首页 > 学术发表知识库 > 乳粉检测论文

乳粉检测论文

发布时间:

乳粉检测论文

据香港无线新闻网8月17日报道,香港特区政府消费者委员会检验市面上15款婴儿配方奶粉,发现100%含有污染物氯丙二醇。

其中含量最高的是“BELLAMY'S ORGANIC”,每公斤含有120微克氯丙二醇,超出欧洲食物安全局的建议摄入限量。

另外,15款奶粉中的9款亦验出基因致癌物环氧丙醇,所幸含量均低于欧盟上限。

我们先来认识一下这两种有害物质氯丙二醇及环氧丙醇。

氯丙二醇(3-MCPD)是氯丙醇类污染物中最重要的代表性物质,具有生殖、肾脏和神经毒性以及潜在的致癌作用和致突变作用。

动物实验证明,氯丙二醇对Fischer 344大鼠致癌,对SD大鼠和B6C3F1小鼠的肾脏、睾丸和卵巢均有特异性的损伤。

氯丙二醇以其游离形式或以脂肪酸的酯化形式存在,在食物中往往是以“氯丙二醇脂肪酸酯(3-MCPDE)”的形式存在。

比如在精炼植物油和富含油脂食品中,氯丙二醇酯的含量远高于其游离态的氯丙二醇。氯丙二醇酯本身的毒性并不明显,但在体内代谢过程中水解产生氯丙二醇,从而对人体产生不良影响。

经检测,多种食物中均有氯丙二醇酯的身影,比如面包、咖啡精炼植物油、婴幼儿奶粉、咸饼干、麦芽制品、炸薯条、甜甜圈等,甚至在母乳中也检测到氯丙二醇酯,但含量极低。含量在安全范围内则对人体的 健康 不造成损害。

联合国粮农组织和世界卫生组织下的食品添加剂联合专家委员会规定氯丙二醇每日最大耐受量2 μg/kg体重。也就是说,一个10斤重的宝宝,氯丙二醇每日摄入量不超过10 μg都是安全的。

不过欧盟食品安全局(EFSA)的规定更为严格,在2016年最新制定的3-MCPD的每日最大耐受量为0.8 μg/kg。

环氧丙醇,又称缩水甘油。环氧丙醇是世界卫生组织公布的2A类致癌物,具有一定基因毒性和致癌性。

2A类致癌物,是指该物对人体很可能致癌但证据有限,对实验动物的致癌性证据充分。

在谷物、鱼、肉制品、马铃薯、坚果和以植物油为原料的热加工油脂食品中多以缩水甘油脂的形式存在。

缩水甘油脂酯(GE)本身的毒性也不明显,在体内代谢过程中水解产生缩水甘油,产生毒性。

另外,缩水甘油酯在一定条件下也能转化成氯丙二醇酯,继而形成氯丙二醇。

2019年,香港消费者委员会公布了一份针对市面上58款曲奇和甜酥饼样本的调查报告,其中大部分都检测出存在一定量的2A类致癌物:环氧丙醇和丙烯酰胺。

我国内地近年来也启动了对氯丙二醇及环氧丙醇的监测。2015年开始启动氯丙二醇脂(3-MCPDE)的风险监测工作,自2017年开始启动缩水甘油酯(GE)的风险监测工作。

中粮营养 健康 研究院有限公司,营养 健康 与食品安全北京市重点实验室的王风艳等发表论文“食用油加工过程中3-氯丙醇酯和缩水甘油酯生成及脱除研究”,其研究了12种共计74批次市售食用油中3-氯丙醇酯(3-MCPDE)和缩水甘油酯(GE)污染情况。发现12种食用油中3-MCPDE和GE的检出率为100%,其中3-MCPDE含量范围为0.234~12.212 mg/kg,GE含量范围为0.196~10.891 mg/kg。以米糠油及棕榈油中的含量为最高。

由于在婴幼儿配方奶粉中的需要使用棕榈油、菜籽油等精炼植物油,以提供婴儿发育所需的脂肪酸,导致婴幼儿配方奶粉中也存在一定程度的氯丙二醇酯及缩水甘油酯污染。

不过目前我国尚未制定婴幼儿配方奶粉以及其他食品中氯丙二醇酯的限量。国内部分乳粉企业自行对原料油中3-MCPDE和GE设定了严格限量,以降低奶粉中氯丙二醇酯的含量。

答案是显而易见的,国产奶粉同样含有氯丙二醇酯。

上海市质量监督检验技术研究院的张妮等发表的论文“婴幼儿配方奶粉中氯丙醇脂肪酸酯的检测方法优化与污染暴露”就指出,在50 份婴幼儿配方奶粉样品(国产奶粉33 份,进口奶粉17 份)中,3-MCPDE检出率为100.0%,含量为37~208 μg/kg。

高者比香港此次检出含量最高的“BELLAMY'S ORGANIC”(每公斤含有120微克氯丙二醇)还要更高!(注:香港消费委员把氯丙二醇与氯丙二醇脂等同处理)

其中0~6 月龄奶粉15 份、6~12 月龄奶粉18 份、12~36 月龄奶粉17 份。由于0~6 月龄的宝宝所需脂肪酸含量大于6~12、12~36 月龄,导致0~6 月龄奶粉中的氯丙二醇酯含量最高。

对于将配方奶粉作为主要营养来源的婴幼儿来说,氯丙二醇酯摄入的 健康 风险问题应该引起国家及相关奶粉生产厂家重视。为了保护婴幼儿的 健康 ,国家应将氯丙二醇脂的检测纳入到必查项目中,对超标企业雷霆打击。生产厂家也应慎重选择原料,尽可能降低婴幼儿配方奶粉中氯丙醇酯的污染。让婴幼儿吃得安全、长得 健康 !

参考文献:

1.张妮, 周静, 胡守江等. 婴幼儿配方奶粉中氯丙醇脂肪酸酯的检测方法优化与污染暴露[J]. 食品科学, 2019, 第40卷(10):311-317.

2.王风艳, 程倩, 陈焱等. 食用油加工过程中3-氯丙醇酯和缩水甘油酯生成及脱除研究[J]. 中国油脂, 2020, 第45卷(5):48-52.

#香港:9款婴幼奶粉含致癌物##营养的真相#

粉尘检测论文结论

电除尘是利用高压电源产生的强电场发生电晕放电,使悬浮尘粒在电场力的作用下,将悬浮尘粒从气体中分离出来的技术。下面是我精心推荐的电除尘技术论文,希望你能有所感触!

减排节能电除尘新技术应用研究

【摘要】本文从电除尘器技术发展现状、减排节能电除尘新技术,以及其他技术这三个方面对减排节能电除尘新技术应用研究进行阐述。

【关键词】减排节能;电除尘技术;应用;研究

中图分类号: TE08 文献标识码: A

一、前言

随着科学技术的不断发展,为了更好的进行节能减排,并且减少污染物的排放,节能减排电除尘新技术得到了广泛的应用。

二、电除尘器技术发展现状

我国全面系统地对电除尘器技术进行研究和开发始于上个世纪60年代。在1980以前,我国在国际电除尘器领域还处于非常落后的地位。改革开放以来,我国国民经济持续不断地高速增长,环境保护对国民经济的可持续发展显得愈来愈重要。受市场经济下的利益驱动,国内许多大、中型环保产业对电除尘器进行技术研究和开发方面的投入不断加大,电除尘器的应用得到了长足的发展。国家更是将高效电除尘器技术列入“七五”国家攻关项目。通过对引进技术的消化、吸收和合理借鉴,到上世纪90年代末,我国电除尘器技术水平基本上赶上国际同期先进水平。

进入21世纪以后,我国把“大力推进科学技术进步,加强环境科学研究,积极发展环保产业”作为经济发展的重要相关政策,环保产业进一步得到重视。随着国家对污染控制要求的不断提高,对粉尘排放的要求也大幅提高。电除尘器作为控制大气污染、解决环保与经济发展之间的矛盾的主要设备之一,其应用技术进一步得到飞速发展。

目前,电除尘器已广泛应用于火力发电、钢铁、有色冶金、化工、建材、机械、电子等众多行业。我国作为世界电除尘器大国立足于国际舞台,不仅在数量上,而且在技术水平上都已进入国际先进行列。电除尘器技术从设备本体到计算机控制的高低压电源,以及绝缘配件、振打装置、极板极线等已全部实现国产化,并且已有部分产品出口到30多个国家和地区。

在1980年以前,我国电除尘器的规模绝大多数都在100m2以下,而其行业占有量为有色冶金行业32% ,钢铁行业30% ,建材行业18% ,电力行业8% ,化工行业5% ,轻工行业4% ,其他行业0% 。

随着我国经济的飞速发展,尤其是电力、建材水泥行业的发展达到空前水平,到上世纪90年代中期,电除尘器行业占有量的格局已改变为:电力行业72% ,建材水泥行业17% ,钢铁行业5% ,有色冶金行业3% ,其他行业3% 。目前火力发电行业的电除尘器用量已占全国总量的75% 以上,648m2的电除尘器已在100MW的火电厂中成功运行。在化工行业,由于受国际硫磺价格的影响,从上世纪90年代中期采用硫磺制酸工艺取代硫铁矿制酸工艺的企业急剧上升,使得电除尘器的行业占有量也随之大幅下降,直到近两年才有触底反弹的迹象。

三、减排节能电除尘新技术

1、余热利用提效技术

在火力发电中,由于煤粉变粗、煤的含水量过多等因素很容易造成锅炉排放的烟雾温度过高,很大程度地降低了电除尘器的工作效率。煤烟温度的过高对电除尘器的影响主要表现在:

1)高温烟雾会增加烟气量,同时使得电场的风速增加,造成烟尘经过电除尘器的处理时间变短,降低除尘效率。

2)高温烟雾也会降低电场的击穿电压,增加了气体分子间的间隙,不利于电子与之碰撞,从而造成电离效应增加,降低除尘效率。

3)容易形成反电晕(除尘器极板上高比电阻尘产生的局部放电),早晨尘粉二次飞扬,降低除尘效率。

2、高频供电技术

火电厂使用的电源主要为工频段在50Hz 的常规电源,而高频电源对电子和微电子等技术的应用,利用波形转换可以满足电除尘电力要求的同时,有很多优点:

1)提高效率。如果给电除尘器使用高频电源,利用高频电源的电气特性以及放电的性能,可以将电除尘的效率提高很多倍,同时还能降低烟气的排放量。

2)节能。同样利用高频电源的一些特性,可以将电除尘的效率因数提高至0.9,更加的节省能源消耗。

3)体积小,使用便捷。普通的电源在制作中由于工艺的局限性,很难在现有的基础上将体积进一步缩小。而高频电源则因使用的变压器与控制系统集成的技术,体积很小,在安装中可以考虑安装在电除尘器的顶部。集成化的特点也决定了其可以使用更少的电缆,也更加节省空间。

4)绿色环保。高频电源采用了三相电源供电的方法,使用起来对整个电网的影响小,其最大的特点还是无缺相的损耗以及无污染,同时在电路的设计中增加了短路、开路、超温保护等功能,完全可以在十分恶劣的条件下使用。

3、三氧化硫调质技术

三氧化硫是火电厂烟气的主要污染物之一,所以在电除尘技术中如果能减少三氧化硫的排放量,或者能进一步减小排放的三氧化硫对环境的污染,才能达到国家减排的要求。三氧化硫烟气调质技术可以将一定量的三氧化硫与烟气中的少量水分通过一定手段结合成酸气溶胶,这种溶胶在通过除尘器的时候能够轻易地吸附于粉尘表面,从而达到电除尘的效率。

4、低二次扬尘技术

低二次扬尘技术主要是为了解决在电除尘过程中烟气在电风作用下产生的二次扬尘带来的除尘效率低的问题。低二次烟尘技术主要有以下几种措施:

1)对电除尘器内部的振打机构进行一定的改进,优化振打工作的程序,通过合理配置振打的强度以及去除不必要的振打来降低二次扬尘的浓度,让聚集在极板上的粉尘聚成块状而脱落。

2)对电场进行改进来克服高流速下的二次扬尘。目前使用的对电场的改进主要有使用高频电源来减少电晕闭塞,增加电场的工作效率;在电场中增加变阻流格栅,减少扬尘量;增加电场的面积来扩大对烟气流通的阻断作用范围,进一步降低风速。

5、气流分布技术

在对火电厂电除尘技术进行改进的时候,出了对于烟尘成分的研究,还出现了一种气流分布的新技术。这种技术是考虑了在大型的电除尘器中气流分布和浓度分布对于排放量的影响。

为了解决这种气流分布不均带来的影响,气流分布技术从最原始的检测分析入手,通过对电除尘器内部的结构以及气道中气流分布装置的安装情况进行研究,经过一系列的实验来找到影响气流分布的原因,从而对症下药。这种技术主要是通过复杂的运算来找出修正的方案,可以有效保证气流室内的气流分配均匀,最大限度地提高电除尘的效率。

四、其他技术

1、机电多复式双区电收尘技术

常规的电除尘器粉尘荷电与收尘功能是在同一个电场内完成,电场场强往往受荷电电压限制,使电除尘效果不能得到最佳发挥。这里提供一种阴阳极分小区布置、复式组合的机电多复式双区收尘电场新型产品技术,根据设计要求,可沿电场长度方向设置2~3 组荷电与收尘小区并呈复式交错布置。

2、节能电控提效技术

主要是通过对不同煤种、不同工况、不同负荷条件下的各种运行数据的分析、归纳和总结,对电场动态伏安曲线族与工况特性变化的关系规律进行对比和分析,建立不同的工况特性分析诊断的数学模型,基于该模型可以可靠地计算出电除尘器的反电晕指数和常电晕指数,正确地反映整台电除尘器的工况状态和变化趋势。结合锅炉负荷、烟气量、烟气温度、吹灰信号等多种信号;自动分析、诊断电场工况;实时自动选择高压供电的供电占空比和运行参数;实现综合节能,使电除尘器始终运行在功耗最小、效率最高状态。

3、湿法电收尘技术

湿法电除尘器采用洗涤电极的方法,可确保电极清洁,并可有效捕集细微粉尘、去除 SO3及一些重金属等,主要应用在冶金环境除尘等常温型工况场合。用在燃煤锅炉湿法脱硫后,可捕集逃逸的 PM2.5 细微粉尘等,有效解决石膏雨等问题,实现近似零排放。但要注意解决好设备防腐以及废水循环处理。

4、全布袋技术和电加袋技术

全布袋除尘工艺不仅在技术上可行,且具有投资省、占地少、运行费用低等优势,是符合我国特点的新技术,是典型的节能环保工程。电加袋除尘器由电除尘器改造而成,改善了电除尘器的除尘效率收粉尘“比电阻”的影响很大,除尘效率低的缺点。

五、结语

总的来说,各种新技术的不断被研发和应用,极大地促进了节能减排技术的发展,在一定程度上减少了颗粒污染物的排放,促进了生活环境的改善。

参考文献

[1]胡� 减排节能电除尘新技术应用研究 [J] 《城市建设理论研究(电子版)》 -2013年9期-

[2]罗如生,廖增安,陈丽艳 满足新标准采用电除尘新技术改造的应用与分析 [J] 《电力科技与环保》 -2012年4期-

[3]顾范华 燃煤电厂电除尘技术的评估研究和应用 [J] 《电源技术应用》 -2013年3期-

[4]文杰 减排节能电除尘新技术的应用分析 [J] 《建筑遗产》 -2013年17期-

点击下页还有更多>>>电除尘技术论文

ctwa指的是现场检测结果的时间加权平均容许浓度。

粉尘

粉尘,是指悬浮在空气中的固体微粒。习惯上对粉尘有许多名称,如灰尘、尘埃、烟尘、矿尘、砂尘、粉末等,这些名词没有明显的界限。国际标准化组织规定,粒径小于75μm的固体悬浮物定义为粉尘。在大气中粉尘的存在是保持地球温度的主要原因之一。

粉尘,是指悬浮在空气中的固体微粒。习惯上对粉尘有许多名称,如灰尘、尘埃、烟尘、矿尘、砂尘、粉末等,这些名词没有明显的界限。国际标准化组织规定,粒径小于75μm的固体悬浮物定义为粉尘,在大气中粉尘的存在是保持地球温度的主要原因之一,大气中过多或过少的粉尘将对环境产生灾难性的影响。

粉尘几乎到处可见,土壤和岩石风化后分裂成许多细小的颗粒,它们伴随着花粉,孢子以及其他有机颗粒在空中随风飘荡,除此之外,许多粉尘乃是工业和交通运输发展的副产品,烟囱和内燃机排放的废气中也含有大量的粉尘,面粉,采石场等的作业引起的,火山爆发的火山灰。

由于粉尘与其他块状固体不同,粉尘是许多细小颗粒的集合体。按照物质密度的定义是单位体积的物质质量,但是粉尘的体积与其他固体物质的体积不同,粉尘的松体积包括了尘粒的颗粒体积、粉尘粒子之间的空隙体积、某些尘粒外开口和内闭孔及附面膜体积等5部分。

工作中遇到一个好玩的事情,有个客户找我们测无机磷,说是有员工做无机磷的体检,查出肝有问题,但是医生说这很可能是由生活习惯导致的,客户怕有纠纷,希望我们去检测无机磷(期望测不出),来证实没有「磷及其化合物」这项危害因素。

在做检测方案的时候,我就发愁了,客户提供给我们的抗氧剂、阻燃剂(粉末状)MSDS里确实有含磷化合物,但含磷的部分都是磷酸根、聚磷酸根。宽泛地说,确实符合《职业病危害因素分类目录》2015年版里的「磷及其化合物(磷化氢、磷化锌、磷化铝、有机磷除外)」,但是根据CAS查遍国内外所有能查的接触限值,没有一个物质是有接触限值的。

我不禁陷入了沉思,一没有对应限值,也查不到对人体有危害,二没有办法分别计算出各种磷化合物的量(原吸只能测出磷元素的量),三如果只是测磷元素,那多半测的出来,因为确实含磷。那我们测「磷及其化合物」意义何在?

请原谅我前面长长的铺垫,下面进入正题。

在我跟boss反馈了这个问题后,boss一语惊醒梦中人,“那就当做「妞森斯dust」来测啊”。

我不经又陷入了沉思,「妞森斯dust」到底是个啥?赶紧搜索起来。

「妞森斯dust」原来是 nuisance dust。

上段的大意就是nuisance particulate(也叫nuisance dusts)是ACGIH曾经用来描述,在合理控制的暴露下,对肺仅有一点点影响,不导致重大疾病和有害作用的空气中的物质(固体或液体)。

Also called "biologically inert" dusts and "particulates not otherwise classified" (PNOC), the lung-tissue reaction caused by nuisance dusts is characterized by 1) Air space architecture remaining intact. 2) Collagen (scar tissue) not forming to a significant extent. 3) Tissue reaction is potentially reversible.

Nuisance dusts也叫做生物惰性粉尘或者未分类粉尘,由该粉尘引起的肺组织反应具有以下特点:1)空中结构保持完好。2)胶原(瘢痕组织)不能达到显着的程度。3)组织反应是潜在可逆的。

这段看起来是不是和GBZ 2.1上「其他粉尘」的定义特别像?

那么问题来了,那么PNOR(Particulates Not Otherwise Regulated)和PNOS(Particles Not Otherwise Specfied) 又是什么呢?

还是看ACGIH 2017 TLVs and BELs的小册子里的定义。(鉴于英文太长,可直接看中文)

There are many insoluble particles of low toxicity for which no TLV@ has been established. ACGIH@ believes that even biologically inert, insoluble, or poorly soluble particles may have adverse effects and suggests hat airborne concentrations should be kept below 3 mg/m 3 , respirable particles, and 10 mg/m 3 , inhalable particles, until such time as a TLV@ is set for a particular substance. A description of the rationale for his recommendation and he citeria tr substances to which it pertains are provided in Appendix B.

还是有很多低毒不溶颗粒物没有建立TLV,ACGIH认为,即使他们是惰性的、不溶的或难溶的,还是会产生有害作用,因此建议把浓度控制在3mg/m 3 以下(呼吸性粉尘),10mg/m 3 以下(可吸入粉尘,暂且理解为国内的总尘吧,毕竟总尘是total dust,不好说可吸入粉尘就是总尘)。

ACGIH对它的定义:

讲真,这段定义跟国内其他粉尘不是很像。我认为不能等同于国内的其他粉尘。

在 [29 CFR 1910.1000]里查到这样一个注释: All inert or nuisance dusts, whether mineral, inorganic, or organic, not listed specifically by substance name are covered by the Particulates Not Otherwise Regulated (PNOR) limit which is the same as the inert or nuisance dust limit of Table Z-3.

所有的惰性粉尘,无论是无论是矿物的、无机的、或是未被列入[29 CFR 1910.1000]的,都可称为Particulates Not Otherwise Regulated (PNOR),而PNOR的限值同惰性粉尘(Z-3表格)。

查东西的过程真是像剥洋葱,一层套一层。最后搞清楚了,Z-1表格里规定了PNOR的限值,15mg/m 3 (总)、5mg/m 3 (呼),Z-3表格里规定了惰性粉尘(nuisance dusts)的限值,也是15mg/m 3 (总)、5mg/m 3 (呼)。

从定义上看,惰性粉尘(nuisance dusts)=PNOC(未分类粉尘)=PNOR(其他粉尘)=国内的其他粉尘,而PNOS(非指定粉尘)与他们有些许不同。

那么从限值上看,PNOR(其他粉尘)等同于惰性粉尘(nuisance dusts),而PNOS(非指定粉尘)的TLV值,是低于PNOR和惰性粉尘的接触限值的。而且要注意的是,PNOR和nuisance dusts是合规的,OSHA制定的,PNOS只是ACGIH的推荐值,不具有法律效益。

有害粉尘或惰性粉尘可定义为包含少于1%石英的粉尘。由于硅酸盐含量低,很久以来大家都认为,惰性粉尘对肺只有微乎其微的不良影响,惰性粉尘导致的任何反应都是可逆的。然而,工作场所中过量的有害粉尘会降低能见度(例如氧化铁),可能导致眼睛,耳朵和鼻腔(例如水泥尘)沉积物,并可能通过化学或机械作用,导致皮肤或粘膜受伤。

过去20年的研究表明,以前被认为是惰性粉尘的许多粉尘可能会导致慢性阻塞性肺病(COPD)或长期暴露的其他慢性肺部疾病。慢性阻塞性肺病往往是渐进的,并且可逆性很差。

尽管COPD最大的负担是吸烟的后果,但英国健康与安全执行委员会(HSE)表示,“越来越多的研究证据表明COPD可能由工作中的粉尘,烟雾和刺激性气体造成或恶化” 。他们认为,在英国,“约15%的COPD可能与工作有关; 每年4000例COPD死亡可能与工作暴露有关; 40%的COPD患者低于退休年龄; 四分之一以下退休年龄的人根本无法工作"。

低毒性粉尘包括所有溶解性差的非纤维性粉尘,在低水平暴​​露时,对机体的毒性作用可忽略不计,但如果吸入量足够,则会积聚并导致末端气道和近端肺泡的损伤,导致炎症随后COPD的发展,至少对于煤矿工人来说,是尘肺病。 根据这一定义,低毒性粉尘包括各种各样的材料,其中一些如硫化钡粉尘具有职业接触限值(OEL),但许多材料没有。低毒性粉尘包括含有无定形二氧化硅,硅,碳化硅,粉煤灰,石灰石,石膏,石墨,氧化铝,二氧化钛,低结晶性二氧化硅含量的其他矿物粉尘,和不含有害细菌或生物毒素(如内毒素)的有机粉尘的混合物, 但有一类例外,比如面粉,因为它的生物成分被认为是有害的。由于在肺中停留时间短,可溶性粉尘不在此定义范围内。

我们建议术语惰性粉尘不应该用于低毒性粉尘,因为它错误地暗示暴露不会引起任何健康问题。这已经在许多国家得到实施,其中诸如“非指定粉尘”(PNOS)等术语被替代。

在过去的40年中,低毒性粉尘的OEL发生了变化。在1969年,在英国,政府采取了ACGIH“惰性颗粒”(含有<1%结晶二氧化硅的粉尘)阈限值(TLV ® )为15mg/m 3 。到1974年,限值减少到10mg/m 3 ,到1980年,之前10mg/m 3 的限值保留,并加入了5mg/m 3 (呼吸性粉尘)限值。

今天,ACGIH建议把10mg/m 3 (可吸入粉尘)和3mg/m 3 (呼吸性粉尘)作为可吸入的不溶或难溶的颗粒(PNOS)的指南(请注意,不是TLV),尽管没有规定采样时长,但可以假设ACGIH是希望把这个指南作为8h TLV-TWA的。

其他粉尘(PNOR,包括惰性粉尘,虽然惰性粉尘这个概念不用了)是一类概念,是OSHA、GBZ认可的,具有检测方法和接触限值的合规概念。 OSHA限值就是15mg/m 3 (总)、5mg/m 3 (呼)。 国内是8mg/m 3 (总)。 根据以上论文的观点,其他粉尘或是惰性粉尘的说法不建议用在低毒性粉尘上,因为它错误地暗示暴露不会引起任何健康问题。

而ACGIH不讲其他粉尘,他们提倡PNOS(非指定颗粒)(好像是2003年引入的),PNOS的概念为: 1、仅用于没有适用TLV的 2、不溶或难溶于水(或最好是在有水的肺里,如果有相关数据的话) 3、低毒(无细胞毒性、遗传毒性、或与正常肺组织发生化学反应,也不会产生电离辐射,不会导致免疫致敏,除炎症或“肺过载”机制外不会引起毒性作用)

ACGIH建议把10mg/m 3 (可吸入粉尘)和3mg/m 3 (呼吸性粉尘)作为PNOS的指导值,所以PNOS没有接触限值,没有检测方法,也不是合规的概念。

ACGIH是一直走在行业前端的专业协会,说不定哪天我国也采用了ACGIH的说法,用PNOS替代了其他粉尘,也说不定呢:)

磁粉无损检测论文

概述:磁粉检测就是利用上面的磁现象来发现铁磁性材料或工件表面及近表面缺陷的方法。当铁磁性工件放在使其饱和的磁场中时,磁力线便会被引导通过工件。如果磁力线遇到工件材料上的不连续(即裂纹、夹渣、气孔等缺陷),而磁力线为了保持自己的连续性,则必须绕过这些缺陷,形成漏磁通。若这些缺陷位于材料的表面或近表面,但由于工件中的磁力线已达到饱和状态,则磁力线就会绕过这些磁导率较低的(磁阻较大)区域而泄漏出工件表面形成“漏磁场”。这样在缺陷的两侧便会产生磁极,将磁粉(或磁悬液) 喷洒于有缺陷工件表面,则缺陷磁极吸引磁粉,便可形成明显可见的线状或点状堆积磁痕。发展史:1)发现人们发现磁现象比电现象要早,远在春秋战国时期,我国劳动人民就发现了磁石吸铁的现象,并用磁石制成了“司南勺”,在此基础上制成的指南针是我国古代的伟大发明之一,最早应用于航海业。2)奠定理论17世纪法国物理学家对磁力作了定量研究。19世纪初期,丹麦科学家奥斯特发现了电流周围也存在着磁场,与此同时,法国科学家毕奥、萨伐尔及安培,对电流周围磁场的分布进行了系统的研究,得出了一般规律。生长于英国的法拉第首创了磁感应线的概念。这些伟大的科学家在磁学史上树立了光辉的里程碑,也给磁粉检测的创立奠定了理论基础。3)发明早在18世纪,人们就已开始从事磁通检漏试验。1868年,英国工程杂志首先发表了利用罗盘仪和磁铁探查磁通以发现炮(枪)管上不连续性的报告。8年之后,Hering利用罗盘仪和磁铁来检査钢轨的不连续性,获得了美国专利。1918年,美国人Hoke发现,由磁性夹具夹持的硬钢块上磨削下来的金属粉末,会在该钢块表面形成一定的花样,而此花样常与铜块表面裂纹的形态相一致,被认为是钢块被纵向磁化而引起的,它促使了磁粉检测法的发明。1928年,de Forest为解决油井钻杆的断裂失效,研制出周向磁化法,还提出使用尺寸和形状受控并具有磁性的磁粉的设想,经过不懈的努力,磁粉检测方法基本研制成功,并获得了较可靠的检测结果。4)成功应用1930年,de Forest和Doane将研制出的干磁粉成功应用于焊缝及各种工件的探伤。5)磁粉探伤机问世1934年,生产磁粉探伤设备和材料的MagnaHux (美国磁通公司)创立,对磁粉探伤机的应用和发展起了很大的推动作用。在此期间,首次用来演示磁粉检测技术的一台实验性的固定式磁粉探伤机装置问世。磁粉检测技术早期被用于航空、航海、汽车和铁路等部门,用来检测发动机、车轮轴和其他高应力部件的疲劳裂纹。20世纪30年代,固定式、移动式磁粉探伤机和便携式磁粉探伤仪相继研制成功,并得到应用和推广,退磁问题也得到了解决。1935年,油磁悬液在美国开始使用。6)现状二十世纪的今天,磁粉检测已经被大范围的使用,各国对磁粉检测非常重视,作为无损检测设备中,检测成本最低、安全性最高的磁粉检测设备,被各行业大量的使用。

不属于特种设备的。但是这个是特种设备检测的一种设备。。。呵呵你可以看看特种设备的定义:第二条 本条例所称特种设备是指涉及生命安全、危险性较大的锅炉、压力容器(含气瓶,下同)、压力管道、电梯、起重机械、客运索道、大型游乐设施和场(厂)内专用机动车辆。

应该是吧 有辐射

磁粉探伤是一种表面探伤方法。适用于探测钢铁等磁性材料制成的被检物表面和近表面缺陷。其基本原理是铁磁性材料和工件被磁化后,由于不连续性的存在,使工件表面和近表面的磁力线发生局部畸变而产生漏磁场,吸附施加在工件表面的磁粉,形成在合适光照下目视可见的磁痕,从而显示出不连续性的位置、形状和大小。磁粉探伤的优点:a)能直观显示缺陷的形状、位置、大小和严重程度,并可大致确定缺陷的性质。b)具有高灵敏度,磁粉在缺陷上聚集形成的磁痕有放大作用,可检出缺陷的最小宽度约0.1μm ,能发现深度约10μm的微裂纹。c)适应性好,几乎不受试件大小和形状的限制,综合采用多种磁化方法,可检测工件上的各个方向的缺陷。d)检测速度快,工艺简单,操作方便,效率高,成本低。磁粉探伤的缺点:对被检测件的表面光滑度要求高,对检测人员的技术和经验要求高,检测范围小检测速度慢。

粉尘检测相关论文

必须选择那些确凿的、典型的事实。引用经过实践检验的理论材料作为论据时,必须注意所引理论本身的精确涵义。②典型性。引用的事例应该具有广泛的代表性,代表这一类事物的普遍特点和一般性质。③论据与论点的统一。论据是为了证明论点的,因此,两者联系应该紧密一致。

淀粉酶活性检测论文

【方法】 1.酶液提取:称取25℃下萌发3~4天的小麦种子1.0g(芽长1.0~1.5cm),置研钵中,加少量石英砂和2ml蒸馏水,研磨成匀浆后转入离心管中,用7ml蒸馏水分次将残渣洗入离心管提取液在室温下放置提取15~20min,每隔数分钟搅动1次,使其充分提取。 然后在3000rpm转速下离心10min,将上清液倒入50ml容量瓶中,加蒸馏水定容至刻度,摇匀,即为淀粉酶原液。吸取上述淀粉酶原液5ml,放入50ml容量瓶中,用蒸馏水定容至刻度摇匀,即为淀分酶稀释液。 2.麦芽糖标准曲线制作:取7支干净的具塞刻度试管,编号,按表33-1加入试剂。 表33-1 制作麦芽糖标准曲线配方表 试 剂 管 号 1 2 3 4 5 6 7 麦芽糖标准液(ml) 0 0.2 0.4 0.8 1.2. 1.6 2.0 蒸馏水(ml) 2.0 1.8 1.6 1.2 0.8 0.4 0 麦芽糖含量(mg) 0 0.2 0.4 0.8 1.2 1.6 2.0 3,5-二硝基水杨酸(ml) 2 2 2 2 2 2 2 摇匀,置沸水中浴中煮沸5min。取出后流水冷却,加蒸馏水定容至20ml。以1号管作为空白调零点,在540nm波长下比色测定。以麦芽糖含量为横坐标,吸光度值为纵坐标,绘制标准曲线。 3.酶活力的测定:取6支干净的具塞刻度试管,编号,按表33-2进行操作。 表33-2 配活力的测定配方表 操作项目 管 号 Ⅰ-1 Ⅰ-2 Ⅰ-3 Ⅱ-1 Ⅱ-2 Ⅱ-3 淀粉酶原液(ml) 1.0 1.0 1.0 0 0 0 钝化β-淀粉酶 置70℃水浴中15min,取出后在流水中冷却 淀粉酶稀释液(ml) 0 0 0 1 1 1 DNS试剂(ml) 2.0 0 0 2.0 0 0 预保温 40℃恒温水浴中保温10min 1%淀粉溶液(ml)(40℃) 1.0 1.0 1.0 1.0 1.0 1.0 保温 40℃恒温水浴中准确保温5min DNS试剂(ml) 0 2.0 2.0 0 2.0 2.0 摇匀,置沸水浴中5min,取出后冷却,加蒸馏水至20ml。摇匀,在540nm波长下比色,记录测定结果。 4.结果计算:用Ⅰ-2、Ⅰ-3吸光度平均值与Ⅰ-1吸光度值之差,在标准曲线上查出相应的麦芽糖含量(mg),再按下式计算α-淀粉酶的活力(Aα),淀粉酶活性以麦芽糖mg·g-1·min-1表示: Aα= Ⅱ-2、Ⅱ-3吸光度平均值与Ⅱ-1吸光度值之差,在标准曲线上查出相应的麦芽糖含量(mg),按下式计算(α+β)-淀粉酶总活力AT: AT= 式中 A—淀粉酶活性,Aα为α-淀粉酶的活性,AT为淀粉酶总活性,主要是α、β淀粉酶的活性; Cα—α-淀粉酶水解淀粉生成的麦芽糖量(查标准曲线求值,以下同); CT—(α+β)淀粉酶共同水解淀粉生成的麦芽糖量; V1—显色所用酶液体积(ml); t—酶作用时间(min); Vt—样液稀液总体积(α-淀粉酶为50ml,α+β淀粉酶为500ml); FW—样品鲜重(g)。

你好,你是想问实际工作淀粉酶活性的测定必要性是什么吗?实际工作淀粉酶活性的测定必要性是反映酶活力。在实际工作中测定淀粉酶的活性具有重要的意义,淀粉酶普遍存在于植物体内,特别是萌发后的禾谷类种子淀粉酶活性最强,其活性高低可以衡量种子萌发速率,当测定了淀粉酶活性就可以必要的反映酶活力,可了解底物的降解速率。淀粉酶是水解淀粉和糖原的酶类总称,通常通过淀粉酶催化水解织物上的淀粉浆料,由于淀粉酶的高效性及专一性,酶退浆的退浆率高,退浆快,污染少,产品比酸法、碱法更柔软,且不损伤纤维。

药学毕业论文开题报告篇3 题 目 名 称: 番泻叶对小鼠尿量的影响 研究现状: 一、普鲁兰酶 普鲁兰酶(Pullulanase,EC.3. 2. 1. 41)是一种能够专一性切开支链淀粉分支点中的α-1.6糖苷键,从而剪下整个侧枝,形成直链淀粉的脱支酶。普鲁兰酶还可以分解普鲁兰多糖,普鲁兰酶来源于微生物,R-酶则来源于植物。普鲁兰酶最初是由Bender和Wallenfels于1961年通过产气气杆菌Aerobacter. aerogenes}(典型菌为肺炎克雷伯氏杆Klebsiella.pneumoniae)发酵获得,他们报道了该酶良好的酶学性能。之后,各国的科研人员经过广泛深入研究,从不同的地区、微生物中获得该酶,掀起了开发普鲁兰酶的高潮。 在淀粉加工工业中,α淀粉酶最为常用,它的功能是水解淀粉的α-1,4糖苷键,单独用它时,产物中含有大量分支结构的糊精,其中就含有大量的α-1,6糖苷键。假如不把淀粉的α-1,6糖苷键彻底分解的话,势必会造成很大的浪费。自然界中,存在有能分解淀粉的α-1,6糖苷键的酶,通称为解支酶。如寡α-1,6葡萄糖苷酶( E.C3.2.1.68, Oligo-l,6-glucosidase ),普鲁兰酶(E.C3.2.1.41Pullulanase ),异淀粉酶( E.C3.2.1.68, Isoamylose ),支链淀粉一6-葡聚糖酶( E.C3.2.1.69,Amylopectin-6-gluanohydrase ),其中普鲁兰酶要求的底物分子结构最小,故而可以将最小单位的支链分解,导致可以最大限度的利用淀粉,所以在淀粉加工工业中有着重要的用途和良好的市场前景。故而许多国家都争相开发,但是到现在为止,只有丹麦的NOVO公司具有普鲁兰酶的生产能力。我国只有向其进口,但是其价格昂贵,限制了普鲁兰酶在我国的应用。其实,我国早在七十年代就开发普鲁兰酶的产生菌,但是该菌的酶学性质不适合生产,至今我国在普鲁兰酶的国产化方面还没有报道。 在淀粉的加工行业上,对普鲁兰酶的酶学性质的要求是耐酸耐热,其原因是因为通常使用外加酶化法,由于所用酶类的限制,普鲁兰酶的添加可以在两步反应的任何一步,但必须满足上述的反应的条件。因此所开发的普鲁兰酶的酶学性质必须满足现有的酶法水解制糖的条件,也就是耐酸耐热。 二、普鲁兰酶的研究现状 1.产普鲁兰酶的微生物 普鲁兰酶最初是由Bender和Wallenfels于1961年通过产气杆菌(Aerobacter aerogenes)发酵获得。他们报道了该酶的良好性能之后,各国的科研人员经过广泛深入的研究,从不同的地区的微生物中获得该酶,掀起了开发普鲁兰酶的高潮。但是迄今为止,尽管发现许多微生物能够产普鲁兰酶,但是由于当今工业生产条件(酸性,温度),大多数微生物所产的普鲁兰酶并无商业价值。以下便介绍一下普鲁兰酶的生产菌种。 1.1蜡状芽抱杆菌覃状变种(Bacillus cereus Var.mycodes) 由日本的ToshiyukiTakasaki于1975年发现。该菌同时产生两种淀粉酶:β-淀粉酶和普鲁兰酶。最佳作用条件为pH6~6.5,温度50℃,最大转化率(淀粉水解产生麦芽糖)大约为95%.酶学研究中发现,此酶在pH5,温度60℃依然保持大部分活性,该菌的营养细胞呈棒杆状,聚集成长短不等紊乱链状,无运动性,格兰氏阳性,产芽抱时细胞无明显膨胀。该菌最适生长温度30℃~37℃ ,最高生长温度在41℃~45℃,可以利用葡萄糖,甘露糖,麦芽糖,海藻糖,淀粉和糖原。 1.2嗜酸性分解普鲁兰多糖芽抱杆菌(BaciIluS.Acidopullulyticus) 上世纪八十年代初,丹麦Novo公司获得此菌,此菌所生产的普鲁兰酶耐热 (60℃),耐酸(pH4.5)。该公司经过投入巨资开发研究,1983年Nov。公司在日本和欧洲市场同时商业化销售,商品名Prornozyme。如今,它是应用最广,产量最大的普鲁兰酶。Bacillus.Acidopullrrlyticus呈棒状,深层发酵几小时后,可观察到类原生质体的膨胀细胞,较稳定,饱子呈圆柱体或椭圆体。格兰氏反应阳性,37℃生长良好,45℃以上和pI-1高于6.5以上不长,在以普鲁兰糖为碳源的培养基((pH4.8 ~5.2)上生长良好。 1.3枯草芽饱杆菌(Bacillus subtilis) 1986年,日本的Yushiyuki Takasaki报道了一株能产生耐热耐酸普鲁兰酶的菌种,被命名为Bacillus subtilis TU。此菌种所产生的酶为普鲁兰酶和淀粉酶的混合物,可水解淀粉为麦芽三糖和麦芽搪.水解普鲁兰糖为麦芽三糖,其中普鲁兰酶最佳作用pH为7.0~7.5,但在pH5.0时亦有约50%的酶活,此普鲁兰酶最佳作用温度60℃。 1.4耐热产硫梭菌(Clostridum Themosulfurogenes) 1987年.德国的E.madi等报道了一株能同时产a淀粉酶、普鲁兰酶和葡萄糖淀粉酶的菌种:耐热产硫梭菌。该菌种所产普鲁兰酶有较广的温度适应范围(40℃~85℃),在pH4.5~6.0有较高的活性,在如此广的范围内都有较强活力无疑将扩大该普鲁兰酶的应用领域. 1.5 Bacillusnaganoensis,Bacillus deramificans,Bacillus.Acidopullulyticus 上世纪九十年代,Deweer发现了普鲁兰酶产生菌Bacillus naganoensis;Tomimura筛选出Bacillus deramifrcans。这两株菌所产的普鲁兰酶的酶学性质与Bacillus. Acidopullulyticus的酶学性质相似。这两株菌都是中度嗜酸菌,在pH6.5以上就不生长,温度超过45℃以上同样也不生长。这两株普鲁兰酶产生菌的发现,进一步拓宽了普鲁兰酶的应用。 1.6产普鲁兰酶的高温菌菌种 自上世纪八十年代以来,人们逐渐意识到在通常的自然条件下,很难筛选得到极端耐热的普鲁兰酶生产菌种,于是各国的科学家便把目光转移到温泉嗜高温细菌的筛选,而且现在已经取得较多的成果。Bacillus如vorcaldarius所产普鲁兰酶的最适温度和pH分别是75~85℃, pH6.3, Thermotoga maritime的最适温度和pH分别是90℃, pH6.0, Thermurs caldopHilus的最适温度和pH分别是75℃,pH5.5, Fenidobacterion pernnavoran最适温度和pH分别是80~85℃, pH6.0o 2.普鲁兰酶的分子结构 至今为止,许多普鲁兰酶的基因己经被克隆,但是还没有见到任何有关普鲁兰酶结构的报道,但是在根据序列相似性对糖普键水解酶的分类,普鲁兰酶属于第13家族,α淀粉酶家族,这个家族中包含了30多种酶,可以分为水解酶,转移酶。异构酶三大类。这些酶能够水解和合成α~1.4,α~1.6,α~1.2,α~1.3,α~1.5,α~1.1糖苷键。其中很多酶的结构已经被报道,它们都采取了(β/α)8的结构,通过生物信息学的研究,这个家族的蛋白都有一个共同的结构,酶的活性中心都是(β/α)8折叠筒的结构,命名为结构域A。第13家族的大多数酶还具有结构域B,它是位于(β/α)8折叠筒中,第三个β片层与第三个α螺旋之间的一段序列,其特点是结构和长度差异较大,推测其功能是与底物的结合有关。在紧接着(β/α)8折叠筒后,还有C结构域,紧接C结构域,部分家族成员还有结构域D。 3.普鲁兰酶的应用 普鲁兰酶,在食品工业中是一种用途广泛的酶制剂和加工助剂。它能专一性分解淀粉中的支链淀粉和糖原分子及其衍生的低聚糖分支中的α~l, 6糖苷键,使分支结构断裂,形成长短不一的直链淀粉。因此,将该酶与 其它 淀粉酶配合使用时,可使淀粉糖化完全。近年来,普鲁兰酶己作为淀粉酶类中的一个新酶种,应用于淀粉为原料的食品等工业部门,在食品工业中有如下几方面的作用: 3.1单独使用普鲁兰酶,使支链淀粉变为直链淀粉 直链淀粉具有凝结成块,易形成结构稳定的凝胶的特性,因此,可作为强韧的食品包装薄膜。这种薄膜对氧和油脂有良好的隔绝性,又因涂布开展性好,故适合于作为食品的保护层。它还适合于淀粉软糖制造,也可用作果酱增稠剂,用于装油脂含量高的食品,以防止油的渗出以及肉食品加工。近年来在食品工业中提倡使用可被生物降解的薄膜,直链淀粉在这些方面具有较大的发展前途。豆类直链淀粉含量较高,因此绿豆淀粉制成的粉丝韧性比其它淀粉好,如果用普鲁兰酶处理谷物淀粉,再制成直链淀粉后,可以制成高质量的粉丝。一般谷物淀粉中,直链淀粉含量仅占20%,支链淀粉含量约为80%。工业上每生产1吨直链淀粉就有4吨副产品的支链淀粉。美国虽然通过遗传育种的方法.得到含直链淀粉60%玉米新品种,但不大适于大量生产。国外已采用普鲁兰酶改变淀粉结构,可使支链淀粉变为直链淀粉。据报道,采用此法收率可达100%.制造直链淀粉的方法为,先采用普鲁兰酶分解经液化的分支部分,使其转变为直链淀粉,并以丁醇或缓慢冷却法沉淀淀粉。再回收含少量水分的晶型沉淀物,最后通过低温喷雾干燥法制成粉状的直链淀粉。 3.2普鲁兰酶与β~淀粉酶配合使用生产麦芽搪 饴糖是我国传统的淀粉糖产品,其中所含部分麦芽糖,广泛用于糖果、糕点等食品工业。目前生产方法是以α~淀粉酶进行液化,再用β~淀粉酶水解支链淀粉,这样只能水解侧链部分。接近交叉地位的α~1.6糖苷键时,水解反应停止。但如果使用普鲁兰酶共同水解,便能使分支断裂,提高淀粉酶水解程度,降低了β极限糊精的含量,大大提高了麦芽糖的产率,有利于生产麦芽搪浆。目前对加普鲁兰酶进行糖化己作了较大规模的试验。 试验条件为。每批投料量约为900公斤碎米,粉浆浓度为15~16Be°数皮用量1.5%(对碎米计),β~淀粉酶活性2,000单位/克以上,pH5.8;普鲁兰酶活性45,000~55,0 00单位/克,系由产气气杆菌生产,每批用量为1公斤。试验结果表明,加入普鲁兰酶糖化的试验糖与对照糖品相比,还原糖平均增加14.8,麦芽糖含量平均增加了45.6,糊精含量平均减少了26.7高浓度麦芽糖浆较之高浓度葡萄搪浆,具有不易结晶,吸湿性小的特点,所以高浓度麦芽糖浆在食品工业中有着广泛的用途。采用普鲁兰酶与p一淀粉酶配合使用,成本低廉,麦芽糖收率达到70%左右,其至更高。 3.3用于啤酒外加酶法糖化 啤酒生产中麦芽,既是酿造啤酒的主要原料,也为酿造过程提供了丰富的酶源。在啤酒酿造的糖化过程中,麦芽中分解淀粉的主要酶是α~淀粉酶、β~淀粉酶和分解淀粉α~1. 6糖瞥键的R一酶(植物普鲁兰酶或植物茁霉多糖酶)。β~淀粉酶与另两种淀粉酶协同作用,可使淀粉分解成麦芽糖(也包括少量的麦芽三糖和极少量的葡萄糖)和低分子糊精。使麦芽汁有比较理想的糖类组成。在工业生产中为了节约麦芽用量,采用所谓外加酶法糖化,即在减少麦芽用量的前提下,增加淀粉质辅助原料的比率,并加入适当种类的酶制剂进行搪化。要使大麦及其它辅助原料糖化完全,需要外加a一淀粉酶和分解α~1.6糖苷键的普鲁兰酶制剂等。单独使用a一淀粉酶时产生麦芽糖和麦芽三搪是很不完全的。假如分解淀粉α~1.6糖苷键的酶活性不足,淀粉分解就不完全,其结果是可发酵性糖含量低,制成的啤酒发酵度达不到要求。若采用能分解α~1.4和α~1.6糖苷键的糖化型淀粉酶,则其反应产物为葡萄糖,容易使酒味淡薄。采用普鲁兰酶与α~淀粉酶协同,效果良好,其分解产物主要是麦芽糖和少量的麦芽多糖。采用外加酶法糖化时,加入酶制剂的用量为:淀粉酶6~7单位/克大麦及大米:蛋白酶,60-80单位/克,并配合以菠萝蛋白酶10ppm,普鲁兰酶50单位/克大麦。以上三种酶制剂均添加于糖化或酒化开始。 总之,普鲁兰酶无论作为酶制剂和食品工业的加工助剂均有广阔的发展前途。 研究目的和意义: 酶制剂工业是上世纪七十年代就己经形成的一个重要的产业,目前世界酶制剂总产值达100亿美元,我国的产值约为100亿人民币,并且随着其应用领域的不断扩大以及新酶种的开发,这一市场正在迅猛发展。但是全球酶制剂产业几乎被几家外国公司所垄断,其中丹麦的NOVO公司几乎占全球总销售额的一半。本研究对普鲁兰酶的开发,对酶制剂产业的发展有重要的意义。 其次我国自从七十年代开始便对普鲁兰酶进行研究开发,但是所开发得到的普鲁兰酶,既不耐热也不耐酸,这就使其在工业化应用中受到了局限。为了改变我国对进口产品的依赖,填补我国这一领域的空白,寻找一条国产化的道路,本研究的目的是利用自然微生物资源,普鲁兰酶,提高我国淀粉原料的利用率,从而提高整个淀粉加工行业的生产率,这对我国淀粉加工产业的意义是不言而喻的。 研究内容(内容、结构框架以及重点、难点): 一.普鲁兰酶产生菌的筛选 (1)样品的采集; (2)菌种初筛; (3)菌种复筛; (4)菌种保藏方法; (5)酶活力测定方法的建立。 二.产普鲁兰酶菌株的产酶条件的研究 (1)碳源,氮源对发酵产酶的影响; (2)初始PH对发酵产酶的影响; (3)接种量对发酵产酶的影响; (4)发酵温度对产酶的影响; (5)金属离子对产酶的影响。 重点或关键技术: (1)纯菌株的分离; (2)菌株的鉴定方法的选择。 研究方法、手段: 一.普鲁兰酶产生菌的筛选 (1)样品的采集:选择适合产生的地点(面粉厂.菜地.果园等)采集土样 (2)菌种初筛:在采集的土样用无菌水稀释后,在含有淀粉类的培养基中做平板涂步, 37℃培养48h后,用碘液进行显色反应,将有淀粉酶产生的菌落接于斜面中保存。 (3)菌种复筛:将前期分离的能产生淀粉酶的菌株涂步于普鲁兰糖平板上,37℃培养48h后用95%乙醇进行透明圈实验。有透明圈产生说明菌株产生普鲁兰酶,将产生透明圈的菌落挑于斜面培养基培养。 (4)菌种保藏方法: 采用4℃低温保藏。 (5)酶活力测定方法的建立:采用发酵培养液经过离心后利用DNS显色法 520nm测定吸光值,测定标准葡萄糖标准曲线,利用标准曲线计算普鲁兰酶酶活大小。 二.产普鲁兰酶菌株的产酶条件的研究 (1)碳源,氮源对发酵产酶的影响:采用不同碳源,氮源培养基培养一段时间,测定酶活力。(其他条件相同:接种量,装瓶量,初始PH值,转速,培养时间。) (2)初始PH对发酵产酶的影响:采用相同发酵培养基,在不同初始PH下接种等量种子液。在相同条件下培养,测定发酵液的酶活。(其他条件相同:接种量,装瓶量,转速,最佳培养温度,最佳培养时间。) (3)接种量对发酵产酶的影响:在发酵培养基中分别接入2%,4%,6%,8%, 10%,14%,18%的种子培养液于最佳碳源,氮源,最佳初始PH的培养基中,在相同条件下培养,分别检测酶活。(采用以上确定的最佳碳源,氮源,最佳初始PH。) (4)发酵温度对产酶的影响:采用相同培养基,在不同温度下(25℃,30℃,35℃,40℃,45℃)培养一定时间,测定酶活力。 (5)金属离子对产酶的影响:在基础培养基中加入少量不同金属离子,发酵后测酶活。(金属离子有: 锰离子,钙离子,锌离子,镁离子,铁离子,铜离子。) 研究进度 :完成项目总体进度30%,样品土样的采集及前期的准备工作,菌株的初筛,包括(样品土样原液的涂步培养及摇床培养,产支链淀粉酶菌株的挑选及斜面培养)。 :完成项目总体进度50%,菌株的复筛,包括(产普鲁兰酶菌株的筛选及斜面培养),葡萄糖标准曲线的测定,酶活测定方法的建立,并以酶活大小对菌株进行再次筛选。 :完成项目总体进度80%,产酶条件的研究。包括:碳源,氮源,初始PH值,接种量,发酵温度,金属离子。并通过各中单因素试验确定发酵培养基的最佳碳源,氮源,初始PH值,接种量,发酵温度,金属离子。 2009、4—2009、5 :完成项目总体进度100%,课题总结,撰写论文。 文献综述(包括:国内外研究理论、研究方法、进展情况、存在问题、参考依据等) 自从1961年Bender H.等人在研究一株产气气杆菌Aerobacter aerogenes(典型菌为肺炎克雷伯氏杆菌Klebsiella.pneumoniae)时首次发现普鲁兰酶后,国际上对产生这种酶的微生物进行了广泛研究,发现许多微生物可以产生此酶,并筛选出一些适用于工业化生产的优良菌株。随着该酶的应用发展,对耐热性普鲁兰酶的研究也逐渐增多,已成功克隆并表达了该酶的基因。国内1976年开始对一株产气气杆菌(Aerobacteraerogenes 10016)的普鲁兰酶进行研究,对该菌株的产酶条件、酶的分离提取及酶学性质作了报道,并研究了该酶的食品级提取技术。此外,陈朝银、刘涛等人从云南温泉水样中筛选到一株产普鲁兰酶高温栖热菌菌株,通过诱导等实验将该酶的酶活从0.069u/mL提高到170u/mL,酶产量提高了近2500倍左右,酶的最适作用温度及pH分别是75℃和4.5,具有一定的耐热和耐酸特性。 陈金全等从温泉水样中筛选到一株产耐热耐酸普鲁兰酶的野生菌株,并根据形态、生理生化特征、细胞化学组分分析及16SrDNA序列比对、基因组DNA的G+C摩尔百分含量、同源性比对等实验,鉴定其为脂环酸芽抱杆菌属(Alicyclobacillus)的一个新种,所产酶最适作用温度为60℃,最适pH值4.0,具有较好的耐热耐酸特性。杨云娟等利用毕赤酵母成功构建了普鲁兰酶表达量较高的基因工程菌,摇瓶发酵酶活可达350.8U/mL,最佳发酵条件下产量可达504.5-510.1U/mL .酶的最适作用温度为600C,最适pH值4.5,具有较好的耐热耐酸性。目前我国仍没有具备独立生产普鲁兰酶能力的厂商,要实现低成本、国产化的生产,还有很长的路要走。 技术应用于耐热脱支酶的研究,使耐热异淀粉酶的研究有了很大发展。Coleman等人将嗜热厌氧菌T. brockii普鲁兰酶基因克隆到B.subtilis中得到的克隆子分泌的普鲁兰酶数量高于出发菌株,Okada等人将Bacillus Steanther, onhiu:中编码热稳定异淀粉酶的基因克隆到B.subtilu:中,得到的转化菌株其异淀粉酶能在60 ℃稳定15分钟。Burchadf将。ostridium thermosulf urogenes DSM38%的嗜热异淀粉酶基因克隆并在E.coli中表达,所得酶的最适pH和最适温度与出发菌相同,而且在高温下仍能保持活性.Antranikiam等人将Pyrococcus舟riousous的异淀粉酶基因克隆到E.coli中并分离得到了酶蛋白。尽管如此,目前尚未有已将转基因的耐热性异淀粉酶工程菌应用到工业生产中的报道。众所周知,利用物理和化学诱变剂单独或复合处理微生物细胞是选育高产变种菌株行之有效的经典方法,它在为培育多种抗生素、氨基酸、核苷酸激酶(尤其是蛋白酶和淀粉酶)的高产变种菌株方面曾经起过极为重要的作用,至今仍然是方便易行和行之有效的方法之一。 主要参考文献: [1][美]惠斯特勒等编王雏文等译.淀粉的化学与工艺学[M].北京:中国食品出版社,1988 [2]张树政.酶制剂工业[M]. 北京: 科学出版社,1998 [3]邬显章.酶的工业生产技术[M]. 吉林: 吉林科学技术出版社,1988 [4]Taniguchi H, Sakano Y, Ohnishi M, Okada G(1985) Pullulanase[J].TanpakushitsuKakusan Koso. Ju1;30(8):989-992. Japanese [5] Jensen, B. F., and B. E. Norman. 1984. Bacillus acidopullulyticus pullulanase[J].:application and regulatory aspects for use in the food industry. Process Biochem.19:351-369 [6]Tomimura E, Zeman NW, Frankiewicz JR, Teague WM. [J]. Description of Bacillus naganoensis sp. nov.Int J Syst Bacteriol. I 990 Apr; 40(2):123-125 [7]吴燕萍,等. 微生物法生产普鲁兰酶的研究[J]. 生物学技术, 2003,8(6):14-17 [8]金其荣,等. 普鲁兰酶初步研究[J]. 微生物学通报, 2001,28(1):39-43 [9]程池. 普鲁兰酶Promozyme 200L. 及其生产菌种[J].食品与发酵工业,1992 ,(6) [10]唐宝英等.耐酸耐热普鲁兰酶菌株的筛选及发酵条件的研究[J].微生物学通报,2001 28(1):39-43 猜你喜欢: 1. 关于医学开题报告范文 2. 药学论文开题报告 3. 生物制药毕业论文开题报告范文 4. 药理学开题报告范文 5. 药品市场营销毕业论文开题报告 6. 药学论文题目大全

  • 索引序列
  • 乳粉检测论文
  • 粉尘检测论文结论
  • 磁粉无损检测论文
  • 粉尘检测相关论文
  • 淀粉酶活性检测论文
  • 返回顶部