欢迎来到学术参考网
当前位置:发表论文>论文发表

数学建模论文制作流程

发布时间:2023-12-11 18:37

数学建模论文制作流程

答卷的基本步骤:一、答卷的基本内容
0. 摘要
1. 问题的叙述,背景的分析等
2. 模型的假设,符号说明(列表)
3. 模型的建立:问题分析,引用的数学命题,公式推导,模型Ⅰ,模型Ⅱ 等
4. 模型的求解:计算方法设计或选择,计算步骤(框图),所采用的软件名称等
5. 模型的结果:误差分析,模型检验……
6. 模型评价:特色,优缺点,改进方法,推广…….
7. 参考文献
8. 附录:图表、程序等

二、对基本内容的一些说明
0. 摘要
摘要在整篇论文评阅中占有重要权重,务必认真书写(篇幅不能超过一页)。全国评阅时将首先根据摘要和论文整体结构及概貌对论文优劣进行初步筛选。摘要写得不好,论点不明,条理不清,评委不再阅读正文,论文即遭被淘汰。
摘要是全文的精华,摘要应当点明:
(1) 模型的数学归类(数学上属于什么类型,如动态规划,微分方程稳定性等)
(2) 建模的思想(思路)
(3) 算法思想(求解思路)
(4) 模型特色(模型优缺点,算法特点,结果检验,灵敏度分析,模型检验等)
(5) 主要结果(数值结果,结论)(回答题目所问的全部“问题”)
注意表述一定要准确、简明、通顺、工整,务必认真校对。
1. 问题重述
把原问题简单重述一遍,但不是照搬,而是从数学的角度重新表述。
2. 模型假设
根据评卷原则,基本假设的合理性占重要比重。
应当根据题目中的条件和要求作出合理假设,假设要切合题意,关键性假设不能缺。
3. 模型的建立
(1)数学建模是用数学方法解决问题,首先要有数学模型:数学公式、方程、方案等;要求完整,正确,简明
(2)模型要实用,有效,以解决问题有效为原则,不追求数学上的高(级)、难(度大)。能用初等方法解决的、就不用高级方法;能用简单方法解决的,就不用复杂方法;能用被多数人理解的方法,就不用只有少数人能理解的方法。
(3)鼓励创新,但要切合实际。数模创新可体现在模型中(好思想、好方法、好策略等);模型求解中(好算法、好步骤、好程序);结果表示中(醒目、图表、分析、检验等);模型推广中。
4. 模型求解
(1) 需要建立数学命题时:命题叙述要符合数学命题的表述规范,尽可能论证严密。
(2) 需要说明算法的原理、依据、步骤。若用现有软件,要说明理由,软件名称。
(3) 计算过程,中间结果可要可不要的,不必列出。
(4) 设法算出合理的数值结果。
5.模型的结果
(1) 最终数值结果的正确性或合理性是第一位的;
(2) 对数值结果或模拟结果须进行必要的检验。结果不正确、不合理、或误差大时,分析原因, 对算法、计算方法、或模型进行修正、改进;
(3) 题目中要求回答的问题,数值结果,结论,必须一一列出;
(4) 考虑是否需要列出多组数据,对数据进行比较、分析,为各种方案的提出提供依据;
(5) 结果的表示要集中,醒目,直观,便于比较分析
(6) 必要时对问题解答,作定性或规律性的讨论。最后结论要明确。
6.模型评价
(1)说明特色,优点突出,缺点不回避。
(2)改变原题要求,重新建模可在此做。
(3)推广或改进方向时,要合理、可行,不要玩弄新数学术语。
7.参考文献
按规定列出。
8.附录
(1)主要结果数据,应在正文中列出。
(2)数据、表格,可在此列出,但不要错,错的宁可不列。

三、写答卷前的思考和工作规划
事先要有一个统筹安排:
(1) 答卷需要回答哪几个问题——建模需要解决哪几个问题;
(2) 问题以怎样的方式回答——结果以怎样的形式表示;
(3) 每个问题要列出哪些关键数据——建模要计算哪些关键数据;
(4) 每个量,列出一组还是多组数——要计算一组还是多组数……
列出条目,一气呵成。切不可想到那里,写道那里,杂乱无序。

如何撰写数学建模论文

如何撰写数学建模论文

当我们完成一个数学建模的全过程后,就应该把所作的工作进行小结,写成论文。撰写数学建模论文和参加大学生数学建模时完成答卷,在许多方面是类似的。事实上数学建模竞赛也包含了学生写作能力的比试,因此,论文的写作是一个很重要的问题。

首先要明确撰写论文的目的。数学建模通常是由一些部门根据实际需要而提出的,也许那些部门还在经济上提供了资助,这时论文具有向特定部门汇报的目的,但即使在其他情况下,都要求对建模全过程作一个全面的、系统的小结,使有关的技术人员(竞赛时的阅卷人员)读了之后,相信模型假设的合理性,理解在建立模型过程中所用数学方法的适用性,从而确信该模型的数据和结论,放心地应用于实践中。当然,一篇好的论文是以作者所建立的数学模型的科学性为前提的。其次,要注意论文的条理性。

下面就论文的各部分应当注意的地方具体地来做一些分析。

(一) 问题提出和假设的合理性

在撰写论文时,应该把读者想象为对你所研究的问题一无所知或知之甚少的一个群体,因此,首先要简单地说明问题的情景,即要说清事情的来龙去脉。列出必要数据,提出要解决的问题,并给出研究对象的关键信息的内容,它的目的在于使读者对要解决的问题有一个印象,以便擅于思考的读者自己也可以尝试解决问题。历届数学建模竞赛的试题可以看作是情景说明的范例。

对情景的说明,不可能也不必要提供问题的每个细节。由此而来建立数学模型还是不够的,还要补充一些假设,模型假设是建立数学模型中非常关键的一步,关系到模型的成败和优劣。所以,应该细致地分析实际问题,从大量的变量中筛选出最能表现问题本质的变量,并简化它们的关系。这部分内容就应该在论文的“问题的假设”部分中体现。由于假设一般不是实际问题直接提供的,它们因人而异,所以在撰写这部分内容时要注意以下几方面:

(1)论文中的假设要以严格、确切的数学语言来表达,使读者不致产生任何曲解。

(2)所提出的假设确实是建立数学模型所必需的,与建立模型无关的假设只会扰乱读者的思考。

(3)假设应验证其合理性。假设的合理性可以从分析问题过程中得出,例如从问题的性质出发做出合乎常识的假设;或者由观察所给数据的图像,得到变量的函数形式;也可以参考其他资料由类 推得到。对于后者应指出参考文献的相关内容。

(二) 模型的建立

在做出假设后,我们就可以在论文中引进变量及其记号,抽象而确切地表达它们的关系,通过一定的数学方法,最后顺利地建立方程式或归纳为其他形式的数学问题,此处,一定要用分析和论证的方法,即说理的方法,让读者清楚地了解得到模型的过程上下文之间切忌逻辑推理过程中跃度过大,影响论文的说服力,需要推理和论证的地方,应该有推导的过程而且应该力求严谨;引用现成定理时,要先验证满足定理的条件。论文中用到的各种数学符号,必须在第一次出现时加以说明。总之,要把得到数学模型的过程表达清楚,使读者获得判断模型科学性的一个依据。

(三)模型的计算与分析

把实际问题归结为一定的数学问题后,就要求解或进行分析。在数值求解时应对计算方法有所说明,并给出所使用软件的名称或者给出计算程序(通常以附录形式给出)。还可以用计算机软件绘制曲线和曲面示意图,来形象地表达数值计算结果。基于计算结果,可以用由分析方法得到一些对实践有所帮助的结论。

有些模型(例如非线性微分方程)需要作稳定性或其他定性分析。这时应该指出所依据的数学理论,并在推理或计算的基础上得出明确的结论。

在模型建立和分析的过程中,带有普遍意义的结论可以用清晰的定理或命题的`形式陈述出来。结论使用时要注意的问题,可以用助记的形式列出。定理和命题必须写清结论成立的条件。

(四) 模型的讨论

对所作的数学模型,可以作多方面的讨论。例如可以就不同的情景,探索模型将如何变化。或可以根据实际情况,改变文章一开始所作的某些假设,指出由此数学模型的变化。还可以用不同的数值方法进行计算,并比较所得的结果。有时不妨拓广思路,考虑由于建模方法的不同选择而引起的变化。

通常,应该对所建立模型的优缺点加以讨论比较,并实事求是地指出模型的使用范围。

除正文外,论文和竞赛答卷都要求写出摘要。我们不要忽视摘要的写作。因为它会给读者和评卷人第一印象。摘要应把论文的主要思路、结论和模型的特色讲清楚,让人看到论文的新意。

语言是构成论文的基本元素。数学建模论文的语言与其他科学论文的语言一样,要求达意、干练。不要把一句句子写得太长,使人不甚卒读。语言中应多用客观陈述句,切忌使用你、我、他等代名词和带主观意向的语句。在英语论文写作中应多用被动语态,科学命题与判断过程一般使用现在时态。

最后,论文的书写和附图也都很重要。附图中的图形应有明确的说明,字迹力求端正。

数学建模的基本工作流程

1)建模准备
数学建模是一项创新活动,它所面临的课题是人们在生产和科研中为了使认识和实践进一步发展必须解决的问题.“什么是问题?问题就是事物的矛盾,哪里有没解决的矛盾,哪里就有问题”.因此发现课题的过程就是分析矛盾的过程贯穿生产和科技中的根本矛盾是认识和实践的矛盾,我们分析这些矛盾,从中发现尚未解决的矛盾,就是找到了需要解决的实际问题,如果这些实际问题需要给出定量的分析和解答,那么就可以把这些实际问题确立为数学建模的课题,建模准备就是要了解问题的实际背景,明确建模的目的,掌握对象的各种信息,弄清实际对象的特征,情况明才能方法对.
(2)建模假设
作为课题的原型都是复杂的、具体的,是质和量、现象和本质、偶然和必然的统一体,这样的原型,如果不经过抽象和简化,人们对其认识是困难的,也无法准确把握它的本质属性.建模假设就是根据实际对象的特征和建模的目的,在掌握必要资料的基础上,对原型进行抽象、简化,把那些反映问题本质属性的形态、量及其关系抽象出来,简化掉那些非本质的因素,使之摆脱原型的具体复杂形态,形成对建模有用的信息资源和前提条件,并且用精确的语言作出假设,是建模过程关键的一步.对原型的抽象、简化不是无条件的,一定要善于辨别问题的主要方面和次要方面,果断地抓住主要因素,抛弃次要因素,尽量将问题均匀化、线性化,并且要按照假设的合理性原则进行,假设合理性原则有以下几点:
①目的性原则:从原型中抽象出与建模目的有关的因素,简化掉那些与建模目的无关的或关系不大的因素.
②简明性原则:所给出的假设条件要简单、准确,有利于构造模型.
③真实性原则:假设条件要符合情理,简化带来的误差应满足实际问题所能允许的误差范围.
④全面性原则:在对事物原型本身作出假设的同时,还要给出原型所处的环境条件.
(3)模型建立
在建模假设的基础上,进一步分析建模假设的各条件首先区分哪些是常量,哪些是变量,哪些是已知量,哪些是未知量;然后查明各种量所处的地位、作用和它们之间的关系,建立各个量之间的等式或不等式关系,列出表格、画出图形或确定其他数学结构,选择恰当的数学工具和构造模型的方法对其进行表征,构造出刻画实际问题的数学模型.
在构造模型时究竟采用什么数学工具,要根据问题的特征、建模的目的要求以及建模者的数学特长而定 可以这样讲,数学的任一分支在构造模型时都可能用到,而同一实际问题也可以构造出不同的数学模型,一般地讲,在能够达到预期目的的前提下,所用的数学工具越简单越好.
在构造模型时究竟采用什么方法构造模型,要根据实际问题的性质和建模假设所给出的建模信息而定,就以系统论中提出的机理分析法和系统辨识法来说,它们是构造数学模型的两种基本方法.机理分析法是在对事物内在机理分析的基础上,利用建模假设所给出的建模信息或前提条件来构造模型;系统辨识法是对系统内在机理一无所知的情况下利用建模假设或实际对系统的测试数据所给出的事物系统的输入、输出信息来构造模型.随着计算机科学的发展,计算机模拟有力地促进了数学建模的发展,也成为一种构造模型的基本方法,这些构模方法各有其优点和缺点,在构造模型时,可以同时采用,以取长补短,达到建模的目的.
(4)模型求解
构造数学模型之后,再根据已知条件和数据分析模型的特征和结构特点,设计或选择求解模型的数学方法和算法,这其中包括解方程、画图形、证明定理、逻辑运算以及稳定性讨论,特别是编写计算机程序或运用与算法相适应的软件包,并借助计算机完成对模型的求解.
(5)模型分析
根据建模的目的要求,对模型求解的数字结果,或进行变量之间的依赖关系分析,或进行稳定性分析,或进行系统参数的灵敏度分析,或进行误差分析等.通过分析,如果不符合要求,就修改或增减建模假设条件,重新建模,直到符合要求;通过分析如果符合要求,还可以对模型进行评价、预测、优化等.
(6)模型检验
模型分析符合要求之后,还必须回到客观实际中去对模型进行检验,用实际现象、数据等检验模型的合理性和适用性,看它是否符合客观实际,若不符合,就修改或增减假设条件,重新建模,循环往复,不断完善,直到获得满意结果 目前计算机技术已为我们进行模型分析、模型检验提供了先进的手段,充分利用这一手段,可以节约大量的时间、人力和物力.
(7)模型应用
模型应用是数学建模的宗旨,也是对模型的最客观、最公正的检验 因此,一个成功的数学模型,必须根据建模的目的,将其用于分析、研究和解决实际问题,充分发挥数学模型在生产和科研中的特殊作用.
以上介绍的数学建模基本步骤应该根据具体问题灵活掌握,或交叉进行,或平行进行,不拘一格地进行数学建模则有利于建模者发挥自己的才能.
关于软件有matlab lindo 等

上一篇:教育管理研究职称论文

下一篇:项目管理论文1000字