主答辩老师在提问题时,学员要集中注意力认真聆听,并将问题回答略记在本子上,仔细推敲主答辩老师所提问题的要害和本质是什么切忌未弄清题意就匆忙作答。如果对所提问题没有断清楚,可以请提问老师再说一遍。如果对问题中有些概念不太理解,可以请提问老师做些解释,或者把自己对问题的理解说出来,并问清是不是这个意思,等得到肯定的答复后再作回答。只有这样,才有可能避免答所非问。答到点子上。

(四)回答问题要简明扼要,层次分明:

在弄清了主答辩老师所提问题的确切涵义后,要在较短的时间内作出反应,要充满自信地以流畅的语言和肯定的语气把自己的想法讲述出来,不要犹犹豫豫。回答问题,一要抓住要害,简明扼要,不要东拉西扯,使人听后不得要领;二要力求客观,全面,辩证,留有余地,切忌把话说"死";三要条分缕析,层次分明。此外还要注意吐词清晰,声音适中等等。

(五)对回答不出的问题,不可强辩:

有时答辩委员会的老师对答辩人所作的回答不太满意,还会进一步提出问题,以求了解论文作者是否切实搞清和掌握了这个问题。遇到这种情况,答辩人如果有把握讲清,就可以申明理由进行答辩;如果不太有把握,可以审慎地试着回答,能回答多少就回答多少,即使讲得不很确切也不要紧,只要是同问题有所关联,老师会引导和启发你切入正题;如果确是自己没有搞清的问题,就应该实事求是地讲明自己对这个问题还没有搞清楚,表示今后一定认真研究这个问题,切不可强词夺理,进行狡辩。因为,答辩委员会的老师对这个问题有可能有过专门研究,再高明的也不可能蒙他。这里我们应该明白:学员在答辩会上,某个问题被问住是不奇怪的,因为答辩委员会成员一般是本学科的专家。他们提出来的某个问题答不上来是很自然的。当然,所有问题都答不上来,一问三不知就不正常了。

(六)当论文中的主要观点与主答辩老师的观点相左时,可以与之展开辩论:

答辩中,有时主答辩老师会提出与你的论文中基本观点不同的观点,然后请你谈谈看法,此时就应全力为自己观点辩护,反驳与自己观点相对立的思想。主答辩老师在提问的问题中,有的是基础知识性的问题,有的是学术探讨性的问题,对于前一类问题,是要你作出正确,全面地回答,不具有商讨性。而后一类问题,是非正误并未定论,持有不同观点的人可以互相切磋商讨。如果你所写的论文的基本观点是经过自己深思熟虑,又是言之有理,持之有据,能自圆其说的,就不要因为答辩委员会成员提出不同的见解,就随声附和,放弃自己的观点。否则,就等于是你自己否定了自己辛辛苦苦写成的论文。要知道,有的答辩老师提出的与你论文相左的观点,并不是他本人的观点,他提出来无非是想听听你对这种观点的评价和看法,或者是考考你的答辩能力或你对自己观点的坚定程度。退一步说,即使是提问老师自己的观点,你也应该抱着"吾爱吾师,吾更爱真理"的态度,据理力争,与之展开辩论。

不过,与答辩老师展开辩论要注意分寸,运用适当的辩术。一般说,应以维护自己的观点为主,反驳对方的论点要尽可能采用委婉的语言,请教的口气,用旁说,暗说,绕着说的办法,不露痕迹地把自己的观点输入对方,让他们明理而诚服或暗服。让提问老师感受到虽接受你的意见,但自己的自尊并没受到伤害。譬如,在一次答辩会上,一位老师在说明垄断高额利润时,把垄断高额利润说成是高出平均利润以上的那部分利润。答辩的学员听出老师的解释错了。就用平和不解的语气说:"那么,垄断高额利润是垄断价格高于成本价格的话怎么理解呢"提问的老师听后一怔,隔了一会儿,高声说:"问得好!"从提问老师的喝彩声中,我们知道,他已心悦诚服地同意了你的观点。这样的辩论,答辩老师不仅不会为难你,相反会认为你有水平,基础扎实。

(七)要讲文明礼貌:

论文答辩的过程也是学术思想交流的过程。答辩人应把它看成是向答辩老师和专家学习,请求指导,讨教问题的好机会。因此,在整个答辩过程中,答辩人应该尊重答辩委员会的老师,言行举止要讲文明,有礼貌,尤其是在主答辩老师提出的问题难以回答,或答辩老师的观点与自己的观点相左时,更应该注意如此。答辩结束,无论答辩情况如何,都要从容,有礼貌地退场。

此外,毕业论文答辩之后,作者应该认真听取答辩委员会的评判,进一步分析,思考答辩老师提出的意见,总结论文写作的经验教训。一方面,要搞清楚通过这次毕业论文写作,自己学习和掌握了哪些科学研究的方法,在提出问题,分析问题,解决问题以及科研能力上得到了提高。还存在哪些不足,作为今后研究其他课题时的借鉴。另一方面,要认真思索论文答辩会上,答辩老师提出的问题和意见,修改自己的论文,加深研究,精心修改自己的论文,求得纵深发展,取得更大的战果。使自己在知识上,能力上有所提高。

计算机专业毕业论文答辩过程

计算机专业毕业论文答辩是整个毕业设计流程中最后一步,是不能忽视的,往往很多同学不注意忽视了细节,而在毕业论文答辩环节走了很多弯路,导致二次答辩,造成延迟毕业时间的严重后果。下面将从以下几个方面带领各位同学熟悉毕业论文答辩的流程以及需要注意的事项:

1、明确毕业论文答辩的目的

a、、学校鉴别毕业设计(论文)的真伪;

b、评价毕业设计(论文)的质量;

c、考察学生临场发挥的能力。

2、了解答辩的基本要求

a、成员:答辩之前,院系毕业设计领导机构成立答辩委员会,指导教师可以加入,但不能担答辩委员会主席的职务,且在自己学生答辩时应回避,不参与意见。

b、时间;答辩时间一般为10—20分钟,是对自己综合能力、表达能力的挑战。

c、问答:答辩教师提出的问题有一定的方向性,主要分为鉴别论文真实性的问题、识别知识掌握程度的问题,判断论文研究深度的问题。

3、心理准备

a、认真:答辩是学生获准毕业、取得学位的必经之路,只要认真对待,通过答辩并非难事。

b、自信:树立自信心,适当放松心情,不要给自己过大的压力,积极热情,泰然处之。只有充满自信,沉着冷静,才会在答辩时有良好的表现。

c、放松:提前练习,努力适应答辩环境,克服恐惧、紧张的心理。

4、物质准备

申请资料、论文底稿、答辩PPT、参考资料,答辩提纲,练习讲稿

5、要顺利通过答辩,并在答辩时真正发挥出自己的水平,除了在答辩前准备好答辩提纲外,还需要了解和掌握答辩的要领和艺术。

a、礼仪:着装整理大方,尊重答辩老师,言行举止要文明礼貌,目光与老师适当交流,回答完问题后致谢退场。

b、语言:抓住要害,简明扼要;客观全面、辩证留有余地,条理清楚,层次分明。吐词清晰,声音适中。回答不出问题,不可强辩。

c、内容:紧扣主题,从始至终以论文题目为中心展开论述可以使评委思路明朗,对你的毕业论文给予肯定。

d、应变:对问题如果不太有把握,可以试着回答,如果是自己没有搞清楚的问题,就应该实事求是的讲明自己还没有搞清楚,表示今后一定认真研究这个问题,切不可强词夺理,进行狡辩。

军事目标检测方法与研究论文

姓名:牛晓银;学号:20181213993;学院:计算机科学与技术 转自: 【嵌牛导读】:目标检测,也叫目标提取,是一种基于目标几何和统计特征的图像分割。随着计算机技术的发展和计算机视觉原理的广泛应用,利用计算机图像处理技术对目标进行实时跟踪研究越来越热门,对目标进行动态实时跟踪定位在智能化交通系统、军事目标检测及医学导航手术中手术器械定位等方面具有广泛的应用价值。 【嵌牛鼻子】:目标检测、检测模型、计算机视觉 【嵌牛提问】:你知道或者用过哪些目标检测算法? 【嵌牛正文】: (一)目标检测经典工作回顾 本文结构 两阶段模型因其对图片的两阶段处理得名,也称为基于区域(Region-based)的方法,我们选取R-CNN系列工作作为这一类型的代表。 R-CNN: R-CNN系列的开山之作 论文链接:  Rich feature hierarchies for accurate object detection and semantic segmentation 本文的两大贡献:1)CNN可用于基于区域的定位和分割物体;2)监督训练样本数紧缺时,在额外的数据上预训练的模型经过fine-tuning可以取得很好的效果。第一个贡献影响了之后几乎所有2-stage方法,而第二个贡献中用分类任务(Imagenet)中训练好的模型作为基网络,在检测问题上fine-tuning的做法也在之后的工作中一直沿用。 传统的计算机视觉方法常用精心设计的手工特征(如SIFT, HOG)描述图像,而深度学习的方法则倡导习得特征,从图像分类任务的经验来看,CNN网络自动习得的特征取得的效果已经超出了手工设计的特征。本篇在局部区域应用卷积网络,以发挥卷积网络学习高质量特征的能力。 R-CNN将检测抽象为两个过程,一是基于图片提出若干可能包含物体的区域(即图片的局部裁剪,被称为Region Proposal),文中使用的是Selective Search算法;二是在提出的这些区域上运行当时表现最好的分类网络(AlexNet),得到每个区域内物体的类别。 另外,文章中的两个做法值得注意。 一是数据的准备。输入CNN前,我们需要根据Ground Truth对提出的Region Proposal进行标记,这里使用的指标是IoU(Intersection over Union,交并比)。IoU计算了两个区域之交的面积跟它们之并的比,描述了两个区域的重合程度。 文章中特别提到,IoU阈值的选择对结果影响显著,这里要谈两个threshold,一个用来识别正样本(如跟ground truth的IoU大于0.5),另一个用来标记负样本(即背景类,如IoU小于0.1),而介于两者之间的则为难例(Hard Negatives),若标为正类,则包含了过多的背景信息,反之又包含了要检测物体的特征,因而这些Proposal便被忽略掉。 另一点是位置坐标的回归(Bounding-Box Regression),这一过程是Region Proposal向Ground Truth调整,实现时加入了log/exp变换来使损失保持在合理的量级上,可以看做一种标准化(Normalization)操作。 小结 R-CNN的想法直接明了,即将检测任务转化为区域上的分类任务,是深度学习方法在检测任务上的试水。模型本身存在的问题也很多,如需要训练三个不同的模型(proposal, classification, regression)、重复计算过多导致的性能问题等。尽管如此,这篇论文的很多做法仍然广泛地影响着检测任务上的深度模型革命,后续的很多工作也都是针对改进这一工作而展开,此篇可以称得上"The First Paper"。 Fast R-CNN: 共享卷积运算 论文链接: Fast R-CNN 文章指出R-CNN耗时的原因是CNN是在每一个Proposal上单独进行的,没有共享计算,便提出将基础网络在图片整体上运行完毕后,再传入R-CNN子网络,共享了大部分计算,故有Fast之名。 上图是Fast R-CNN的架构。图片经过feature extractor得到feature map, 同时在原图上运行Selective Search算法并将RoI(Region of Interset,实为坐标组,可与Region Proposal混用)映射到到feature map上,再对每个RoI进行RoI Pooling操作便得到等长的feature vector,将这些得到的feature vector进行正负样本的整理(保持一定的正负样本比例),分batch传入并行的R-CNN子网络,同时进行分类和回归,并将两者的损失统一起来。 RoI Pooling 是对输入R-CNN子网络的数据进行准备的关键操作。我们得到的区域常常有不同的大小,在映射到feature map上之后,会得到不同大小的特征张量。RoI Pooling先将RoI等分成目标个数的网格,再在每个网格上进行max pooling,就得到等长的RoI feature vector。 文章最后的讨论也有一定的借鉴意义: multi-loss traing相比单独训练classification确有提升 multi-scale相比single-scale精度略有提升,但带来的时间开销更大。一定程度上说明CNN结构可以内在地学习尺度不变性 在更多的数据(VOC)上训练后,精度是有进一步提升的 Softmax分类器比"one vs rest"型的SVM表现略好,引入了类间的竞争 更多的Proposal并不一定带来精度的提升 小结 Fast R-CNN的这一结构正是检测任务主流2-stage方法所采用的元结构的雏形。文章将Proposal, Feature Extractor, Object Classification&Localization统一在一个整体的结构中,并通过共享卷积计算提高特征利用效率,是最有贡献的地方。 Faster R-CNN: 两阶段模型的深度化 论文链接: Faster R-CNN: Towards Real Time Object Detection with Region Proposal Networks Faster R-CNN是2-stage方法的奠基性工作,提出的RPN网络取代Selective Search算法使得检测任务可以由神经网络端到端地完成。粗略的讲,Faster R-CNN = RPN + Fast R-CNN,跟RCNN共享卷积计算的特性使得RPN引入的计算量很小,使得Faster R-CNN可以在单个GPU上以5fps的速度运行,而在精度方面达到SOTA(State of the Art,当前最佳)。 本文的主要贡献是提出Regional Proposal Networks,替代之前的SS算法。RPN网络将Proposal这一任务建模为二分类(是否为物体)的问题。 第一步是在一个滑动窗口上生成不同大小和长宽比例的anchor box(如上图右边部分),取定IoU的阈值,按Ground Truth标定这些anchor box的正负。于是,传入RPN网络的样本数据被整理为anchor box(坐标)和每个anchor box是否有物体(二分类标签)。RPN网络将每个样本映射为一个概率值和四个坐标值,概率值反应这个anchor box有物体的概率,四个坐标值用于回归定义物体的位置。最后将二分类和坐标回归的损失统一起来,作为RPN网络的目标训练。 由RPN得到Region Proposal在根据概率值筛选后经过类似的标记过程,被传入R-CNN子网络,进行多分类和坐标回归,同样用多任务损失将二者的损失联合。 小结 Faster R-CNN的成功之处在于用RPN网络完成了检测任务的"深度化"。使用滑动窗口生成anchor box的思想也在后来的工作中越来越多地被采用(YOLO v2等)。这项工作奠定了"RPN+RCNN"的两阶段方法元结构,影响了大部分后续工作。 单阶段(1-stage)检测模型 单阶段模型没有中间的区域检出过程,直接从图片获得预测结果,也被成为Region-free方法。 YOLO 论文链接: You Only Look Once: Unified, Real-Time Object Detection YOLO是单阶段方法的开山之作。它将检测任务表述成一个统一的、端到端的回归问题,并且以只处理一次图片同时得到位置和分类而得名。 YOLO的主要优点: 快。 全局处理使得背景错误相对少,相比基于局部(区域)的方法, 如Fast RCNN。 泛化性能好,在艺术作品上做检测时,YOLO表现比Fast R-CNN好。 YOLO的工作流程如下: 1.准备数据:将图片缩放,划分为等分的网格,每个网格按跟Ground Truth的IoU分配到所要预测的样本。 2.卷积网络:由GoogLeNet更改而来,每个网格对每个类别预测一个条件概率值,并在网格基础上生成B个box,每个box预测五个回归值,四个表征位置,第五个表征这个box含有物体(注意不是某一类物体)的概率和位置的准确程度(由IoU表示)。测试时,分数如下计算: 等式左边第一项由网格预测,后两项由每个box预测,以条件概率的方式得到每个box含有不同类别物体的分数。 因而,卷积网络共输出的预测值个数为S×S×(B×5+C),其中S为网格数,B为每个网格生成box个数,C为类别数。 3.后处理:使用NMS(Non-Maximum Suppression,非极大抑制)过滤得到最后的预测框 损失函数的设计 损失函数被分为三部分:坐标误差、物体误差、类别误差。为了平衡类别不均衡和大小物体等带来的影响,损失函数中添加了权重并将长宽取根号。 小结 YOLO提出了单阶段的新思路,相比两阶段方法,其速度优势明显,实时的特性令人印象深刻。但YOLO本身也存在一些问题,如划分网格较为粗糙,每个网格生成的box个数等限制了对小尺度物体和相近物体的检测。 SSD: Single Shot Multibox Detector 论文链接: SSD: Single Shot Multibox Detector SSD相比YOLO有以下突出的特点: 多尺度的feature map:基于VGG的不同卷积段,输出feature map到回归器中。这一点试图提升小物体的检测精度。 更多的anchor box,每个网格点生成不同大小和长宽比例的box,并将类别预测概率基于box预测(YOLO是在网格上),得到的输出值个数为(C+4)×k×m×n,其中C为类别数,k为box个数,m×n为feature map的大小。 小结 SSD是单阶段模型早期的集大成者,达到跟接近两阶段模型精度的同时,拥有比两阶段模型快一个数量级的速度。后续的单阶段模型工作大多基于SSD改进展开。 检测模型基本特点 最后,我们对检测模型的基本特征做一个简单的归纳。 检测模型整体上由基础网络(Backbone Network)和检测头部(Detection Head)构成。前者作为特征提取器,给出图像不同大小、不同抽象层次的表示;后者则依据这些表示和监督信息学习类别和位置关联。检测头部负责的类别预测和位置回归两个任务常常是并行进行的,构成多任务的损失进行联合训练。 相比单阶段,两阶段检测模型通常含有一个串行的头部结构,即完成前背景分类和回归后,把中间结果作为RCNN头部的输入再进行一次多分类和位置回归。这种设计带来了一些优点: 对检测任务的解构,先进行前背景的分类,再进行物体的分类,这种解构使得监督信息在不同阶段对网络参数的学习进行指导 RPN网络为RCNN网络提供良好的先验,并有机会整理样本的比例,减轻RCNN网络的学习负担 这种设计的缺点也很明显:中间结果常常带来空间开销,而串行的方式也使得推断速度无法跟单阶段相比;级联的位置回归则会导致RCNN部分的重复计算(如两个RoI有重叠)。 另一方面,单阶段模型只有一次类别预测和位置回归,卷积运算的共享程度更高,拥有更快的速度和更小的内存占用。读者将会在接下来的文章中看到,两种类型的模型也在互相吸收彼此的优点,这也使得两者的界限更为模糊。

激光定位 GPS定位 合成孔镜雷达 电话定位 辐射源定位 干扰源定位

1.红外响应峰值目标定位方法.2.卫星遥感影像定位方法,3.猫眼效应激光侦察技术. 4.双孔径天线沿航迹向干涉SAR进行动目标检测、测速及定位的新方法.该方法在分析杂波对消必要性的基础上,给出了进行地杂波对消、动目标检测、径向速度分量估计及定位的原理和实现方法.在恒虚警处理后,通过比较杂波对消后的残差图像与原始图像中运动目标和静止目标对消幅度的差异,检测出运动目标.同时,可以利用残差图象中杂波的对消特性进行运动目标径向速度的估算以及目标的定位.这种检测方法具有良好的杂波对消性能,能够完成被地面背景杂波掩盖的运动目标的检测、测速及定位.计算机仿真结果验证了其有效性麻烦采纳,谢谢!

这样的论文很难找,给你本书《当代战争论》,军事高科技方面的估计也不会有什么会被公开的,顶多是信息站平台和常规战略武器,真正高科技那就是机密咯。看看海湾战争和两次伊战的书,现在的高技术武器,还没有脱离这几次战争,或者看看巴以战争的报道,都有新式的,几乎都是美国研制的武器。

本科生写算法研究类论文难吗

据学术堂了解,计算机毕业论文写作很简单,一篇计算机毕业论文是由八个部分组成,只要掌握了各个部分的写作方法,那么你就会觉得计算机毕业论文一点也不难。一、前言部分前言部分也常用“引论”、“概论”、“问题背景”等做标题,在这部分中,主要介绍论文的选题。首先要阐明选题的背景和选题的意义。选题需强调实际背景,说明在计算机研究中或部门信息化建设、企业管理现代化等工作中引发该问题的原因,问题出现的环境和条件,解决该问题后能起什么作用。结合问题背景的阐述,要使读者感受到此选题确有实用价值和学术价值,因而有研究和开发的必要性。前言部分常起到画龙点睛的作用。选题实际又有新意,表明作者的研究方向正确,设计开发工作有价值。对一篇论文来说,前言写好了,就会吸引读者,使他们对作者的选题感兴趣,愿意进一步了解作者的工作成果。二、综述部分任何一个课题的研究或开发都是有学科基础或技术基础的。综述部分主要阐述选题在相应学科领域中的发展进程和研究方向,特别是近年来的发展趋势和最新成果。通过与中外研究成果的比较和评论,说明自己的选题是符合当前的研究方向并有所进展,或采用了当前的最新技术并有所改进,目的是使读者进一步了解选题的意义。综述部分能反映出毕业设计学生多方面的能力。首先是结合课题任务独立查阅中外文献资料的能力,通过查阅文献资料,收集各种信息,了解同行的研究水平,在工作和论文中有效地运用文献,这不仅能避免简单的重复研究,而且也能使论文工作有一个高起点。其次,还能反映出综合分析的能力。从大量的文献中找到可以借鉴和参考的信息,这不仅要有一定的专业知识水平,还要有一定的综合能力。对同行研究成果是否能抓住要点,优缺点的评述是否符合实际,恰到好处,这和一个人的分析理解能力是有关的。值得注意的是,要做好一篇毕业论文,必须阅读一定量(2~3篇)的近期外文资料,这不仅反映自己的外文阅读能力,而且有助于体现论文的先进性。三、方案论证在明确了所要解决的问题和课题综述后,很自然地就要提出自己解决问题的思路和方案。在写作方法上,一是要通过比较,显示自己方案的价值,二是让读者了解方案的独到之处或有创新点的思路、算法和关键技术。在与文献资料中的方案进行比较时,首先要阐述自己的设计方案,说明为什么要选择或设计这样的方案,前面评述的优点在此方案中如何体现,不足之处又是如何得到了克服,最后完成的工作能达到什么性能水平,有什么创新之处(或有新意)。如果自己的题目是总方案的一部分,一定要明确说明自己承担的部分,以及对整个任务的贡献。四、论文主体在这部分中,要将整个研究开发工作的内容,包括理论分析、总体设计、模块划分、实现方法等进行详细的论述。论文主体部分要占4/5左右。主体部分的写法,视选题的不同可以多样,研究型论文和应用开发型论文的写法就有明显的不同。研究型的论文,主体部分一般应包括:理论基础,数学模型,算法推导,形式化描述,求解方法,软硬件系统的实现及调试,测试数据的分析及结论。 要强调的是,研究型论文绝不是从推理到推理的空洞文章。研究型论文也应有实际背景,也应有到企业和实际部门调研的过程,并在实际调查研究中获取信息,发现问题,收集数据和资料。在研究分析的基础上,提出解决实际问题的、富有创建性的结论。应用开发型的论文,主体部分应包括:总体设计,模块划分,算法描述,编程模型,数据结构,实现技术,实例测试及性能分析。以上内容根据任务所处的阶段不同,可以有所侧重。在整个任务初期的论文,可侧重于研究与设计,在任务后期的论文可侧重于实现与应用。但作为一篇完整的论文应让读者从课题的原理设计,问题的解决方法,关键技术以及性能测试都有全面的了解,以便能准确地评判论文的质量。论文主体部分的内容一般要分成几个章节来描述。在写作上,除了用文字描述外,还要善于利用各种原理图、流程图、表格、曲线等来说明问题,一篇条理清晰,图文并茂的论文才是一篇好的论文。五、测试及性能分析对理工专业的毕业设计论文,测试数据是性能评价的基础,必须真实可靠。通过测试数据,论文工作的成效可一目了然。根据课题的要求,可以在实验室环境下测试,也可以在工作现场测试。在论文中,要将测试时的环境和条件列出,因为任何测试数据都与测试环境和条件相关,不说明测试条件的数据是不可比的,因此也是无意义的。测试一般包括功能测试和性能测试。功能测试是将课题完成的计算机软硬件系统(子系统)或应用系统所要求达到的功能逐一进行测试。性能测试一般是在系统(子系统)的运行状态下,记录实例运行的数据,然后,归纳和计算这些数据,以此来分析系统运行的性能。测试实例可以自己设计编写,也可以选择学科领域内公认的、有一定权威性的测试实例或测试集。原则是通过所选择(设计)的实例的运行,既能准确反映系统运行的功能和性能,与同类系统又有可比性。只有这样,论文最后为自己工作所做的结论才有说服力。六、结束语这一节篇幅不大,首先对整个论文工作做一个简单小结,然后将自己在研究开发工作中所做的贡献,或独立研究的成果列举出来,再对自己工作的进展、水平做一个实事求是的评论。但在用“首次提出”、“重大突破”、“重要价值”等自我评语时要慎重。七、后记在后记中,主要表达对导师和其他有关教师和同学的感谢之意。对此,仍要实事求是,过分的颂扬反而会带来消极影响。这一节也可用“致谢”做标题。八、参考文献中外文的参考文献应按照规范列举在论文最后。这一部分的编写反映作者的学术作风。编写参考文献要注意:(1)要严格按照规范编写,特别是外文文献,不要漏写、错写;(2)论文内容和参考文献要前后对应,正文中凡引用参考文献的地方应加注;(3)列出的文献资料应与论文课题相关,无关的文献只会使读者感到作者的研究目标很分散;(4)选择的参考文献应主要是近期的。

不难,但现在很多人懒,好多选择半抄半写的!

因为算法类数据出错的概率很小。算法类论文具有探索性,经过文献调研后,针对某一领域欲解决的问题和存在的问题有一定的见解,产生出一个题目,利用自己所学的专业知识加以研究算法类讲究的是正确率和数据所以很少概率会出错,所以算法类论文容易通过是因为算法类数据出错的概率很小。这样做你的毕业论文会比较完整,内容丰富,算法方面基本可以不要求较大的创新。

自考本科毕业论文要求其实不是很高,比一般的本科要求低,只要认真写,基本都可以过去。我写作论文八年多来,接待了上百个自考的朋友,感觉难度不是很大,完全可以自己写的。最重要的就是重复率的问题,这是一个有些难度的工作,要努力啊。要是有需要写作的话,我可以做的。希望对你有用处,自己努力吧

  • 索引序列
  • 本科生目标检测算法研究论文
  • 目标检测科研论文
  • 计算机本科毕业论文答辩目标检测
  • 军事目标检测方法与研究论文
  • 本科生写算法研究类论文难吗
  • 返回顶部