首页 > 学术发表知识库 > 泛函分析相关问题研究论文

泛函分析相关问题研究论文

发布时间:

泛函分析相关问题研究论文

1、泛函分析的主要研究对象是什么?泛函分析(Functional Analysis)是现代数学的一个分支,隶属于分析学,其研究的主要对象是函数构成的空间。泛函分析是由对变换(如傅立叶变换等)的性质的研究和对微分方程以及积分方程的研究发展而来的。2、什么是泛函数?又称泛函,通常实(复)值函数概念的发展。通常的函数在 R或C(n是自然数)中的集合上定义。泛函数常在函数空间甚至抽象空间中的集合上定义,对集合中每个元素取对应值(实数或复数)。通俗地说,泛函数是以函数作为变元的函数。泛函数概念的产生与变分学问题的研究发展有密切关系。3.泛函分析的四大基本定理及其特征?泛函分析的主要定理包括: 1. 一致有界定理(亦称共鸣定理),该定理描述一族有界算子的性质。 2. 谱定理包括一系列结果,其中最常用的结果给出了希尔伯特空间上正规算子的一个积分表达,该结果在量子力学的数学描述中起到了核心作用。 3. 罕-巴拿赫定理(Hahn-Banach Theorem)研究了如何将一个算子保范数地从一个子空间延拓到整个空间。另一个相关结果是对偶空间的非平凡性。 4. 开映射定理和闭图像定理。

"wangdongxing7p"您好,很高兴为您解答!泛函分析是现代数学的一个分支,隶属于分析学,其研究的主要对象是函数构成的空间。泛函分析的主要定理包括:1. 一致有界定理(共鸣定理),该定理描述一族有界算子的性质。 2. 谱定理包括一系列结果,其中最常用的结果给出了希尔伯特空间上正规算子的一个积分表达,该结果在量子力学的数学描述中起到了核心作用。 3. 罕-巴拿赫定理研究了如何将一个算子保范数地从一个子空间延拓到整个空间。另一个相关结果是对偶空间的非平凡性。 4. 开映射定理和闭图像定理。希望我的回答对您有帮助~请采纳哦,O(∩_∩)O谢谢【我最爱数学!】

泛函分析论文题目

设 x∈左边,则 |f(x)+g(x)|>2e假设 x∉右边, 则 |f(x)|

教育专业毕业论文题目只是需要题目吗?论文呢?

这个不是非常显然的吗,直接证明就行了记A={x:f(x)>g(x)},B_n={x:f(x)>=g(x)+1/n}对任何n都有B_n包含于A,所以其并集也包含于A反过来任取x属于A,当n>=1/[f(x)-g(x)]>0时f(x)>=g(x)+1/n,即x属于B_n,也就属于所有B_n的并

设 x∈左边,则 |f(x)+g(x)|>2e,假设 x∉右边, 则 |f(x)|

因此假设不成立,即有x∈右边,因此 左边包含于右边 (因为对于任意x∈左边,能推出x∈右边,根据包含于的定义,即左边包含于右边)。

简介

实变函数论是以实变函数作为研究对象的数学分支,是数学分析的深入与推广,研究函数的表示与逼近问题以及它们的局部与整体性质。在经典分析中主要研究具有一定阶光滑性的函数。但在 19 世纪下半叶,一些问题被明确提出,期望能解答并涉及更宽泛的函数类。

问题

在这些问题中必须提到的有集合的测度,曲线长度与曲面面积,原函数与积分,积分与微分的关系,级数的逐项积分与微分,由极限过程得到的函数的性质等。

这些问题的解决对数学发展至关重要,但又非经典分析所能。直至 19 世纪末 20 世纪初,在集合论的基础上,这些问题才得以解决,同时也完成了现代实变函数论基础的建立。

非线性泛函分析毕业论文

在“Nonlinear Analysis”,“Applied Mathematics Letters”, “Bulletin of the Australia Mathematics Society”, “Journal of Mathematics Analysis and Applications”, “J.Appl. Math. & Com.”, “International J of Mathematics…”, 《数学学报》等国内外刊物上发表文章70多篇, 其中被SCI、EI、MR收录论文30多篇次。其科研成果拓广了非线性分析领域,创立了四个新的空间,推广了一系列著名定理,解决了一些随机非线性泛函分析方面的难题,探索了一种新的研究方法。参加了2002年8月下旬由北京主办的国际数学家大会,在会场上作了学术报告,介绍了随机非线性算子的随机分歧问题。承担的学术研究课题:课题名称 课题类别 来源 年限 作用关于随机非线性算子若干问题的研究应用基础研究 国家自然科学基金 2005.1- 2007.12 主持随机非线性算子方程的研究 基础理论研究 江西省自然科学基金 2004.7-2007.7 主持一致-凹算子的理论及应用应用基础研究 江西省自然科学基金 2003.1-2005.12 第二概率分析中的若干问题应用基础研究 江西省自然科学基金 2001.1-2003.12 主持21世纪中国高校经管类数学课程教学内容和体系的创新与实践科教理论研究 国家“十五”规划项目 2003.1-2006.12子项目负责人关于非线性泛函分析若干问题的研究基础理论研究 江西省教育厅科研项目 2006.1-2007.12 主持

泛函分析研究中华人民共和国成立之前,泛函分析在中国还只是个别数学家的科研课题,它作为数学学科的一个二级分支学科而有计划地加以发展起始于50年代中期,中国科学院数学研究所是发展的中心之一。其时,田方增与关肇直合作的《赋范环论》,冯康的《广义函数论》等的发表标志着数学研究所对泛函分析学科开始了有计划的、系统的学术科研活动。《赋范环论》共有四章和两个附录,田方增继续他在法国留学时对群上调和分析的研究写了第四章:群代数,和附录2:局部紧空间上测度——哈尔(Haar)测度,按他的学术观点论述了N.布尔巴基(Bourbaki)的一些概念。1956年田方增随中国泛函分析最早创业者南京大学曾远荣教授同赴莫斯科出席“全苏泛函分析学术会议”回来后,在《数学进展》发表了《记参加1956年全苏泛函分析及其应用会议的经过》一文,系统地评介了当时苏联泛函分析学科在理论上和应用上的科研学术成就,在学术上对中国泛函分析初期的发展起了一定的影响。在田方增和关肇直、冯康的合作下,中国科学院数学研究所于1956年招收了第一批泛函分析学科的研究实习员,随后又大批地接收了高校来的进修人员。他们分别在开设的拓扑向量空间、赋范环、测度与积分、线性算子理论、广义函数理论等等一系列学术讨论班上系统地向青年人讲授当时国际泛函分析学界(主要是苏联、法国、东欧学术界)的学术成就、最新学术进展及问题。田方增还关心数学的认识问题,曾将A.莫斯托夫斯基(Mostowski)的一篇关于数学基础的研究现状的文章译成中文介绍给中国数学界。泛函分析学科在中国科学院数学研究所几乎一开始就是基础理论与应用并重地发展。早期有数值方法的研究。按科学规划的精神,从1958年起数学所泛函分析学科强调其发展要侧重于与方程、物理、高尖科技和国民经济建设之联系。为此,田方增、关肇直常与吴新谋、张宗燧等合作,使数学所内泛函分析的发展始终注意与微分方程及现代数学物理的联系,曾联络在京一些单位的物理学家,先后组织了量子场理论、粒子迁移理论和电磁波理论中数学问题之研究等学术讨论班。60年代初田方增在中国科学技术大学数学系开设过“粒子迁移理论中的数学问题”之专门化课,从此他以主要的精力放在“粒子迁移理论”的数学基础理论之研究上直至70年代中后期。这期间他撰写的学术论文为发展中国在这一领域的数学研究作出了重要贡献。田方增与关肇直一起成功地在中国开辟了应用泛函分析的一个重要领域——粒子迁移理论的数学基础及问题之研究。70年代初开始,田方增在考察了当时国际上,特别是西欧、苏联和美国的学术动向后,结合中国的实际,选择了非线性泛函分析来开拓室里的学术方向。在1978年成都第三届全国数学代表大会的分组会上,田方增作了题为《非线性泛函分析国外近况简述》的报告,阐述和分析了非线性泛函分析的产生、发展及当前国际上主要的科研方向,它在非线性分析中的地位和作用,及在偏微分方程边值问题和数值分析上的应用等。紧接着他又在1979年济南的第二届全国泛函分析学术会议上作了包括“稳定性理论”在内的《关于歧点理论研究情况分析》的学术报告。就在这次济南会议上,中国数学会组织与会代表协商成立了由关肇直、田方增、江泽坚、夏道行4人组成的“全国泛函分析学科领导小组”,下设线性算子理论、空间理论和应用泛函分析、非线性泛函分析3个学术大组。田方增分工负责非线性泛函分析学术大组的工作直到1990年。此期间,田方增在中国科学院研究生院开设非线性泛函分析课,在研究室内指导非线性泛函分析方向的研究生,并组织和领导了6次全国非线性泛函分析学术会议,撰写了《歧点理论》、《非线性算子的类型和性质》、《不动点理论的几个方面》等专题报告。对中国非线性泛函分析的进一步发展起了介评和导向的积极作用。1985年7月,年逾古稀的田方增作为中国知名的泛函分析学科的开拓者之一,应邀去香港出席“东南亚数学联合会区域性分析学会议”,并代表中国出席会议的代表在大会上致词,作了题为《Some Advances in Nonlinear Functional Analysis in Beijing》的学术报告。基本理论的研究第二次世界大战期间,原子武器的问世激发了中子物理和核反应堆物理的蓬勃发展,一类描述中子在核物质中运动规律的积分-微分型中子迁移方程成为国防尖端科研的课题,它是描述分子分布的动力学理论的玻尔兹曼(Boltzmann)方程的一种特殊的线性化形式。在中国自60年代开始,这类方程由定量研究进入基础性的数学定性研究,田方增就是开创此类定性研究的开拓者之一。1960年中国科学院数学研究所与二机部401所协作成立的“125任务”组就是中国第一个定性地研究粒子(中子)迁移方程基础理论的科研小组(田方增是此组的负责人之一)。白手起家难度不小。田方增为迅速掌握和研究美、欧、苏关于研究中子迁移方程的数学思想、理论和方法,在讨论班上向年轻人系统地讲解和分析国际已有学术成果及存在的问题,组织并指导年轻人攻关。田方增于1962—1964年在中国科学技术大学为数学系59届高年级开设了包括辐射迁移和中子迁移在内的“粒子迁移理论中的数学问题”的专门化课。这是中国高校首次开设这样的专门化课程,田方增为此撰写了十多万字的讲义并指导学生们在这一方向上的毕业论文。他于1963-1964年发表的《不变嵌入原则与迁移问题》及《球几何中子迁移方程问题谱的性质和齐次初始问题解的渐近性》是中国最早的两篇关于粒子迁移理论定性的数学研究的学术论文。前一篇是将源于天体物理的不变嵌入原则如何在数学上发展为求解特殊的迁移问题的论述;后一篇将在美欧刚出现不久的关于中子迁移方程结构性理论研究的有限迁移介质的线性算子半群理论法和无限迁移介质的特征线法两大派理论统一到球形迁移介质的研究的论证,这篇学术论文对中国早期关于中子迁移方程定性理论研究的方向产生了较大影响。迁移方程的结构复杂,对一般情况严格求解至今仍是非常困难的问题,加之数值计算之需要,因而从理论和应用两方面来说各种近似求解法从一开始就是讨论问题的重要手段。然而,众多行之有效的近似求解法大多数长期以来没有建立合理性的数学论证。70年代,田方增先后发表了《非齐次迁移方程的时间上离散化解法》和《不稳定态迁移方程的弱解及有限元素法》的学术论文,论证了非齐次方程时间离散化解法的合理性,率先在中国将J.利翁(Lions)的弱解概念加以发展而用于迁移方程,与有限元素法结合讨论非定态方程有限元逼近的可行性问题。今天,中国在迁移理论的数学基础和问题之研究,在纯数学方面已深入到巴拿赫(Banach)空间一类无界的、其豫解算子非紧的非对称线性算子的构造性理论的研究,从应用方面已发展到对符合某种守恒规则,各种量按统计(几率)法来确定的种种动态或定态现象(如粒子迁移现象、生态平衡现象、人口经济问题等等)所形成的积分-微分型基本方程的正、反两方面数学问题之研究。田方增尽管自70年代中后期已将主要精力放在非线性泛函分析之研究上,但仍坚持倾注部分精力于迁移方程。约4万字的《迁移方程问题的泛函-解析法》已早玉成。此文在泛函分析基本理论和方法的框架下,囊括了线性和非线性迁移方程边值问题、边界初值问题的解法及解的性质等的研究。此文长期被他自己扣住未发表,希冀更加完善,使此文能体现中国在这一学术领域的学术成就和学术思想。

泛函分析空间理论论文参考文献

泛函分析,它综合运用函数论,几何学,现代数学的观点来研究无限维向量空间上的泛函,算子和极限理论。它可以看作无限维向量空间的解析几何及数学分析。泛函分析在数学物理方程,概率论,计算数学等分科中都有应用,也是研究具有无限个自由度的物理系统的数学工具。

泛函分析的基本定理是罕-巴拿赫定理、选择公理(Axiom of Choice)弱于布伦素理想定理(Boolean prime ideal theorem)、佐恩引理、压缩映射定理。

扩展资料:

泛函分析是20世纪30年代形成的。从变分法、微分方程、积分方程、函数论以及量子物理等的研究中发展起来的,它运用几何学、代数学的观点和方法研究分析学的课题,可看作无限维的分析学。半个多世纪来,一方面它不断以其他众多学科所提供的素材来提取自己研究的对象和某些研究手段,并形成了自己的许多重要分支,例如算子谱理论、巴拿赫代数、拓扑线性空间(也称拓扑向量空间)理论、广义函数论等等。

另一方面,它也强有力地推动着其他不少分析学科的发展。它在微分方程、概率论、函数论、连续介质力学、量子物理、计算数学、控制论、最优化理论等学科中都有重要的应用,还是建立群上调和分析理论的基本工具,也是研究无限个自由度物理系统的重要而自然的工具之一。今天,它的观点和方法已经渗入到不少工程技术性的学科之中,已成为近代分析的基础之一。

参考资料来源:

百度百科-泛函分析

密度泛函理论(Density functional theory ,缩写DFT)是一种研究多电子体系电子结构的量子力学方法。密度泛函理论在物理和化学上都有广泛的套用,特别是用来研究分子和凝聚态的性质,是凝聚态物理计算材料学和计算化学领域最常用的方法之一。

泛函分析是一个相当广阔的领域,你将来可以从事基础理论研究,也可以从事应用研究,具体地说,泛函分析目前大概有四个分支,空间理论,算子理论与算子代数,非线性泛函分析和应用泛函分析,后两者是应用方向的,可以向偏微分方程,控制,最优化等方向转。如果想从事前两者的研究,特别是算子理论和算子代数,需要你对分析(实分析,复分析),拓扑(一般拓扑),代数(近世代数,结合代数理论)等都有一定的知识储备,从而可以在具体的研究方向上,通过读很好的综述文章,以及最新的文献,在了解了此方向的来龙去脉后,才可能提出自己的问题,写文章。一定要打下坚实的基础之后,才能写文章;我知道年轻一点的有北大的老葛最后,目前泛函分析与其他的数学分支有很多交叉学科,你不妨看一下,祝你成功

论文研究问题分析

硕士生论文存在的问题作品具有实用价值许多硕士研究生的论文被逼出来:有的是为了评奖学金,有的是为了找工作,有的是为了出国申请,有的是为了能按时毕业答辩。受制于功利与实用的思想,硕士研究生于匆忙中完成的论文,其学术性和规范性自然大大降低。再加上指导老师忙于教学和科研,缺乏指导把关,一篇有点有创新和发表价值的论文就被送到学报编辑手中。要通过审阅,编辑还得要求研究生作者返工,按照学报的要求对格式、结构和文字进行修改。文笔不正投稿人向学报投递硕士学位论文,符合学报收稿要求的要求。虽然一般硕士生都缺乏科技论文写作训练,但在编写过程中,研读大量相关文献时,也需要对科技论文的结构和规范有一定的认识,并且学报的投稿要求明确,如果态度认真,则会参考有关资料,并对照学报投稿要求,查看其是否符合要求。就连一些硕士研究生,嫌摘要翻译费时费力,把中文摘要用软件译出来,文法不通,意思不明。知识产权意识薄弱伴随着高校反学术不端行动的深入,每一篇论文都需要进行学术不端检查。硕士生虽然知道抄袭剽窃的严重后果,但在撰写论文时,尤其是综述国内外相关文献的研究成果时,往往不知道对文献来源进行标注。有些东拼西凑,这里抄一点那里抄一点,合成一篇论文,让编辑一看明白并非硕士的研究所得,有些还直接把外文文献译成中文,导致论文查重重复率极高。文笔不清本文是作者对自己的科学研究成果的总结和提炼,具有一定的社会意义或经济价值。论文写作中,由于对其意义认识不清,导致论文写作中出现了许多问题:主题不明确、较为笼统、与研究所要解决的问题不符、论文结构不合理、没有按研究性论文提出问题、分析问题、解决问题的思路要求谋篇布局,结构混乱、层次不清晰;不会写摘要,让编辑不能明了主要观点。

(一)选题把握不准选题是确定毕业论文研究的方向,是毕业论文写作的第一步。即使教学学院给提供了一些参考选题,但学生在选题时仍有不少问题。主要表现在:一是追求热点,对药品现代物流、医药卫生体制改革、公立医院改革、药妆等兴趣浓厚,选此类热点课题的多,能够创新的少;二是游离在所学专业或毕业实习之外,如在苏州礼来公司实习的医药贸易专业学生选题是“当前我国经济形势下的公路建设与发展”,在药品经营企业仓库实习的学生选题是“税收政策与促进就业的思考”,在山东步长制药实习的学生选题是“目前我国发展保障性住房的政策分析”等;三是理论性太强,选题难度太大,超出了本科生能够把握的范围,如在药品检验所实习的同学选题是“药品供应保障体系构建研究”。(二)拼凑现象严重学生通过网络查找资料比较普遍,网络给学生带来便捷的同时,也打开了惰性的方便之门。直接从网络上下载他人的文章当然是严令禁止的,但拼凑却是屡禁不止。一是拼凑法,从网络上下载几篇同类型的论文,通过剪接拼凑成一篇论文,往往结构混乱,内容不完整,甚至自相矛盾;二是雷同法,几个同学的论文题目略有差异但内容雷同,甚至仅是顺序安排上略有差异;三是穿越法,为通过文献检索方法核查,把不同专业师兄师姐或不同年度的毕业论文,稍作修改或拼凑

1、归纳方法与演绎方法:归纳就是从个别事实中概括出一般性的结论原理;演绎则是从一般性原理、概念引出个别结论。归纳是从个别到一般的方法;演绎是从一般到个别的方法。门捷列夫使用归纳法,在人们认识大量个别元素的基础上,概括出了化学元素周期律。后来他又从元素周期律预言当时尚未发现的若干个元素的化学性质,使用的就是演绎法。2、分析方法与综合方法:分析就是把客观对象的整体分为各个部分、方面、特征和因素而加以认识。它是把整体分为部分,把复杂的事物分解为简单的要素分别加以研究的一种思维方法。分析是达到对事物本质认识的一个必经步骤和必要手段。分析的任务不仅仅是把整体分解为它的组成部分,而且更重要的是透过现象,抓住本质,通过偶然性把握必然性。3、因果分析法:就是分析现象之间的因果关系,认识问题的产生原因和引起结果的辩证思维方法。使用这种方法一定要注意到真正的内因与结果,而不是似是而非的因果关系。要注意结果与原因的逆关系,一方面包括“用原因来证明结果”,同时也包括“用结果来推论原因”。不同的事物,一般都一身二任,既是原因,又是结果,而且一个结果往往有不同层次的几个原因。因此,在研究过程中,对所分析的问题必须寻根究底。4、比较分析法:比较分析法又称类推或类比法。它是对事物或者问题进行区分,以认识其差别、特点和本质的一种辩证逻辑方法。在资料不多,还不足以进行归纳和演绎推理时,比较分析法更具有价值。康德说:“每当理智缺乏可靠论证的思路时,类比这个方法往往能指引我们前进。”5、定性分析法与定量分析法:就是通过确定事物的质的关系和数量关系以认识问题和分析问题的辩证思维方法。任何事物或任何问题都是质和量的统一,事物的质量。表现为一定的量,又表现为一定的质。因此,在研究中,只有弄清质的方面,又弄清量的方面,才能找出其中规律性的问题。在研究中,定性分析就是据事论理,划清事物质的界限。定量分析就是对问题的规模、范围、数目等数量关系的情况及变化,进行精确的统计,计算、分析、对比,就是弄清事物发展中量的变化关系。6、观察法:观察法是指研究者根据一定的研究目的、研究提纲或观察表,用自己的感官和辅助工具去直接观察被研究对象,从而获得资料的一种方法。科学的观察具有目的性和计划性、系统性和可重复性。7、文献研究法:文献研究法是根据一定的研究目的或课题,通过调查文献来获得资料,从而全面地、正确地了解掌握所要研究问题的一种方法。文献研究法被子广泛用于各种学科研究中。

  • 索引序列
  • 泛函分析相关问题研究论文
  • 泛函分析论文题目
  • 非线性泛函分析毕业论文
  • 泛函分析空间理论论文参考文献
  • 论文研究问题分析
  • 返回顶部