欢迎来到学术参考网
当前位置:发表论文>论文发表

论文为什么用因子分析

发布时间:2023-12-11 01:33

论文为什么用因子分析

可以发现变量之间的关系,将多变量划归为少数几个维度或因子。在问卷编制等方面用处比较大。

请问 做相关分析前,一定要做因子分析吗?因子分析的目的是什么? 谢谢!

主成分分析和因子分析的区别 :jok:
1,因子分析中是把变量表示成各因子的线性组合,而主成分分析中则是把主成分表示成
个变量的线性组合。
2,主成分分析的重点在于解释个变量的总方差,而因子分析则把重点放在解释各变量之
间的协方差。
3,主成分分析中不需要有假设(assumptions),因子分析则需要一些假设。因子分析的假
设包括:各个共同因子之间不相关,特殊因子(specific factor)之间也不相关,共同
因子和特殊因子之间也不相关。
4,主成分分析中,当给定的协方差矩阵或者相关矩阵的特征值是唯一的时候,的主成分
一般是独特的;而因子分析中因子不是独特的,可以旋转得到不到的因子。
5,在因子分析中,因子个数需要分析者指定(spss根据一定的条件自动设定,只要是特
征值大于1的因子进入分析),而指
定的因子数量不同而结果不同。在主成分分析中,成分的数量是一定的,一般有几个变量
就有几个主成分。
和主成分分析相比,由于因子分析可以使用旋转技术帮助解释因子,在解释方面更加有
优势。大致说来,当需要寻找潜在的因子,并对这些因子进行解释的时候,更加倾向于
使用因子分析,并且借助旋转技术帮助更好解释。而如果想把现有的变量变成少数几个
新的变量(新的变量几乎带有原来所有变量的信息)来进入后续的分析,则可以使用主
成分分析。当然,这中情况也可以使用因子得分做到。所以这中区分不是绝对的。
总得来说,主成分分析主要是作为一种探索性的技术,在分析者进行多元数据分析之前
,用主成分分析来分析数据,让自己对数据有一个大致的了解是非常重要的。主成分分
析一般很少单独使用:a,了解数据。(screening the data),b,和cluster analysis一
起使用,c,和判别分析一起使用,比如当变量很多,个案数不多,直接使用判别分析可
能无解,这时候可以使用主成份发对变量简化。(reduce dimensionality)d,在多元回
归中,主成分分析可以帮助判断是否存在共线性(条件指数),还可以用来处理共线性

在算法上,主成分分析和因子分析很类似,不过,在因子分析中所采用的协方差矩阵的
对角元素不在是变量的方差,而是和变量对应的共同度(变量方差中被各因子所解释的

什么是因子分析因子分析的应用

  因子分析是指研究从变量群中提取共性因子的统计技术。那么你对因子分析了解多少呢?以下是由我整理关于什么是因子分析的内容,希望大家喜欢!

  因子分析的简介
  因子分析的 方法 约有10多种,如重心法、影像分析法,最大似然解、最小平方法、阿尔发抽因法、拉奥典型抽因法等等。这些方法本质上大都属近似方法,是以相关系数矩阵为基础的,所不同的是相关系数矩阵对角线上的值,采用不同的共同性□2估值。在社会学研究中,因子分析常采用以主成分分析为基础的反覆法。

  主成分分析为基础的反覆法 主成分分析的目的与因子分析不同,它不是抽取变量群中的共性因子,而是将变量□1,□2,…,□□进行线性组合,成为互为正交的新变量□1,□2,…,□□,以确保新变量具有最大的方差:

  在求解中,正如因子分析一样,要用到相关系数矩阵或协方差矩阵。其特征值□1,□2,…,□□,正是□1,□2,…,□□的方差,对应的标准化特征向量,正是方程中的系数□,□,…,□。如果□1>□2,…,□□,则对应的□1,□2,…,□□分别称作第一主成分,第二主成分,……,直至第□主成分。如果信息无需保留100%,则可依次保留一部分主成分□1,□2,…,□□(□<□)。

  当根据主成分分析,决定保留□个主成分之后,接着求□个特征向量的行平方和,作为共同性□:

  □并将此值代替相关数矩阵对角线之值,形成约相关矩阵。根据约相关系数矩阵,可进一步通过反复求特征值和特征向量方法确定因子数目和因子的系数。

  因子旋转为了确定因子的实际内容,还须进一步旋转因子,使每一个变量尽量只负荷于一个因子之上。这就是简单的结构准则。常用的旋转有直角旋转法和斜角旋转法。作直角旋转时,各因素仍保持相对独立。在作斜角旋转时,允许因素间存在一定关系。

  Q型因子分析 上述从变量群中提取共性因子的方法,又称R型因子分析和R型主要成分分析。但如果研究个案群的共性因子,则称Q型因子分析和Q型主成分分析。这时只须把调查的□个方案,当作□个变量,其分析方法与R型因子分析完全相同。

  因子分析是社会研究的一种有力工具,但不能肯定地说一项研究中含有几个因子,当研究中选择的变量变化时,因子的数量也要变化。此外对每个因子实际含意的解释也不是绝对的。
  因子分析的应用
  在市场调研中,研究人员关心的是一些研究指标的集成或者组合,这些概念通常是通过等级评分问题来测量的,如利用李克特量表取得的变量。每一个指标的集合(或一组相关联的指标)就是一个因子,指标概念等级得分就是因子得分。

  因子分析在市场调研中有着广泛的应用,主要包括:

  (1)消费者习惯和态度研究(U&A)

  (2) 品牌形象和特性研究

  (3)服务质量调查

  (4) 个性测试

  (5)形象调查

  (6) 市场划分识别

  (7)顾客、产品和行为分类

  在实际应用中,通过因子得分可以得出不同因子的重要性指标,而管理者则可根据这些指标的重要性来决定首先要解决的市场问题或产品问题。
  因子分析的描述
  验证性因子分析的强项正是在于它允许研究者明确描述一个理论模型中的细节。那么一个研究者想描述什么呢?我们曾经提到因为测量误差的存在,研究者需要使用多个测度项。当使用多个测度项之后,我们就有测度项的“质量”问题,即有效性检验。而有效性检验就是要看一个测度项是否与其所设计的因子有显著的载荷,并与其不相干的因子没有显著的载荷。当然,我们可能进一步检验一个测度项工具中是否存在单一方法偏差,一些测度项之间是否存在“子因子”。这些测试都要求研究者明确描述测度项、因子、残差之间的关系。对这种关系的描述又叫测度模型 (measurement model)。对测度模型的质量检验是假设检验之前的必要步骤。

上一篇:学生成绩因子分析论文

下一篇:因子分析的论文的结论