五年级数学小论文带图
五年级数学小论文带图
认识了小学五年级勾股定理知识和勾股定理知识的常见运用,想必很多同学会去深入学习。本站用户整理了五年级数学小论文:勾股定理,欢迎阅读。
五年级数学小论文:勾股定理
1、证明一个三角形是直角三角形
2、用于直角三角形中的相关计算
3、有利于你记住余弦定理,它是余弦定理的一种特殊情况。中国最早的一部数学着作—— 周髀算经 的开头,记载着一段周公向商高请教数学知识的对话:
周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?”
商高回答说:“数的产生来源于对方和圆这些形体饿认识。其中有一条原理:当直角三角形‘矩’得到的一条直角边‘勾’等于3,另一条直角边‘股’等于4的时候,那么它的斜边‘弦’就必定是5。这个原理是大禹在治水的时候就总结出来的呵。”
从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要懂得数学原理了。稍懂平面几何饿读者都知道,所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方
用勾(a)和股(b)分别表示直角三角形得到两条直角边,用弦(c)来表示斜边,则可得:
勾2+股2=弦2
亦即:
a2+b2=c2
勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的。其实,我国古代得到人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多。如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例(32+42=52)。所以现在数学界把它称为勾股定理,应该是非常恰当的。
在稍后一点的 九章算术一书 中,勾股定理得到了更加规范的一般性表达。书中的 勾股章 说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦。”把这段话列成算式,即为:
弦=(勾2+股2)(1/2)
即:
c=(a2+b2)(1/2)
定理:
如果直角三角形两直角边分别为a,b,斜边为c,那么a^平方+b^平方=c^平方;即直角三角形两直角边的平方和等于斜边的平方。
如果三角形的三条边a,b,c满足a^2+b^2=c^2,如:一条直角边是3,一条直角边是四,斜边就是33+4。
五年级上册数学小论文
在生活中,各式各样的事情都能从一个普普通通毫不起眼的小事变成一个个既生动又引人深思的数学题。我们常做的应用题,就是在生活中取材,再稍加改编而成的题目。这不,我又在做数学题时发现了一道趣题:
在一个游泳池内,有一艘小船,上面有许多石头,现在把石头全部从船里扔到水中,请问,游泳池内的水位会上升、下降,还是不变?
乍一看题目,我便疑惑不解:这道题似乎和数学沾不上一点关系啊!这下该怎么做呢?我不气馁,努力思考,不一会儿便理出了头绪:当石头扔到水中后,船的重量减轻,便会上浮,水位也会下降,但石头在水中占了一部分空间,水位又要随之上升。因为这都是同一堆石头,所以上升与下降的幅度也应该一致,水位当然保持不变啦!可爸爸看了,却说是下降,我很不服气,决定与他打个赌
可是,用什么来证明我的猜想正确与否呢?这时,抽象的想象就没有真实的操作好了。于是,我便在爸爸的协助下作了一个实验:由于我能力有限,没法从外面搬来一个游泳池,也没法去造一艘小船,只好把题中的条件按比例缩小了。游泳池变成塑料盆,小船变成肥皂盒,石头则变成了五块橡皮。我先在塑料盆里倒进一些水,再把装着五块橡皮的肥皂盒放入水中,然后用直尺量出水位是20厘米。最关键的时刻到了,我把五块橡皮小心翼翼地从肥皂盒中取出,再全部投入水中,最后用直尺量出水位--天哪!竟然只有18厘米,是下降了!我错了!
虽然事实证明,水位是下降了,但我还是丈二和尚--摸不着头脑:这水位怎么会下降呢?
我苦思冥想了好长时间,草稿纸上全是一幅幅演示图,可我还是一筹莫展。我急得团团转,可越急脑子越乱,反而想不出了。就当我即将放弃的时候,我突然想起了数学家陈景润孜孜不倦,夜以继日算题目的故事,血液中仿佛充斥着一股勇往直前的力量,任何困难都挡不住我。果然,不出半小时,这道题我终于想通了:当石头在船上时,上升水的重量=石头的重量,而石头的密度比水大,因此同等重量的水和石头,水的体积大于石头的体积。当石头被投进水中后,水便下降了石头的重量,而石头在水中要占空间,因此,石头扔进水中后,水上升的体积=石头的体积。而同等体积的水和石头,水的重量小于石头的重量。综合以上几点,得到:石头扔下去后,水位下降的重量大于石头的重量,水位上升的重量小于石头的重量,也就是下降的水的重量大于上升的水的重量,于是下降的水的体积便大于上升的水的体积,水位当然下降了。就这样,一道难题便迎刃而解了。
其实,仔细观察,这道题与数学密不可分,其中的体积、重量、密度,都属于数学的范畴之内。你瞧,一个生活中的小事也能变成一道数学题,数学是无处不在的,让我们热爱数学,学好数学吧
五年级上册1000字数学小论文
伟大的数学王国由0-9、点、线、面组成。你可别小瞧这些成员,他们让我们的生活奇妙无比,丰富多彩。例如这不起眼的点,它使我们的生活更美,更快捷。这个功劳非黄金分割点莫属了。
把一条线段分成两部分,其中一段与该线段的比等于另一条线段与第一条线段的比,比值近似0.618,这就是黄金分割点。
从古希腊以来,一直有人认为把黄金分割点应用于造型艺术,可以使作品给人以最美的感觉。因此,黄金分割点在生活中的应用十分广泛。
一、画图的应用
1、画长方形是我们小学生最平常的事,也是最熟悉不过的。你们可知道在无条件的情况下怎么把长方形画的更美,给人一种更舒适的感觉?那就是长方形的宽与长的比值接近0.618,这样画出的图形更美。
2、学过绘图的人可能知道如果给你一张纸,把这张纸画满,不一定会好看,但要是就画一点,留许多空白也不会太好看。但有一些画就让人感觉很美、很清爽。那是因为它应用了黄金分割点,才让人感到赏心悦目[注: 悦目:看了舒服。指看到美好的景色而心情愉快。]。
二、人体的应用
1、在人体的结构上,黄金分割的应用更为广泛,举个最为熟悉的例子。人们常称的帅哥、美女,就是他们的脸宽与脸长的比、腿长与身长的比值都约是0.618,这样的身材堪称最美。
2、人的肚脐是人体的黄金分割点、膝盖是人腿的黄金分割点……
三、建筑物的应用
古今中外[注: 指从古代到现代,从国内到国外。泛指时间久远,空间广阔。],许多建造师都偏爱0.618,他们的杰作另世人仰慕。如:古埃及的金字塔,巴黎的圣母院,还有法国的埃菲尔铁塔……小学生作文网t262
四、生活上的应用
1、大家平时可能注意到电工在检查一根不导电的电线时,他总是选择这根电线的黄金分割点来检查,因为这样可以最快速的找到损坏处。谜语大全及答案
2、我们家里大多数门窗的宽和长的比也是0.618,还有箱子、书本等都应用了黄金分割点,让这些物品看上去更舒心。
大千世界[注: 佛教用语,世界的千倍叫小千世界,小千世界的千倍叫中千世界,中千世界的千倍叫大千世界。后指广大无边的人世。],美轮美奂[注: 轮:高大;奂:众多。形容房屋高大华丽。],到处都蕴藏着黄金分割点。让我们一起努力吧,用知识和智慧创造出更多的美!
数学小论文五年级下册
写作思路及要点:以生活中的数学为题,围绕这一主题结合生活中的数学事迹展开详细描写,接着表达自己的想法以及观点。
正文:
生活中处处都有数学,一个井盖、一个圆柱、一个圆形……我们可不能小看了这数学,虽然这些东西在日常生活中很常见,可数学的用处可大着呢!不信,咱们来瞧瞧吧!
有一次,上二年级的小表妹来我家玩。我很欢迎她,听说小表妹很聪明,于是我便想到考考她。我上网找到十个城市的天气预报给妹妹,说这十个城市的天气弄混了,麻烦你帮忙整理的既清楚又简洁,我是想看她会不会用统计图来整理这些城市的天气。
妹妹接过资料,笑着对我说:“没问题,包在我身上了!”几分钟的功夫,妹妹就把一张干净、整洁的城市天气预报的统计图给了我。我仔细看过后,笑了笑,摸摸妹妹的头,“真是长大了,一天比一天棒了!”妹妹客气地对我笑了笑,然后我们俩一起出去玩了。
生活中处处都有数学,只是有的人发现了,有人没发现;只要我们认真去找,认真对待,我相信就一定会发现数学的奥秘的。一旦你发现了数学的奥秘,就会知道其中的乐趣。
像中国的墨子、祖冲之、张衡、刘益、朱世杰……外国的阿基米德、高斯、艾萨克·牛顿、伯努利、欧拉……这些著名的数学家难道天生就有这样的神力吗?不,他们是靠自己的不懈努力换来的成绩,并不是生下来就具有特殊能力的。
上天对每个人都是公平的,只是有的人不珍惜机会罢了,所以我们要把握好机会,把握好数学,不要到最后才后悔莫及。生活中有很多数学都在等你去探索呢!快去看看吧!
上一篇:婚姻法法学论文参考文献
下一篇:民法类法学论文题目大全