五年级数学应用小论文
五年级数学应用小论文
认识了小学五年级勾股定理知识和勾股定理知识的常见运用,想必很多同学会去深入学习。本站用户整理了五年级数学小论文:勾股定理,欢迎阅读。
五年级数学小论文:勾股定理
1、证明一个三角形是直角三角形
2、用于直角三角形中的相关计算
3、有利于你记住余弦定理,它是余弦定理的一种特殊情况。中国最早的一部数学着作—— 周髀算经 的开头,记载着一段周公向商高请教数学知识的对话:
周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?”
商高回答说:“数的产生来源于对方和圆这些形体饿认识。其中有一条原理:当直角三角形‘矩’得到的一条直角边‘勾’等于3,另一条直角边‘股’等于4的时候,那么它的斜边‘弦’就必定是5。这个原理是大禹在治水的时候就总结出来的呵。”
从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要懂得数学原理了。稍懂平面几何饿读者都知道,所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方
用勾(a)和股(b)分别表示直角三角形得到两条直角边,用弦(c)来表示斜边,则可得:
勾2+股2=弦2
亦即:
a2+b2=c2
勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的。其实,我国古代得到人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多。如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例(32+42=52)。所以现在数学界把它称为勾股定理,应该是非常恰当的。
在稍后一点的 九章算术一书 中,勾股定理得到了更加规范的一般性表达。书中的 勾股章 说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦。”把这段话列成算式,即为:
弦=(勾2+股2)(1/2)
即:
c=(a2+b2)(1/2)
定理:
如果直角三角形两直角边分别为a,b,斜边为c,那么a^平方+b^平方=c^平方;即直角三角形两直角边的平方和等于斜边的平方。
如果三角形的三条边a,b,c满足a^2+b^2=c^2,如:一条直角边是3,一条直角边是四,斜边就是33+4。
急求小学五年级数学小论文,好的我会给50~100分,不要太深奥,700~800字左右!
1、生活中的数学
数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具,而生活也是缺不了数学的。
现实生活中,我们会看到用正多边形拼成的各种图案,例如,平时在家里、在商店里、在中心广场、进入宾馆、饭店等等许多地方会看到瓷砖。他们通常都是有不同的形状和颜色。其实,这里面就有数学问题。
在用瓷砖铺成的地面或墙面上,相邻的地砖或瓷砖平整地贴合在一起,整个地面或墙面没有一点空隙。这些形状的地砖或瓷砖为什么能铺满地面而不留一点空隙呢?
例如,三角形。三角形是由三条不在同一条直线上的线段首尾顺次连结组成的平面图形。我们知道,三角形的内角和是180度,外角和是360度。用6个正三角形就可以铺满地面。
再看正四边形,它可以分成2个三角形,内角和是360度,一个内角的度数是90度,外角和是360度。用4个正四边形就可以铺满地面。
正五边形呢?它可以分成3个三角形,内角和是540度,一个内角的度数是108度,外角和是360度。它不能铺满地面。
……
由此,我们得出了。n边形,可以分成(n-2)个三角形,内角和是(n-2)*180度,一个内角的度数是(n-2)*180÷2度,外角和是360度。若(n-2)*180÷2能整除360,那么就能用它来铺满地面,若不能,则不能用其铺满地面。
瓷砖,这样一种平常的东西里都存在了这么有趣的数学奥秘,更何况生活中的其它呢?
至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理.
正如华罗庚先生所说的:近100年来,数学发展突飞猛进,我们可以毫不夸张地在用:宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,用“无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.
可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域
小学数学应用小论文
培养学生应用能力,提高数学课堂教学的效果,是当前数学教学改革的一个重要课题,只要不断尝试,联系实际,大胆探索,就会收到预期效果。接下来我为你整理了小学数学应用小论文,一起来看看吧。
摘 要 数学应用意识是我们对于客观物质世界中存在的数学知识应用的反映。数学教学生活化是国际数学教育发展趋势, “现实数学”的思想充分说明了:数学来源于生活,也必须扎根于现实,并且应用于现实,数学教育如果脱离了那些丰富多彩的现实,就将成为“无源之水,无本之木”。因此对学生进行数学应用意识的培养,有利于激发学生学习数学的兴趣,有利于增强学生的应用意识,有利于扩展学生的视野。但更重要的是使学生认识到:数学与我有关,与生活相关,数学是有用的,我要用数学,我能用数学。这种意识将成为学生终生受用的财富。
关键词 数学;应用意识;培养
对学生进行数学应用意识的培养,使他们逐渐形成数学应用的意识是学生将来适应现代信息社会的需要。小学数学教学中学生的应用意识主要体现在以下三个方面:第一,面对实际问题,能主动尝试从数学的角度运用所学知识和方法寻求解决问题的策略。主要表现在两方面:一是在实际情境中发现问题和提出问题的意识;二是主动应用数学知识解决问题的意识。第二,面对新的数学知识时,能主动寻找其实际背景,并探索其应用价值。第三,认识到现实生活中蕴涵着的大量的数学信息,数学在现实世界中有着广泛的应用。那究竟应怎样培养学生的应用意识呢?
1 提高教师自身的数学应用意识和应用能力
要培养小学生的数学应用意识,作为教师就必须要有较强的数学应用意识和应用能力,这样,才能使数学教学过程少一些纯数学问题,多一些实际应用问题,潜移默化地感染学生,使学生逐步形成数学应用意识。教师要提高自身的数学应用意识和应用能力,首先要认真研读新《课标》,领会课标的精神实质,以《课标》的教育教学理念为准绳,用以指导自己实施新课程的航灯。其次,积极参加提高学历层次的学习,提高自身的专业水平和数学素养;再次,在平时的业务培训及自学中,有意识地学习有关数学应用意识和应用能力的内容,用以增强自身的数学应用意识和应用能力。
2 精心设计课前活动,注重数学知识的来龙去脉
就小学生而言,他们已有的生活常识、经验往往是他们学习数学的基础。小学阶段的许多数学知识,如概念的产生、计算法则的由来、几何形体的特征及有关公式等,无不渗透着数学在现代生产、生活和科技中的应用。而今使用的教材版本多,内容丰富、呈现方式也极具生活化,充分体例现了 “数学源于生活服务于生活的理念”,因此,在教学中充分利用这一特点,在进行有关数学知识的教学之前,精心设计课前活动,让学生在课前活动中寻找生活中的数学,了解数学知识的来龙去脉,体验数学来源于生活。这样学生不仅真正体会到“数学有用、要用数学”,且激发学生的学习兴趣,使学生爱数学,同时,也为学生知识的构建积累必要的经验。这样的学习,不仅极大地调动了学生的学习热情,更使学生真切地感受到数学就在自己的身边,认清数学知识的现实性和实用性,从而对数学产生了浓厚的兴趣。
3 开阔学生的视野,了解数学的应用价值
在小学数学教学中培养学生的应用意识,需要以知识、实践、能力的培养为基础。由于小学生的生活经验不足,对数学的应用价值不可能会有很全面的了解。在教学过程中,教师不仅应该关注学生对于数学基础知识、基本技能以及数学思想方法的掌握,而且还应该帮助学生形成一个开阔的视野,了解数学对于人类发展的价值,特别是它的应用价值。
方案③的表面积:20×15×4+15×5×2+20×5×4=1750(平方厘米)
通过计算比较,学生发现:第一种包装方法最节约包装纸。紧接着让学生尝试(四人小组合作):将三盒这样的糖果包装成一包,怎样才能节约包装纸?(接口处不计)学生在动手包装时我提出了要求:请你一边包装一边想一想,不用计算,你能知道哪种包装方法最节约包装纸吗?
如此的数学教学,不仅开阔了学生的数学视野,更真切体会到了数学在当今经济社会中举足轻重的应用价值,使学生在综合应用表面积等知识来解决问题的同时,体现了数学的优化思想,同时提高了学生解决问题的能力,感受数学的应用价值与实际生活的密切联系。
4 为学生运用所学知识解决实际问题搭建平台
培养学生应用意识的最有效办法应该是让学生有机会亲身实践。教学中,我努力挖掘学生所学的数学知识在社会生活、生产以及相关学科中的应用,精心设计问题情境,创造条件让学生运用所学的数学知识解决实际问题,让学生体验数学的应用价值,从而形成良好的应用意识。例如在教学“粉刷墙壁”时,(北师大版小学数学第十册)我以小组合作的形式,让学生以下面的步骤进行:
(一)、测量计算
小组合作(一):
1、教室前后黑板共有多少块?分别测量每块黑板的长和宽; 2、分别测量教室的长、宽、高; 3、教室左右两面墙共有多少个窗户,多少个门?分别测量每个窗户的长和宽,每个门的长和宽。
小组合作(二):
1、如果想粉刷除地面以外的五面墙,“粉刷墙壁”测量数据记录表(200 年 月 日)
那么要粉刷的墙面积是多少? 2、计算后完成下面的表格。(如左图)
(二)、购买涂料
如下图,某种涂料分大桶、小桶两种规格包装,根据经验,第一遍粉刷时,每平方米约用涂料0.5千克,此时粉刷教室共需要涂料多少千克?
5 搜集数学应用的事例,加深对数学应用的理解和体会
信息技术的社会化,数学与现代科技的发展使得数学的应用领域不断扩展,其不可忽视的作用被越来越多的人所认同。马克思曾指出:“一门学科只有成功地应用了数学时,才真正达到了完善的地步”。在数学教学中要让学生了解数学的广泛应用,不但可以帮助学生了解数学的发展,体会数学的应用价值,激发学生学好数学的勇气和信心,更可以帮助学生领悟数学知识的应用过程。
总之,数学教学生活化是国际数学教育发展趋势, “现实数学”的思想充分说明了:数学来源于生活,也必须扎根于现实,并且应用于现实,数学教育如果脱离了那些丰富多彩的现实,就将成为“无源之水,无本之木”。学生学习数学就应通过熟悉的数学生活,自己逐步发现和得出数学结论,并逐步具有把数学知识应用于现实生活、服务于现实生活的意识。
体验学习就是在课程实施中根据教材内容的需要,在教师的指导下,把知识对象化,以获得客观准确的知识的过程。它是学生联系自己的生活,凭借自己的直观的感受、体会、领悟,去再认识、再发现、再创造的过程,从中获得丰富的感性认识,加深对理性知识理解的一种教与学的互相过程。在小学数学教学中体验学习不仅能够激发学生的数学学习兴趣,而且有利于探究性学习的培养,因此,教师要善于体验学习的应用。
1 联系生活――体验学习的基础
教育家苏霍姆林斯基说过:“把知识加以运用,使学生感到知识是一种使人变得崇高起来的力量,这是兴趣的重要来源。”《数学课程标准》也指出:“数学教学要体现生活性。人人学有价值的数学。”数学来源于生活,还要应用于生活。数学课堂联系生活,教室善于引导学生已有的生活经验来理解数学知识的真正含义,这样,既可加深对课堂知识的理解,激发学生兴趣,又能使学生体验到数学就在生活实践之中,体验到数学的价值。因此,在数学教学中,要尽可能组织学生实践,让学生亲身体会生活中的数学知识。例如,在教“简单的统计”是,我结合家庭用水、电、煤气生活 实际,要求学生收集自己家庭每月所用的数据,加以分类整理,填写在统计表里,反映实际情况。再如“圆锥的体积”教学中,我结合学生常见的用卷笔刀削圆柱形的铅笔的现象,让学生仔细观察铅笔变化,然后提出圆柱和圆锥变化的问题:被削的这段铅笔前后分别是什么形状?前后体积发生了什么变化?变小了以后的圆锥体与原本这段圆柱体的底面积、高、体积分别有什么关系?这样的教学,让学生认识到生活中处处有数学,使学生积极主动投入到学习数学之中,真切感受到数学存在于生活之中,数学与生活同在,感受到数学的真谛与价值。
2 亲历实践――体验学习的手段
让学生实践操作,体验“做数学”。教和学都要以“做”为中心。“做”就是让学生动手操作,在操作中体验数学。动手操作时小学生认识事物的重要手段,让学生在动手中获得快乐。因此,教室在教学过程中应该充分让学生动手、动口、动脑,在活动中学习新知。通过实践活动,使学生获得大量的感性知识有助于提高学生的学习兴趣,激发求知欲。例如,二年级要进行《表内乘法》的整理和复习,我组织了一次《数学在我们的游玩中》的实践活动。教师可以出示游乐园的价格表后问学生,你想玩哪些项目?根据你的玩法,算一算,一共要多少钱?由于方案不同,计算的结果不是唯一的。有位学生说想玩转马两次,碰碰车两次,自控飞机两次,一共要3×2 + 4×2 + 6×2 = 26(元)。另一位学生马上站起来回答,我也可以这样玩,但我只要付16元就够了,因为我可以和另一个同学一起坐碰碰车和自控飞机。紧接着,我要求学生每人用一张30元得游园券设计出游玩方案。学生通过小组讨论,提出了10种方案,从而打开了学生狭隘的思维空间,让他们了解到同一个问题可以有多种解决方法,体验到解决问题策略的多样性。这种实践性教学,大大地提高了学生的发散思维能力和创造思维能力。
3 经历“错误”――体验学习的需求
在课堂教学中,对于教师提出的问题,学生的回答难免出现不同的错误,这些错误在体验学习中也是宝贵的,通过这些不同的错误,教师可以首先让学生解释形成答案的来龙去脉,让学生充分发表自己的见解,倾听别人的想法,要允许学生“争辩”,然后,教师对这些错误逐个分析、归纳,认真总结“错误”之间究竟有什么联系,其产生的主要原因是什么。这样,教师既摸清了学生对问题认识不清的根源所在,学生也从老师的点拨中得到启发,加深了知识的理解。也就是说,学生经历“错误”体验,达到教师和学生的互动交流,学生更能体验到“错误”的感慨和成功的愉悦。例如在教学第十册《求平均数》时,课本有一道习题:“先锋号机帆船出海捕鱼,上半月出海13天,共捕鱼805吨;下半月出海14天,每天捕鱼64吨,这条船平均每天捕鱼多少吨?”有的学生对这道题列式为805÷13 + 64,而有的同学列式为(805 + 14×64)÷(13 + 14)。显然,第一列式是错误的。那么为什么会出现这样的错误呢?我就让人为第一列式的同学阐述自己的原因,其实,他们错误地认为上半月的平均每天捕鱼数和下半月的平均每天捕鱼数相加,就是这条船这个月每天的捕鱼数。然后,我根据这些“错误”进行纠正,并让学生讨论。在学生获得“错误”的体验后,通过小组讨论得到的结果,往往比老师灌输给他们的“答案”更有说服力,学生对此类题目印象更深。
总之,体验数学需要教师引导学生积极主动参与学习过程,正如《数学课程标准》指出:“义务教育阶段的数学课程,要强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,”由此可见,在数学教学中,教师应该让学生亲身经历数学感念、结论的形成过程,使数学学习成为一个体验过程。在这一过程中,使学生体验学数学的乐趣,培养学生数学素养,应该是我们的目标。
五年级数学下册小论文
关于数学的小论文:
以前,我一直以为学习”求最小公倍数”这种知识枯燥无味,整天与”求11和12的最小公倍数”类似这样的问题打交道,真是烦死人,总觉得学习这些知识在生活中没有什么用处。
然而,有一件事却改变了我的看法。
那是前不久的事了,爷爷和我一起乘坐公共汽车去青少年宫。我们爷俩坐的是3路车,快要出发的时候,1路车正好也和我们同时出发。
此时爷爷看着这两路车,突然笑着对我说:”小溦,爷爷出个问题考考你,好不好?”我胸有成竹地回答道:”行!””那你听好了,如果1路车每3分钟发车一次,3路车每5分钟发车一次。这两路车至少再过多少分钟后又能同时发车呢?”稍停片刻,我说:”爷爷你出的这道题不能解答。”爷爷疑惑地看着我:”哦,是吗?””这道题还缺一个条件:1路车和3路车的起点站是同一个地方。”
爷爷听了我的话,恍然大悟地拍了一下自个聪明秃顶的脑袋,笑着说:”我这个‘数学博士’也有糊涂的时候,出的题不够严密,还是小溦想得周全。”我和爷爷开心地哈哈地大笑起来。此时爷爷说:”那好,现在假设是同一个起点站,你说说用什么方法来解答?”我想了想,脱口而出:”再过15分钟。
因为3和5是互质数,求互质数的最小公倍数就等于这两个数的乘积(3х5=15),所以15就是它们的最小公倍数。也就是两路车至少再过15分钟能同时发车。”爷爷听了夸我:”答案正确!100分。””耶!”听了爷爷的话,我高兴地举起双手。从这件事中,我明白了一个道理:数学知识在现实生活中真是无处不在啊。
上一篇:五年级数学方程小论文
下一篇:军事理论论文2000字