欢迎来到学术参考网
当前位置:发表论文

几何非线性平面梁考虑收缩徐变的算法的创新

发布时间:2015-08-20 15:56

 随着结构计算理论、高强材料及施工装备的快速发展,混凝土斜拉桥等大跨柔性混凝土结构在跨度和高度上的记录不断被刷新,目前国内已建成的苏通长江大桥主跨为1 088 m(主梁为钢结构),塔高达300 m(塔为混凝土结构).分析此类既有混凝土构件又比较柔性的结构,同时考虑几何非线性和收缩徐变是很有必要的\[1-2\],目前对几何非线性平面梁单元已进行了大量研究\[3-5\],理论已经很成熟,对混凝土结构的收缩徐变效应分析也有很多研究成果\[6-8\],但对混凝土柔性结构同时考虑几何非线性和收缩徐变效应的研究文献非常少,笔者仅找到两篇文献\[9-10\],文献\[9\]介绍了几何非线性结构进行徐变效应分析的原理和方法,提供了按施工阶段进行几何非线性结构徐变分析的增量形式和分析步骤.但该文采用按龄期调整的有效弹性模量法来求解结构的徐变问题,由于该方法既要形成结构的弹性刚度矩阵,又要形成徐变刚度矩阵,在每一迭代步内结构的平衡方程还要求解两次,这在计算量本来就很大的非线性计算中是很不合适的.同时该文算法是基于增量平衡,在进行下一个增量步(施工阶段)等效荷载列阵计算时未考虑上一个增量步(施工阶段)的残余力,更没考虑由于徐变变形而导致上一个增量步(施工阶段)已经平衡的构形被打破在下一个增量步(施工阶段)会产生新的不平衡力,因此随着施工阶段数的增多误差会越来越大.文献\[10\]从虚功增量方程出发,建立了杆系结构的非线性与混凝土收缩徐变效应耦合分析的有限元方法.该文采用初应变法来计算分阶段施工混凝土结构的徐变、基于全量平衡且考虑了由于徐变变形而导致上一个增量步(施工阶段)已经平衡的构形被打破在下一个增量步(施工阶段)会产生新的不平衡力问题.因此,从理论上讲,相对于文献\[9\]的算法而言,文献\[10\]的算法无论在非线性计算效率还是精度方面均有提高.但仔细研究也会发现该文存在以下问题,该文建立的非线性平衡方程本质上是基于U.L列式的增量平衡方程,即计算单元切线刚度矩阵是基于每一迭代步的增量.但为了考虑由于徐变变形而导致的平衡构形被打破及提高计算精度对不平衡力计算又采用全量方法,显然两者不一致会导致各种状态变量数增加从而使计算量增加的缺点.且该文是从张量分析出发,推导过程也较复杂,较难为工程技术人员理解和应用.鉴于此,本文在参考上述已有文献的基础上,首先基于微分法导出了随转坐标系下平面梁在大转动小应变时计入初应变效应的几何非线性平衡方程,结合用初应变法进行节段施工混凝土梁计算中收缩徐变等效节点力计算的有限元列式,再利用随转坐标系与结构坐标系下节点力之间和节点位移之间全量及增量的关系,最终获得结构坐标系下平面梁单元几何非线性分析中考虑收缩徐变效应影响的实用算法,给出了详细的计算步骤,最后对文献\[10\]的算例1进行了比较分析.
  4同时考虑几何非线性与收缩徐变的计算
  步骤
  从前面的整个推导过程及几何非线性、收缩徐变效应单独分析时的计算步骤,可知同时考虑几何非线性和收缩徐变效应时的基本计算原理为:将不平衡力(由总外荷载减去节点位移产生的结构总抗力及收缩徐变等效节点力总量得到)作用下经过几何非线性分析得到的变形作为每一工况初始瞬时弹性变形,徐变变形与之成线性关系,将上一阶段的收缩徐变变形作为下一阶段的初应变,计算得到的等效节点力增量总是作用在单元随转坐标系中,因此在各阶段的累加计算过程中无须考虑坐标系的转换,可直接累加形成收缩徐变等效节点力总量,将收缩徐变等效节点力总量由结构当前构形下的随转坐标转换到结构坐标系下就可参与不平衡力的计算.
  6结论
  1)基于随转坐标系有关理论及收缩徐变分析的初应变法建立了同时考虑几何非线性和收缩徐变效应的非线性平衡方程,为混凝土斜拉桥等大跨柔性混凝土结构分析打下了理论基础.
  2)本文算法采用外荷载、由于节点位移而产生的结构抗力、混凝土收缩徐变产生的等效节点力的全量来计算节点不平衡力,故能有效消除时步间误差累积的问题.
  3)算例表明,对于既有混凝土构件又比较柔性的结构进行几何非线性和收缩徐变效应藕合分析是很有必要的,只考虑几何非线性或考虑线性和徐变共同作用的计算结果与之差别很大.
  4)按本文算法,可以方便地对现有平面杆系程序进行改造,使之具有同时考虑几何非线性和收缩徐变效应的计算功能,使工程技术人员能更好地理解大跨柔性混凝土结构的受力行为.
  5)由于同时考虑几何非线性与收缩徐变效应共同作用的理论研究及结构试验极少,而工程实际的发展已经要求开展这方面的理论研究及试验验证.
  参考文献
  .Journal of Structural Engineeirng, ASCE, 2003, 129(4):536-543.
  . Journal of Structural Engineeirng,ASCE,1998, 124(9): 984-990.
  [3]蔡松柏,沈蒲生.大转动平面梁有限元分析的共旋坐标法\[J\].工程力学,2006,23(增I): 69-72.
  CAI Songbai, SHEN Pusheng. Corotational procedure for finite element analysis of plane beam element of large rotational displacement\[J\]. Engineering Mechanics, 2006, 23(z1): 69-72. (In Chinese)
  [4]吕和祥, 朱菊芬, 马莉颖. 大转动梁的几何非线性分析讨论\[J\]. 计算结构力学及其应用, 1995,12(4):485-490.
  LV Hexiang, ZHU Jufen, MA Liying. Discussion of analyzing of geometric nonlinear beams with large rotations\[J\]. Chinese Journal of Computational Mechanics, 1995, 12(4): 485-490. (In Chinese)
  [5]邓继华,邵旭东. 基于U.L列式的带刚臂平面梁元非线性分析\[J\]. 湖南大学学报:自然科学版, 2012,39(5):8-12.
  DENG Jihua, SHAO Xudong. Nonlinear analysis of plane beam element with rigid arms based on U.L formulation\[J\]. Journal of Hunan Univ ersity: Natural Sciences, 2012,39(5): 8-12. (In Chinese)
  [6]TAYLOR R L,PISTER K S,GOUDREAU G mechanical analysis of viscoeoelastic solids\[J\].Num Meth Eng ,1970(2):45-60.
  [7]方志,黄立葵,周乐农.砼结构徐变的灰色系统预测\[J\].湖南大学学报:自然科学版,1994,21(4):96-102.
  FANG Zhi, HUANG Likui,ZHOU Lelong. Creep deformation prediction of concrete structure with grey system models\[J\]. Journal of Hunan University:Natural Sciences, 1994,21(4):96-102. (In Chinese)
  参考文献
  [8]金成棣.混凝土徐变对超静定结构变形及内力的影响——考虑分段加载龄期差异及延迟弹性影响\[J\].土木工程学报,1981,14(3):19-32.
  JIN Chengdi. Analysis of deformation and stress redistribution of continuous structure due to creep of concrete—taking account of loading at different age and delayed elasticity of concrete\[J\].China Civil Engineering Journal, 1981,14(3):19-32. (In Chinese)

上一篇:政府公共项目中的公众参与组织化的策略

下一篇:市场经济对中国社会的影响及机理创新