欢迎来到学术参考网
当前位置:发表论文>论文发表

冶金冶炼毕业论文范文

发布时间:2023-12-12 02:38

冶金冶炼毕业论文范文

冶金企业节能减排生产技术现状及发展趋势 摘要:主要论述了冶金企业节能减排生产技术现状及发展趋势,综述了冶金企业节能减排生产的重要 意义。对冶金企业节能减排生产,实现“十一五”发展目标,具有重要的意义。 关键词:冶金 节能 减排 技术 发展 1 前言 近10年来钢铁冶金能源消费量占全国总能源 消费量的比重一直在12% ~15%之间,钢铁工业单 位增加值能耗是全部工业平均值的3倍以上。钢铁 生产在消耗能量的同时大量排放CO2、CO、SO2、 NOX等有害气体。因此,减少钢铁生产的能耗不仅 保护自然生态,还能有效地减少对环境的污染。面 对“十一五”期间单位国内生产总值能耗降低20% 左右,主要污染物排放总量减少10%的约束性指 标。钢铁工业进行节能减排,是建设资源节约型、环 境友好型社会的必然选择。 2 冶金企业节能生产技术的现状 随着我国钢产量的增加,钢铁业技水装备水平 也在不断的提升,重点大中型钢铁企业的主体装备 已达到或接近国际先进水平。干熄焦、高炉喷煤、炉 外精炼、薄板坯连铸—连轧等环境友好型工艺技术 也得到推广和应用。但在能源有效利用方面,国内 和国外先进的冶金企业还存在着较大的差距,这种 作者简介:李艳青(1969-),女,山东平原县人, 1992年毕业于山东 工业大学。现主要从事技术信息研究与管理工作,高级工程师。 差距主要体现在钢铁各个生产工序上(表1)。 表1 各工序消耗的标准煤kg标煤/t 指标烧结焦化炼铁转炉电炉热轧冷轧综合 中国66 142 466 27 210 93 100 761 国际 先进59 128 438 -9 199 48 80 655 差距/% 11 19 5 133 5 48 20 14 从表1中可以看出综合能耗差距虽然只有 14%,但个别工序能耗指标差距较大,存在一定的挖 潜降耗潜力。目前钢铁行业主要通过新技术的应 用、工艺改进、设备改造等技术措施,以及对原来废 弃资源的综合利用等措施,来降低能耗,保护环境。 2. 1 焦化方面 2. 1. 1 干熄焦技术的应用 该技术可回收80%的红焦显热,采用该技术每 熄红焦1 ,t可回收3. 9MPa、450℃的蒸汽0. 45~ 0. 6 ,t比湿法熄焦节水0. 5 ,t使焦化工序能耗降低 60 kg标煤/t左右。干熄焦技术不仅节能效果明显, 还能改善焦化厂生态环境,减少原来湿法熄焦时大 量酚、氰化物、硫化物和粉尘的排放。 2. 1. 2 炼焦配煤优化系统的研究利用 配煤是将两种以上的单种煤料,按适当的比例 均匀配合,以求制得各种用途所要求的焦炭,采用 配煤炼焦既可保证焦炭质量符合要求,又可合理利 用煤炭资源,同时增加炼焦化学产品产量。炼焦配 煤优化系统将多年来的经验配煤方法提升为数值化、 精确化配煤方法,为数值化生产、精细化生产和科学 化生产提供了条件,合理的配煤方案既能节约煤炭资 源,保证焦炭质量,又要达到配合煤成本最低。 2. 2 烧结方面 2. 2. 1 烧结烟气的综合利用 低温烟气余热发电需要三项核心技术:一是废 气温度的梯次科学利用;二是低能耗、高效率的余热 回收系统的技术和设备;三是生产和余热发电系统的 协调控制和管理。应用这些核心技术建设低温烟气 余热发电项目,吨烧结矿的发电量可达23. 6 kWh左 右,机组发电可满足烧结生产用电量的35% ~40%。 2. 2. 2 催化燃烧烧结助剂的应用 在烧结过程中,除了电以外,需要的最多能源主 要是煤或焦粉,在煤中或焦粉中添加催化燃烧烧结助 剂,提高煤的燃烧效率和热值释放,并且可以提高烧 结矿厚度和强度,从而提高烧结效率,节约能源。按 煤或焦粉量添加不含碱金属的烧结助剂0. 3%左右, 吨烧结矿节约标准煤3~5 kg,提高烧结效率10%左 右。 2. 3 炼铁方面 2. 3. 1 提高高炉喷煤比 高炉喷吹煤粉,强化冶炼是优化炼铁工序燃料 结构,以价格低廉的煤炭代替价格较昂贵的焦炭,从 而实现降低生铁成本、降低炼铁能耗的有效技术措 施之一。合理搭配使用煤种,控制好混合煤成分,实 现煤焦置换比达到1. 0。 2. 3. 2 高炉喷煤助燃剂的利用 高炉在喷煤时,喷吹的煤粉能否燃烧完全是关 键所在,从除尘灰中可以检测到煤含量,有时除尘灰 中高达50% ~60%的碳粉,说明喷吹的煤粉在高炉中 没有充分燃烧。在煤粉中添加助燃剂,可以有效地提 高喷吹煤粉的燃烧效率,提高喷吹煤粉的利用率。 2. 3. 3 TRT及CCPP发电技术的应用 TRT是高炉煤气余压回收透平发电装置的简 称,是回收和利用高炉炉顶煤气的余压和余热,将热 能和压力能转化为机械能,驱动发电机发电的一种 装置。流量180000m3/h的TRT装置每天可以发电 10万度左右,这种装置既回收了高炉煤气余压的能 量,又净化了煤气,降低了噪音,改善了高炉炉顶压 力的控制品质。该装置运行过程中不产生污染,发 电成本低,回收能源效果显著。 CCPP是燃气—蒸汽联合循环发电装置的简 称,是以炼铁高炉低热值(3100~3500 kJ)高炉煤气 为燃料的联合循环发电机组。利用富余放散的高炉 煤气发电,既可实现高炉煤气零排放,减轻大气环境 污染,又能获得大量的电能,是节能减排的绿色环保 工程。CCPP如果燃烧1亿标准立方米高炉煤气,年 发电6000万kWh以上,可节约标煤2. 1万,t减少 温室气体CO2排放5. 75万,t减少CO排放3000万 标准立方米。 2. 4 炼钢方面 2. 4. 1 转炉煤气回收利用 在冶炼过程中转炉内处于高温,碳氧反应形成 的CO气体称为转炉煤气,温度约在1600℃。此时 高温转炉煤气的能量约为1 GJ/,t其中煤气显热能 约占1/5,其余4/5为潜能。转炉炼钢过程中释放 出的能量是以高温煤气为载体,要做到负能炼钢必 须回收煤气,而且应尽可能提高回收煤气的数量和 质量。转炉煤气回收中等水平,一般能达到每吨钢 回收70m3,煤气热值为1800×4. 18 kJ/m3,转炉煤 气回收是转炉负能炼钢的关键,是炼钢节能降耗的 重要途径。 2. 4. 2 干法除尘技术 氧气转炉炼钢的净化回收主要有两种方法,一 种是煤气湿法(OG法)净化回收系统,一种是煤气 干法(LT法)净化回收系统。干法除尘技术的主要 优点是:除尘净化效率高,通过电除尘器可直接将粉 尘浓度降至10mg/Nm3以下,不存在二次污染和污 水处理;系统阻损小,煤气发热值高,回收粉尘可直 接利用,节约了能源;因此,干法除尘技术比湿法除 尘技术有更高的经济效益和环境效益。 2. 4. 3 连铸坯热装热送技术 钢水经过连铸后,形成的连铸坯表面红热,温度 较高,在冷却达到一定强度后,直接进入加热炉进行 加热后轧制,从生产工序上实现了转炉—精炼—连 铸—连轧短流程新工艺。采用该工艺后,加热炉热 装比达90%以上,轧钢的吨钢煤气消耗明显降低。 每提高热送率1个百分点,吨钢大约降低1 m3煤 气,同时,提高加热炉的加热能力,减少了烧损,提高 成材率0. 08%,吨钢效益在2. 80元/t左右。 2. 5 轧钢方面 高效蓄热式加热炉和煤气、空气预热技术在轧 工序中的应用。高效蓄热式燃烧技术,可以实现 降低加热炉能耗35%,目前我国已有270多个蓄热 式加热炉。采用蓄热式高效高温空气燃烧技术可使 炉窑节能15%。热风炉采用煤气、空气双预热技 术,可实现燃烧低热值煤气产出1200℃以上的高风 温。轧钢加热炉采用此技术可使用低热值煤气代替 燃油,提高热效率(废气出口的温度可低于150 ℃),使轧钢工序能耗降低19 kg标煤/t。采用低空 气过剩系数(1. 02~1. 05)的燃烧技术,还可以减少 燃烧过程中NOx物的产生,有良好的环保效应。 3 节能减排生产技术的发展趋势 3. 1 焦炉大型化及非回收型炼焦技术 目前国内焦化系统是最先进的7. 63m超大型 焦炉,利用干熄焦技术回收热能用于发电,装煤系统 采用了负压抑尘无烟装煤等技术,实现焦化系统的 节能减排。 另外,为了减少焦炭生产对环境的污染,美国 Sesa炼焦公司建起了非回收型焦炉[1]。这种炼焦 工艺不回收化工副产品,而是将其燃烧回收热能。 生产时看不到明显的污染物排放,而且产量提高 30%,焦炭质量改善。非回收型焦炉的投资少于传 统焦炉,操作也比较容易。 3. 2 COREX熔融还原炼铁技术[2] 目前,煤气回收、高炉炉顶余压发电、双预热高 风温热炉、富氧喷煤等技术已在炼铁系统普遍应用 实现节能减排,并取得了显著的效果。COREX熔融 还原炼铁技术是目前唯一成熟的炉外炼铁技术。该 工艺的概念就是在熔融状态下铁氧化物的全部还原 都依靠C转变成CO2反应的热量来完成,从而在理 论上达到最低碳的消耗,从而降低能源的消耗。虽 然,COREX流程CO2排放量比高炉流程多,但是, 酚、氰化物、硫化物、氨等的排放量比高炉少得多,还 可处理烟尘、泥渣、轧钢皮等钢铁厂内部的废料,以 及含油铁鳞、废塑料、破碎轮胎、有机残余物等社会 废弃物,为环境友好型炼铁工艺。 目前,我国还没有自主产权的熔融还原技术,宝 钢引进的COREX 3000项目(设计能力为150 万吨/年,预计今年10月份投产),将推动我国非高 炉炼铁技术的发展。 3. 3 氢冶金技术 目前,炼钢系统也普遍采用了煤气回收、气化冷 却、全连铸等技术,并同步建设冶金固废综合处理及 循环再生利用工程,进一步实现炼钢工序的节能减 排。这一系列高新技术的运用,有效地减少污染物 的排放。但由于炼焦煤和焦炭资源的日益短缺,限 制了传统炼铁工业的进一步发展,发展氢冶金工艺, 替代碳还原剂的炼铁工艺,不仅可行,而且有许多传 统炼铁工艺不可比拟的优势。如果用氢气进行铁氧 化物的还原,就意味着CO2零排放,问题的关键是 如何得到丰富而廉价的氢气。 3. 4 冶金渣的显热利用技术 冶金渣是钢铁生产过程产生的最大量的副产 物,冶金渣温度较高,显热温度都在1400℃以上,是 一种非常有利用价值的二次资源。通常情况下冶金 渣主要用于水泥厂或建材厂作原料使用,或直接做 成微晶玻璃、矿渣棉等建筑装饰材料等。但是,对于 冶金渣所含的丰富热量却还没有充分的利用。 (1)钢渣滚筒法热能回收的新设想 钢渣经渣罐进入滚筒,在滚筒内生成的蒸汽混 合气体温度为90~170℃,可直接用于生活设施或 将其加热至600℃用于发电,经测试,热利用系数可 达到50%。 (2)钢渣风淬法热能回收新工艺 俄罗斯乌拉尔钢铁研究院曾研制了一套附有热 能回收的风淬钢渣处理工艺。将液态钢渣倾倒过程 中与空气流接触产生的辐射热通过专用设置收集后 作为热水、蒸汽和热空气回收利用。 4 结论 目前,冶金行业的资源利用方式已由单纯的 “资源—产品—废弃物”的单项式直线过程,转向了 “资源—产品—废弃物—再生资源”的循环再利用 方式。在炼铁系统、炼钢、轧钢系统的能耗、高性能 钢铁材料研究、废弃处理利用等方面,节能工艺新技 术和装备也得到了大力的推广和应用,在节能减排 生产方面已取得了可喜的成绩,但与国际先进水平 仍然有很大差距。今后,要进一步提高对生态冶金 技术重要性的认识,加强对节能减排生产新技术的 跟踪和研究,把莱钢建设成生态型、环境友好型的钢 铁企业。 参考文献 [1]毕学工.生态钢铁冶金的发展.河南冶金, 2006(2): 3-6. [2]王琳等.COREX熔融还原工艺的发展状况.沈阳工程学 院学报(自然科学版), 2006(4): 373-376. 165

求冶金专业毕业论文

镁法海绵钛爬壁钛生成量的初探
沈俊宇
(遵义钛业股份有限公司 贵州省 563004)
摘要:在海绵钛的还原生产过程中,反应器的上部器壁会生成大量环状的爬壁钛,一炉产品爬壁钛的生成量少则500 kg左右,多则达800至1000 kg,爬壁钛不仅产品取出困难,增加操作人员劳动强度,而且其质量较差,经济损失大。本文分析了海绵钛爬壁钛的形成机理及生产过程中爬壁钛增多的原因,提出了还原中后期最大加料速度限制,以缓解反应剧烈程度和控制反应液面高度在1#范围内小幅波动,防止形成新的活性中心,是生产过程中减少爬壁钛生成量的主要途径。
关键词:海绵钛 爬壁钛 生成量 加料速度 反应液面高度
A Study the Production of the Titanium on Walls Produced in the Process of Sponge Producing by Magnesium Process
Junyu,Shen
(Zunyi Titanium u 563004)
Abstract:A quantity of annular titanium will be produced on upper walls of reactors during the reduction and distillation。The production per batch is from 500kg to 800 or 1,000kg. It is difficult for operators to take products out ,and also influences the quality .Therefore ,the titanium on walls not only strengthens the labor intensity ,but also causes a big loss The paper analyzes the formation mechanism of the titanium on wall and reasons why its production ,in order to ease the strong reaction,make the liquid level in reaction waves no more than 1’’and prevents the formation of new active centers ,the paper introduces a main method to reduce the production of the titanium on walls,that is to retrict the speed in mid or late period of reduction and distillation.
Keywords:titanium sponge the titanium on walls production feed speed liquid level in reaction
1 前言
在海绵钛的还原生产过程中,反应器的上部器壁会生成大量环状的爬壁钛,如图1所示。爬壁钛会导致以下不良后果: 第一,由于目前使用双法兰反应器,反应器上部热损失较大(上部有三圈水套,反应器约300 mm高度在加热炉外),上部爬壁钛中的氯化镁很难被蒸发出去,使爬壁钛中含有较高的杂质元素氯,剥取产品时会看到反应器口部(爬壁钛的最上部)粘有大量的镁和氯化镁。第二,海绵钛还原、蒸馏反应器为铁制反应器,由于爬壁钛在反应器器壁上粘附较强,加之双法兰反应器上部热损失大,为保证反应器上部温度,蒸馏期间加热炉1#、2#加热电阻丝送电频率高且时间长,致使爬壁钛普遍有发亮现象,分析结果显示杂质元素铁含量较高。第三,爬壁钛在反应器上部空间极易被泄漏进的空气污染,使产品中杂质元素氮、氧含量较高。由表1可看出,产品分析爬壁钛质量级别基本上在3—5级(极少部分在2级以上),同时,也有少部分因杂质元素过高成为等外品。一炉产品爬壁钛的生成量少则500kg左右,多则达800至1000 kg,经济损失较大。另外,爬壁钛过多也给产品取出带来困难,增加操作人员劳动强度。为了减少爬壁钛生成量,降低损失,我们进行了控制液面高度及调整料速试验。
表1 2007年下半年爬壁钛质量统计表
分析批数(批) 2级品批数(批) 3~5级品批数(批) 等外品批数(批) 2级品影响因素 3~5级品、等外品影响因素
75 12 51 12 HB、Fe、Cl、O、N HB、Fe、Cl

2 爬壁钛形成机理
镁还原TiCl4主要反应为:TiCl4+2Mg=Ti+2MgCl2,在还原反应刚开始时,加入的TiCl4大部分气化,发生气相TiCl4—气相Mg或气相TiCl4—液相Mg反应,同时也有一部分TiCl4液体未来得及气化,进入液镁中,发生液相TiCl4—液相Mg间的反应。还原刚开始在反应器铁壁和熔镁表面夹角处上,一旦有钛晶粒出现后,裸露在熔镁面上方的钛晶体尖峰或棱角便成为活性中心。[1] 镁还原TiCl4主要在此活性中心上进行。液镁靠表面张力沿铁壁和钛晶体毛细孔上爬,被吸附在活性中心上,与气相TiCl4反应生成最初的海绵钛颗粒。随着反应的进行,生成的海绵钛颗粒依赖其与反应器壁的粘附力和熔体浮力的支持沿反应器壁在熔体表面逐渐长大,并浮在熔体表面。随着生成的海绵钛块增厚、增大,加之排放氯化镁,失去熔体浮力支持的海绵钛块体大部份就会沉落在熔体底部,这样在反应器器壁上,将有环状海绵钛粘附在其上,其实,这部分也是最初的爬壁钛。另外,在还原反应初期,液镁有很大的蒸发表面,而空间压力较低,故镁具有很大的蒸发速度。还原反应中期,反应温度较高和对反应器底部加热时,也会有部分镁蒸发。镁蒸气挥发后,冷凝在反应器器壁和大盖底部,与气相TiCl4反应也会生成部份爬壁钛。海绵钛块沉落熔体底部后,熔体表面会重新暴露出液镁的自由面,还原反应将恢复到较大的速度。随着反应的进行,在熔体表面会重新生成海绵钛桥,通过排放氯化镁,钛桥被破坏,海绵钛块靠自重下沉,又为下一层海绵钛生长创造条件,爬壁钛也在这一过程中逐渐形成,还原反应如此周而复始进行,直至镁的利用达到65%—75%之后。
3 生产中爬壁钛增多原因分析
3.1中后期加料速度
随着还原反应的进行,特别是进入中期后,加料速度逐渐增加,反应进行的非常剧烈,熔体表面反应区中心部最高温度可达1200℃以上,而镁的沸点仅1105℃,此时镁处于沸腾状态。加之目前还原操作料速按玻璃转子流量计实际刻度与自动加料系统对照进行加料,因玻璃转子流量计出厂时是用水标定,当被测介质改为TiCl4时,其修正系数,经计算应为1.13。当玻璃转子刻度显示最大加料量为150 kg /0.5h,实际料速已达160~170 kg /0.5h。这样更加剧了反应的剧烈程度,沸腾的液镁将不断吸附在最初反应器壁上已形成的少量环状爬壁钛上,通过钛晶体毛细孔上爬,与气相TiCl4反应生成新爬壁钛,使原环状爬壁钛增多、增厚。另外,由于反应剧烈程度增加,也加剧了液镁的气化,液镁蒸气挥发后,冷凝附着在反应器器壁上部和大盖底部,与气相TiCl4反应生成爬壁钛,这些爬壁钛主要粘附在反应器器壁上部和大盖底部。因此,最大料速持续的时间越长,生成爬壁钛也就越多(表2)。
表2 部分大料速爬壁钛生成量统计表

最大料速
(kg /0.5h) 持续的时间
(h) 爬壁钛占毛产量
比例(%)
生产炉-1 155~165 35 12.75
生产炉-2 145~155 40 13.55
生产炉-3 155~165 36 15.67
生产炉-4 155~165 40 10.35
生产炉-5 155~165 35 10.75
3.2 反应液面高度
反应液面高度太低、波动范围过大会增加爬壁钛生成量,其原因如下:第一,当反应液面高度过低时,TiCl4距液镁表面间距面相对较远,发生液相TiCl4—液相Mg间的反应相对减少,气相TiCl4与镁蒸气反应相对增加,从而增加爬壁钛生成量。第二,因未定时、定量准确排放MgCl2,反应液面高度大幅上下波动,易在钛晶体活性中心之外,形成新的活性中心,液镁靠表面吸引力沿铁壁和钛晶体孔隙上爬,被吸附在活性中心上,这样在反应器壁上会粘附形成新的爬壁钛。因此,不控制好液面高度,及时准确排放MgCl2,也将增加爬壁钛的生成量(表3)。
表3 反应液面高度大幅波动量统计表

反应液面高度波动范围 爬壁钛占毛产量
比例(%)
生产炉-6 1#~2# 11.88
生产炉-7 1#~2# 12.82
生产炉-8 1#~2# 13.67
生产炉-9 1#~2# 15.02
生产炉-10 1#~2# 14.02
生产炉-11 1#~2# 12.81
4 措施
通过上述分析,可以知道爬壁钛是海绵钛生产过程中必然要形成的,但其生成量是可以控制的,因此,我们对加料速度以及反应液面高度进行了调整。结合生产实践,采取两项措施:第一,我们对部分处于通风不好而影响散热的炉子还原中期最大加料速度限制在135~140 kg /0.5h,以缓解反应剧烈程度,特殊炉次,因反应温度太低,可以适当提高至160~170 kg /0.5h,但持续时间不能太长,最多3~4 h;后期最大料速限制在105~110 kg /0.5h。第二,控制反应液面在1#范围内小幅波动,防止形成新的活性中心,以达到降低爬壁钛生成量的目的(表4)。
表4 调整料速及排放MgCl2制度试验对比表
料速及排放MgCl2制度 平均爬壁钛占毛产比例(kg) 平均钛坨重量(kg) 平均加料时间
(h) 中期平均最大料速(kg /0.5h) 后期平均最大料速(kg /0.5h)
调整前 11.56 5291 89 160 120
调整后 8.28 5483 87 138 107
从表4的统计数据可以看出,通过控制最大料速以及控制好液面高度及时准确的排放MgCl2,产品生成的爬壁钛占毛产比例大大下降,调整前平均爬壁钛为11.56%,调整后平均爬壁钛8.28%,平均下降3.28%。在进行调整料速试验期间,对生产炉-59一炉产品还原中期加料再次进行提高料速到155~165 kg /0.5h试验,结果爬壁钛增至占毛产量的14.93%,从这点也证明了加料速度对爬壁钛形成的影响。此外,调整前,钛坨平均重5291 kg,调整后,钛坨平均重5483 kg,平均毛产重量未受影响;调整前平均加料时间89小时,调整后平均加料时间87小时,加料时间也略有减少。试验在降低爬壁钛生成量的同时,缩短了还原生产周期,降低了还原电耗,取得了较好的效果。
5 结论
5.1对处于通风不好而影响散热的炉子还原中期最大加料速度限制在135~140kg /0.5h,后期最大料速限制在105~110 kg /0.5h
5.2控制反应液面高度在1#范围内小幅波动。
本试验在巩固海绵钛钛坨产量的情况下,降低了爬壁钛生成量,试验取得了效果,为进一步研究探索海绵钛爬壁钛生成量打下了基础。

参考资料
[1] 莫畏, 邓国珠 ,罗方承 . 钛冶金[M].版次(第二版).北京:冶金工业出版社,1998:281-293

炼钢专业毕业论文 加急!!!

引言
随着现代科学技术的发展和工农业对钢材质量要求的提高,钢厂普遍采用了炉外精炼工艺流程,它已成为现代炼钢工艺中不可缺少的重要环节。由于这种技术可以提高炼钢设备的生产能力,改善钢材质量,降低能耗,减少耐材、能源和铁合金消耗,因此,炉外精炼技术已成为当今世界钢铁冶金发展的方向。对于炉外精炼技术存在的问题及发展方向有必要进行探讨。
1 国内外炉外精炼技术的发展历程和现状
随着炼钢技术的不断进步,炉外精炼在现代钢铁生产中已经占有重要地位,传统的生产流程(高炉→炼钢炉(电炉或转炉)→铸锭),已逐步被新的流程(高炉→铁水预处理→炼钢炉→炉外精炼→连铸)所代替。已成为国内外大型钢铁企业生产的主要工艺流程,尤其在特殊钢领域,精炼和连铸技术发展得日趋成熟。精炼工序在整个流程中起到至关重要的作用,一方面通过这道工序可以提高钢的纯净度、去除有害夹杂、进行微合金化和夹杂物变性处理;另一方面,精炼又是一个缓冲环节,有利于连铸生产均衡地进行。
日本在20世纪70年代为了降低炼钢成本,提高钢的纯净度和质量,率先将炉外精炼技术应用于特殊钢生产中,随后西欧的钢铁企业也加入到推广和使用这项技术的行列中。据资料报道,日本早在1985年精炼率达到65.9%,1989年上升到73.4%,特殊钢的精炼率达到94%,新建电炉短流程钢厂100%采用炉外精炼技术。80年代连铸技术发展迅速,原有的炼钢炉难以满足连铸的技术要求,更加促进了炉外精炼技术的发展,到1990年为止世界各主要工业国家拥有1000多台(套)炉外精炼设备。
我国早在20世纪50年代末,60年代中期就在炼钢生产中采用高碱度合成渣在出钢过程中脱硫冶炼轴承钢、钢包静态脱气等初步精炼技术,但没有精炼的装备。60年代中期至70年代有些特钢企业(大冶、武钢等)引进一批真空精炼设备。80年代我国自行研制开发的精炼设备逐渐投入使用(如LF炉、喷粉、搅拌设备),黑龙江省冶金研究所等单位联合研制开发了喂线机、包芯线机和合金芯线,完善了炉外精炼技术的辅助技术。现在这项技术已经非常成熟,以炉外精炼技术为核心的“三位一体”短流程工艺广泛应用于国内各钢铁企业,取得了很好的效果。初炼(电炉或转炉)→精炼→连铸,成了现代化典型的工艺短流程。
2 炉外精炼技术的特点与功能
炉外精炼是指在钢包中进行冶炼的过程,是将真空处理、吹氩搅拌、加热控温、喂线喷粉、微合金化等技术以不同形式组合起来,出钢前尽量除去氧化渣,在钢包内重新造还原渣,保持包内还原性气氛。炉外精炼的目的是降低钢中的C、P、S、O、H、N、等元素在钢中的含量,以免产生偏析、白点、大颗粒夹杂物,降低钢的抗拉强度、韧性、疲劳强度、抗裂性等性能。这些工作只有在精炼炉上进行,其特点与功能如下:
1)可以改变冶金反应条件。炼钢中脱氧、脱碳、脱气的反应产物为气体,精炼可以在真空条件下进行,有利于反应的正向进行,通常工作压力≥50Pa,适于对钢液脱气。
2)可以加快熔池的传质速度。液相传质速度决定冶金反应速度的快慢,精炼过程采用多种搅拌形式(气体搅拌、电磁搅拌、机械搅拌)使系统内的熔体产生流动,加速熔体内传热、传质的过程,达到混合均匀的目的。
3)可以增大渣钢反应的面积。各种精炼设备均有搅拌装置,搅拌过程中可以使钢渣乳化,合金、钢渣随气泡上浮过程中发生熔化、熔解、聚合反应,通常1吨钢液的渣钢反应面积为0.8~1.3mm2,当渣量为原来的6%时,钢渣乳化后形成半径为0.3mm的渣滴,反应界面会增大1000倍。微合金化、变性处理就是利用这个原理提高精炼效果。
4)可以在电炉(转炉)和连铸之间起到缓冲作用,精炼炉具有灵活性,使作业时间、温度控制较为协调,与连铸形成更加通畅的生产流程。
3 炉外精炼技术在生产中的应用目前得到公认并被广泛应用的炉外精炼方法有:LF法、RH法、VOD法。
3.1 LF法(钢包精炼炉法)
它是1971年由日本大同钢公司发明的,用电弧加热,包底吹氩搅拌。
3.1.1 工艺优点
1)电弧加热热效率高,升温幅度大,控温准确度可达±5℃;
2)具备搅拌和合金化的功能,吹氩搅拌易于实现窄范围合金成份控制,提高产品的稳定性;
3)设备投资少,精炼成本低,适合生产超低硫钢、超低氧钢。
3.1.2 LF法的生产工艺要点
1)加热与控温LF采用电弧加热,热效率高,钢水平均升温1℃耗电0.5~0.8kW·h,LF升温速度决定于供电比功率(kVA/t),而供电的比功率又决定于钢包耐火材料的熔损指数。因采用埋弧泡沫渣技术,可减少电弧的热辐射损失,提高热效率10%~15%,终点温度的精确度≤±5℃。
2)采用白渣精炼工艺。下渣量控制在≤5kg/t,一般采用Al2O3-CaO-SiO2系炉渣,包渣碱度R≥3,以避免炉渣再氧化。吹氩搅拌时避免钢液裸露。
3)合金微调与窄成份范围控制。据试验报道,使用合金芯线技术可提高金属回收率,齿轮钢中钛的回收率平均达到87.9%,硼的回收率达64.3%,钢包喂碳线回收率高达90%,ZG30CrMnMoRE喂稀土线稀土回收率达到68%,高的回收率可实现窄成份控制。
3.1.3 LF法在生产实践中的应用
2000年6月,鞍钢第一炼钢厂新建的连铸车间正式投产,精炼设备由两座LF钢包精炼炉,年处理钢水200万t;一座VD钢水真空处理装置,年处理钢水80万t组成。LF炉最大升温速度为4℃,LF炉平均处理周期≤28min;处理效果:平均[H]≤0.0002%;最低[H]≤0.0001%。
我国现有家重轨生产厂(攀钢、包钢、鞍钢和武钢)生产典型的工艺路线如下:LD→LF→VD→WF→CC,钢包吊到LF处理线的钢包车上后,由人工接通钢包底吹氩的快速接头,根据要求的钢水成分及温度确定物料的投入量(含喂丝)重轨钢含碳量较高,因而增碳显得很重要,转炉出钢时钢水含碳量控制为0.2%~0.3%(wt),炉后增碳至0.60%~0.65%(wt),在LF炉处理时再增0.10%~0.15%(wt)个碳至标准成份的中上限,经VD处理后即可达到钢种成分要求。
3.2 RH法(真空循环脱气法)这种方法是1958年西德发明的,其基本原理是利用气泡将钢水不断的提升到真空室内进行脱气、脱碳,然后回流到钢包中。
3.2.1 RH法的优点
1)反应速度快。真空脱气周期短,一般10分钟可以完成脱气操作,5分种能完成合金化及温度均匀化,可与转炉配合使用。
2)反应效率高。钢水直接在真空室内反应,钢中可达到[H]≤1.0×10-6,[N]≤25×10-6,[C]≤10×10-6,的超纯净钢。
3)可进行吹氧脱碳和二次燃烧热补偿,减少精炼过程的温降。
3.2.2 RH法工艺参数
1)RH循环量。循环量是指单位时间内通过上升管或下降管的钢水量,单位是t/min。有关资料给出的计算公式为: Q=0.002×Du1.5·G0.33,式中:Q———循环流量,t/min;Du———上升管直径,cm;G———上升管内氩气流量,L/min。
2)循环因数。他是指在RH处理过程中通过真空室的钢水与处理量之比,其公式为:μ=w·t/v式中:μ———循环因数,次;w———循环量,t/min;t———循环时间,min;v———钢包容量,t。
3)供氧强度与含碳量的关系。向RH内吹氧可以提高脱碳速度,即RH-OB法。当[C]/[O]>0.66时钢包内氧的传质速度决定脱碳速度,其计算公式为:
QO2=27.3×Q·[C]式中:QO2———氧气强度,Nm3/min;Q———钢水循环量,t/min;[C]———含碳量,Nm3/t。
3.2.3 RH法在生产实践中的应用
日本的山阳钢厂将LF与RH配合生产轴承钢形成EF-LF-RH-CC轴承钢生产线,钢中总氧量达到5.8×10-6。LF-RH法首先利用LF炉将钢水升温,利用LF搅拌和渣精炼功能进行还原精炼,是钢水脱硫和预脱氧,然后将钢水送入RH中进行脱氢和二次脱氧。经过这样处理大大的提高了钢水的清洁度,同时钢水的温度达到连铸需要的温度。
宝钢炉外精炼设备有RH-OB、钢包喷粉装置、CAS精炼装置,RH-OB的冶炼效果较理想,脱氢率为50%~70%,脱氮率为20%~40%,一般情况下,经RH-OB处理后[H]≤2.5×10-6,[C]≤30×10-6,去除钢中非金属夹杂物一般能达到70%,钢中总氧量≤25×10-6,而且在RH中合金处理可以提高合金的收得率和控制的精确度,[C]、[Si]、[Mn]的控制精度能达到±0.01%,铝的精确度可达到1.5×10-3,取得了较好的炉外精炼效果。
3.3 VOD法(真空罐内钢包吹氧除气法)
3.3.1 VOD的特点VOD法是1965年西德首先开发应用的,它是将钢包放入真空罐内从顶部的氧枪向钢包内吹氧脱碳,同时从钢包底部向上吹氩搅拌。此方法适合生产超低碳不锈钢,达到保铬去碳的目的,可与转炉配合使用。他的优点是实现了低碳不锈钢冶炼的必要的热力学和动力学的条件-高温、真空、搅拌。
3.3.2 VOD法在生产实践中的应用
20世纪90年代初,上海大隆铸锻厂从德国莱宝(leybold)公司进口1台15tVODC的关键设备和技术软件。采用电炉初炼钢水经VODC炉外精炼的工艺方法,精炼了超低碳不锈钢、中低合金钢和碳钢,取得了很好的冶金效果,钢中非金属夹杂物减少,氢含量小于3×10-6氧含量小于6.5×10-6,不锈钢中铬回收率达98%~99%,精炼后的钢具有十分优越的性能。VODC精炼工艺成熟,控制容易,适应中小型钢厂和铸钢厂的多钢种、小吨位精炼生产需要,对发展铸钢行业的精炼生产会起到很大积极作用,具有广阔的发展前景10。
抚顺特殊钢有限公司有30tVOD炉,采用EAF+VOD技术精炼不锈钢,可使[H]≤2.58×10-6,T[O]≤41.9×10-6,铬回收率达到99.5%,脱硫率64.2%,精炼高碳铬轴承钢T[O]≤12.13×10-6 。
4 发展炉外精炼技术需解决的问题及发展方向炉外精炼技术已经应用40年,对提高钢的纯净度、精确控制成分含量及细化组织结构等方面都起了重要作用,使冶炼成本大幅降低,同时提高了钢的品质和性能。但在发展的过程中也出现了一些问题,有待于解决,使这项技术更加完美。
1)实现炉外精炼工艺的智能化控制,根据来料钢水的各种技术参数,利用信息技术,制定最佳的精炼工艺方案,并通过计算机控制各精炼工序。精炼工位配备快速分析设备,实现数据网络化,减少热停等待时间。
2)炉外处理设备将实现“多功能化”。在水钢精炼设备中将渣洗精炼、真空冶金、搅拌工艺以及加热控温功能全部组合起来,实现精炼,以满足超纯净钢生产的社会需求。
3)开发高纯度、高密度、高强度的优质碱性耐火材料,以适应不同精炼炉的需要,注重产品质量的稳定性。耐火材料的使用条件应尽可能与炉渣相适应,最大限度地降低侵蚀速度。要根据精炼设备的实际情况形成不同层次的配套材料,研究开发保温和修补技术,提高炉衬的使用寿命。
4)减少精炼过程的污染排放,精炼过程会产生大量废气,其中含SO2、Pb、金属氧化物、悬浮颗粒等,在真空脱气冷却水中含有固态悬浮物、Pb、Zn等,这些污染物须经企业内部的相关处理,把污染程度降低到符合排放标准后再排放,加强环境保护意识。
5 结束语
炉外精炼技术是一项提高产品质量,降低生产成本的先进技术,是现代化炼钢工艺不可缺少的重要环节,具有化学成分及温度的精确控制、夹杂物排除、顶渣还原脱S、Ca处理、夹杂物形态控制、去除H、O、C、S等杂质、真空脱气等冶金功能。只有强化每项功能的作用,才能发挥炉外精炼的优势,生产出高品质纯净钢种。

材料工程毕业论文

在项目建设中,材料的选择直接影响着工程造价,尤其是新型建筑材料的投入往往会使工程造价大幅度增减。下面是我为大家整理的材料工程 毕业 论文,供大家参考。

材料工程毕业论文 范文 一:金属材料工程专业实践教学研究

摘要:通过对实践教学在新形势下的重要性及意义进行阐述,结合沈阳化工大学的发展定位,以化工行业为依托,对金属材料工程专业实践教学模式进行改革,优化专业课程的实践教学,加强校企合作,强化实践教学的管理,构建了完善的金属材料工程专业实践教学体系,努力培养学生创新能力,使其成为高素质应用型人才。

关键词:金属材料工程;实践教学;教学改革;人才培养

沈阳化工大学金属材料工程专业是应社会经济发展需求,尤其是化工行业建设的需求,在原金工教研室师资力量和实验设备条件的基础上,经过充分的论证、申请,于2006年国家教委批准,开始面向全国招生,同年获批材料学硕士学位授予权。在专业建设中,充分发挥化工大学化工行业特色优势及高素质专业教师队伍的优势,不断改革完善培养方案、培养模式,逐步形成了立足行业、与辽宁工业产业紧密衔接、全方位实践创新能力培养的专业特色,专业定位符合本校办学定位和发展方向,已纳入本校专业建设规划并进行重点建设,成效显著。在2013年辽宁省普通高等学校本科专业综合评价中,全省九所学校金属材料工程专业参评,沈阳化工大学的金属材料工程专业排名第二。实践教学是培养本科生理论联系实际,也是培养本科生创新意识和创新能力的主要途径[1]。但近年来,在市场经济的影响下,许多生产企业以影响生产和安全为由不愿接待本科生实习,同时,本科生实习的积极性也不高,导致实习效果不尽如人意。

1金属材料工程专业实践教学的现状

当前我国普通院校本科生 教育 普遍存在的一个突出问题是本科生创新意识差和创新能力不足,动手能力较很弱,难以适应激烈的市场竞争和知识经济的快速发展的需要[2]。而实践教学是培养本科生综合素质,提高本科生解决实际问题的能力,以及促使本科生将所学的理论知识向实际技能转化的环节。通过实践教学可以巩固、加深本科生对所学的理论知识的理解,并能够培养本科生严肃认真的科学态度[3]。高等学校中的传统的金属材料工程专业实践教学通常具有如下特点:首先,本科生实验教学内容主要以演示性、验证性实验居多,综合性实验和设计性实验相对较少,实验教学多以模仿为主,创新内容涉及较少。其次,部分本科生的课程设计和毕业设计与实际生产相脱节,影响本科生的就业竞争力。最后,由于受到现实条件的限制,目前的本科生生产实习和毕业实习主要采取到相关企业生产现场进行观摩教学的方式,大多数本科生很难彻底认识企业生产的组织和实施过程。实践教学环节存在的这些问题制约着本科生创新能力的提高[4],为培养二十一世纪合格的金属材料专业人才,沈阳化工大学金属材料工程专业近年来对金属材料工程专业实践教学体系进行了一系列改革,形成了稳定而有效的实践性教学体系。

2专业课程实验的优化

为培养二十一世纪化工行业合格的金属材料工程专业人才,自2006年以来,沈阳化工大学金属材料工程专业对实验教学内容统筹规划、整体安排。经过几年的改革和实践,建立了具有化工行业特点及金属材料工程专业特色、科学合理的实验教学内容,结合沈阳化工大学的化工特色,针对化工单元设备的主要加工 方法 ,如压力加工、焊接、机械加工及化工单元设备的腐蚀问题。强化金属塑性加工原理、焊接冶金学、焊接工艺与设备、金属腐蚀与防护、金属热处理和材料无损检测等主要专业课程。这些主要专业课程均设置有实验内容,同时优化了验证性实验,增加了综合性和设计性实验的数量,使本科生动手能力得到提高。巩固科研教学资源化的成果,进一步完善校内实践实训基地的建设,创造学生动手操作的条件,培养学生的工程实践能力。此外,金属材料工程专业每年投入一定的资金对现有实验设备进行改造,更新部分专业实验,增加创新性实验硬件条件,增加开放实验室公用设备的种类及台套数。进一步开放实验室,一周至少两天全天开放实验室,保证本科生根据需要自主进行实验。

3加强校企合作,强化实习管理

原有认识实习、生产实习、毕业实习的企业很多设备比较陈旧,几乎没有先进的设备和技术,实习效果大打折扣,为此,近年来金属材料工程专业增加个性化实习,采用校企合作,结合学生的 兴趣 爱好 、就业方向、教师的科研课题以及就业单位的培训等等,分别送学生到企业去学习实践,为方便学生到企业实习,金属材料工程专业先后建立了与沈阳铸锻工业有限公司、富奥辽宁汽车弹簧有限公司、抚顺机械设备制造有限公司等十余家企业的实习基地。通过实习基地,加强了与相关企事业单位的合作,利用其设备开展金属材料工程专业的实践教学,结合企业实际进行企业课程教学、现场教学和案例教学,这样也促使本科生了解金属材料及其相关材料最新的科技发展动态,使本科生具有分析和解决生产中的实际问题的能力。对于本科生毕业论文和设计结合企业实际项目或在实践教育基地、企业开展,校内校外指导教师共同指导,以强化学生综合运用所学知识进行独立分析问题和解决问题的能力。为保证实习效果,加强本科生对实习的重视,金属材料工程专业主任及全体实习指导教师参加实习动员,强调实习过程安全问题,明确每次实习的集合时间、地点、着装和注意事项等。在实习期间,每到一个车间,先请车间主任介绍该车间的典型设备和工艺流程,使本科生在参观前对参观内容有大概了解。实习成绩评定主要依据实习期间的出勤、纪律、实习笔记、 实习 报告 等。通过各方的努力,大大增强了本科生实习的主动性。

4开展创新活动,推进实践教学

鼓励本科生积极开展多样化的科技创新活动[4-5],例如参加教师的科研项目以及各类大学生竞赛等。通过组织各种类型、各种形式和不同层次的课外活动,将各类工程实践活动、创新实践训练、学科竞赛活动、学术前沿讲座、 社会实践 、公益活动等课外活动作为第二课堂课程模块纳入到课程体系中统一实施和管理。近年来,金属材料工程专业参赛学生项目获第三届全国机械创新设计大赛国家二等奖一项;“第十一届挑战杯”全国大学生课外学术科技作品竞赛国家三等奖一项;2011年、2013年分别获全国大学生英语竞赛三等奖、二等奖各一项;省级奖项几十多项。通过创新竞赛的开展,培养了学生的创新能力,同时也提高了教师指导学生创新的积极性,活跃了创新教育的氛围,为金属材料工程专业学生的个性发展提供平台,为学生毕业后从事科学研究活动奠定了一定的基础。

5结论

当今,素质教育快速发展[6-7],金属材料在化工行业中占有举足轻重的地位,为培养二十一世纪化工行业合格的金属材料专业人才的需要,我们将继续优化实践课程建设,建设具有化工行业特点及金属材料工程专业特色、科学合理的实践教学内容,努力培养学生创新能力,使其毕业后能在化工企业、高等学校或科研院所从事金属材料及金属基复合材料的研究、成分-工艺及设备设计、组织和性能检验、生产制造、技术开发和经营管理等方面工作的高素质应用型人才。

参考文献

[1]胡宗智,吴敏,王燕,等.依托地域优势开展金属材料工程专业生产实习的创新实践[J].中国电力教育,2011(2):129-130.

[2]甄睿,蔡璐.应用型本科院校金属材料工程专业人才培养和教学改革的思考[J].南京工程学院学报:社会科学版,2009,9(4):65-68.

[3]胡宗智,邹隽,孙小华,等.金属材料工程专业创新型人才培养实践教学体系研究[J].中国电力教育,2013(26):98-99.

[4]王荣,杨爱民,张骁勇,等.关于我校金属材料工程专业建设的思考[J]. 人力资源管理 ,2010(1):46.

[5]王生朝,蔡素莉,高泽平,等.金属材料工程专业实践性教学改革研究[J].湖南工业大学学报,2011(5)98-101.

[6]孙建春,陈登明.金属材料工程专业实习教学的改革实践[J].中国冶金教育,2009(4)55-57,60.

[7]孙小华,胡宗智,黄才华,等.金属材料专业综合实验教学改革与实践[J].中国电力教育,2013(14)118-119.

材料工程毕业论文范文二:高分子材料工程硕士创新实验能力培养

摘要:

结合国内外的工程硕士教学现状,通过分析国内工程硕士的课题研究方向和企业需要解决的问题存在脱轨现象、上理论课时间不足等问题,在借助于国外先进 经验 的基础上,提出了双导师制、灵活培养模式,确保创新实验能力培养的效果,为企业培养“留得住,用得上”的高分子材料工程实践实力和创新能力的应用型高级人才。通过对工程硕士创新实验能力培养模式的实践与探索,使工程硕士研究生在理论知识和动手能力及 创新思维 积累方面得到一定的提高。

关键词:工程硕士;创新实验能力;培养模式

研究生培养作为高校培养人才的重要一环,其培养模式的探索与研究一直都受到高度重视[1,2]。在我国经济体制转型期,高层次复合人才在传统工矿企业和工程建设部门需求非常大,国家为了弥补学术型硕士实际操作能力相对较弱的特点,1997年国务院学位委员会正式批准设置工程硕士专业学位,而工程硕士创新实验能力培养又成了该领域的重要研究课题。

1国内外研究现状分析

美国的工程类硕士教育起源,可追溯到第二次世界大战以后。二战后,新知识、新技术、新材料、新工艺层出不穷,工程活动的涉及层面迅速拓宽,复杂性与日俱增,对工程教育产生了极大的影响[3]。其工程类硕士培养的最大特点就是面向专业实践应用而非学术研究,培养目标是未来设计和开发的工程师。美国自开展工程硕士教育以来,逐步形成了独特的、多样性的培养模式[4]。在美国学校工程类硕士培养的模式主要为培养方式的不同,如本硕连读制、远程教育三年制等,但其课程标准与学位要求是统一的,都必须遵循美国工程技术鉴定委员会(ABET)和各专业学会(协会)提供的统一的专业认证标准[5]。英国的硕士学位教育分成两种类型[6]。一种是给予课程学习的硕士,称为MSC(MSCourse);另一种是基于研究工作的硕士,称为MSphil(MSphilosophy)。此外,还有一种类似我国工程硕士的研究工程师学位。英国工程教育是以让毕业生取得专业头衔(即专业资格)为主要目标。经过20多年的发展,英国的专业资格已经把学术资格和职业资格融为一体。严格的入门要求、多样化的候选资格,加上灵活的注册路线,保证了专业资格的质量。我国工程硕士教育从1984年提出,经历了从试点到奠定工程硕士人才培养模式的阶段。自从奠定了人才培养模式后,工程硕士教育从9个培养单位、10个工程领域、年招生1千多人,发展到2004年的180个培养单位、38个工程领域、年招生3万多人、在校生10万余人。从发展的势头看,工程硕士教育充满着活力。为使工程硕士专业学位规范管理、稳步发展,经中华人民共和国国务院学位委员会考核验收,已下发(1997)57号文批准全国70多所高校具有工程硕士学位授予权,如清华大学、哈尔滨工业大学、华中科技大学、中南大学、北京航空航天大学、华南理工大学等。总的来说,大多数高校都形成了自己的办学特色[7,8],以培养高级应用型工程技术人员为目标,经过多年发展经验[9],目前工程硕士培养模式。相比国外,现在国内开设工程硕士培养点的高校数量在大幅度增加,但在实际培养过程中很多高校对工程硕士资格认证标准重视不够[10,11]。就目前高分子材料工程工程领域来说,工程硕士研究生专业人才培养模式的主要缺点是:没有将工程硕士的课题研究方向和企业需要解决的问题有机的结合起来,存在脱轨的问题,在定课题方向时,把企业摆在可有可无的位置上,研究生研究的课题与生源单位生产技术不搭。学生在企业工作很忙,无法保证上理论课时间等问题。针对出现的这些问题,我们高分子材料加工硕士点拟逐步摸索出一种新型的双导师制、灵活培养模式。让学生充分利用学校与企业资源平台,培养出符合社会需求的创新性人才。本课题以高分子材料加工领域工程硕士人才培养模式为样本进行研究,课题完成鉴定后推广到我校 其它 研究生专业。

2主要研究内容

本课题拟通过课程体系改革、授课方式改革、学位论文形式改革、课题来源研究内容改革等进行研究,培养出在高分子材料工程领域创新实践能力强的应用型高级专门人才。其主要研究内容。

2.1课程设置体系研究

由于工程硕士自身特点即能够来上课的时间很少,生产实际经验丰富。本项目改革是想在时间少的情况下,使学员学到更多的东西,并发挥各自的长处。在课程设置体系设置上改革以往只注重在理论教学,必修课多的特点(至少17学分)。根据学生所在生产岗位需要多增加一些选修课(原来是11学分)。并在传授专业理论知识过程中,加强对学生创新思维的培养。

2.2授课形式及方式研究

目前的工程硕士大多都在生产岗位作领导工作,工作很忙,集中上课存在的难度很大,本项目拟采取的办法:远程网络上课(视频和师生互动交流上课),即课件点播、在线答疑、在线辅导、同步和异步讨论、在线测试、专家讲座等方式。即用时下流行的BBS进行提问和沟通。

2.3学位论文形式改革

由于目前工程硕士学位论文形式比较单一,通常采用撰写“大论文”方式。依据此问题本次改革拟采取的办法为:学位论文形式:产品研发、工程设计、应用研究、工程/项目管理、 调研报告 。

2.4课题来源研究内容改革研究

现在学生的课题大多源于校内导师课题,这与研究生所从事的专业严重脱节,针对这一问题本项目拟采取的办法:校企联合培养,针对企业具体问题,进行研究。校企联合培养模式是一种以培养学生的全面素质、综合能力与就业竞争能力为重点,利用学校与企业两种不同的教育环境和教育资源,采取课堂教学与学生参加实践有机结合的方式,培养适合不同用人单位需要的、具有全面素质与创新能力人才的教育模式。而校企联合培养模式与传统高校培养模式的根本区别在于,校企联合办学的人才培养目标是以应用能力培养为主线,依托行业发展,构建适应新材料发展的以生产技术为导向的“零距离”实践教学体系、与生产“零距离”接轨的教材体系、基于解决生产实际问题需求的“零距离”素质拓展培养体系,能实现学校、企业、学生三方共赢。由此,我们将努力尝教授走进企业,老板走进校园,企业员工(学生)走进实验室的目的。

2.5导师管理改革

学位论文是综合衡量工程硕士培养质量的重要标志,应在导师的指导下,由攻读工程硕士学位者本人独立完成。学位论文由学校具有工程实践经验的硕士导师与工程单位选派的责任心强的具有高级技术职称的技术人员联合指导。

3创新实验能力培养模式

工程硕士学位研究生教育的科学发展取决于其适应社会需求的程度,而如何深化高校与企业之间的互动关系则是目前症结之所在。材料学院就这一问题采取了如下 措施 :

(1)聚焦企业需求,创新工程硕士教育的办学理念随着工程硕士培养规模的不断扩大,我们不断更新工程硕士教育的办学理念,将以服务企业为宗旨贯穿于工程硕士培养之中,为企业培养“留得住,用得上”的高层次应用型人才。对于校企合作培养的研究生,可以自带科研课题。即工程硕士可以带自己单位的科研课题,课题的完成可以利用学校和企业的现有实验条件完成。学校具有良好的实验教学基础条件和高水平教师,实验室开放运行,资源共享。

(2)量身定做相比于一般的研究生,工程硕士生的知识背景更具多样性,在培养过程中应力争实现“量身定做、量体裁衣”,针对不同的行业和学生,学生可以选择自己从事工作领域的课题。从而更好地满足企业需要,满足各领域工程建设和发展需要。如我们2011级有名学生来自于威海碳纤维厂,他做的课题是“PAN。

材料工程毕业论文相关 文章 :

1. 材料工程学论文

2. 工程硕士毕业论文范文

3. 化工专业毕业论文范文

4. 建筑工程毕业论文范文

5. 优秀毕业论文范文

求关于铜冶金方面8000字毕业论文

你好
专业代做毕业论文
团队合作
多年经验
范文多多
量身定做
质量保证
诚信可靠
需要的话加团队名字沟通

上一篇:儿童肺炎护理个案论文

下一篇:冶金工程论文8000