欢迎来到学术参考网
当前位置:发表论文>论文发表

五年级数学教育教学论文

发布时间:2023-12-11 06:09

五年级数学教育教学论文

小学数学教学论文--在小学数学教学中培养学生的思维能力 培养学生的思维能力是现代学校教学的一项基本任务。我们要培养社会主义现代化建设所需要的人才,其基本条件之一就是要具有独立思考的能力,勇于创新的精神。小学数学教学从一年级起就担负着培养学生思维能力的重要任务。下面就如何培养学生思维能力谈几点看法。 一 培养学生的逻辑思维能力是小学数学教学中一项重要任务 思维具有很广泛的内容。根据心理学的研究,有各种各样的思维。在小学数学教学中应该培养什么样的思维能力呢?《小学数学教学大纲》中明确规定,要“使学生具有初步的逻辑思维能力。”这一条规定是很正确的。下面试从两方面进行一些分析。首先从数学的特点看。数学本身是由许多判断组成的确定的体系,这些判断是用数学术语和逻辑术语以及相应的符号所表示的数学语句来表达的。并且借助逻辑推理由一些判断形成一些新的判断。而这些判断的总和就组成了数学这门科学。小学数学虽然内容简单,没有严格的推理论证,但却离不开判断推理,这就为培养学生的逻辑思维能力提供了十分有利的条件。再从小学生的思维特点来看。他们正处在从具体形象思维向抽象逻辑思维过渡的阶段。这里所说的抽象逻辑思维,主要是指形式逻辑思维。因此可以说,在小学特别是中、高年级,正是发展学生抽象逻辑思维的有利时期。由此可以看出,《小学数学教学大纲》中把培养初步的逻辑思维能力作为一项数学教学目的,既符合数学的学科特点,又符合小学生的思维特点。 值得注意的是,《大纲》中的规定还没有得到应有的和足够的重视。一个时期内,大家谈创造思维很多,而谈逻辑思维很少。殊不知在一定意义上说,逻辑思维是创造思维的基础,创造思维往往是逻辑思维的简缩。就多数学生说,如果没有良好的逻辑思维训练,很难发展创造思维。因此如何贯彻《小学数学教学大纲》的目的要求,在教学中有计划有步骤地培养学生逻辑思维能力,还是值得重视和认真研究的问题。 《大纲》中强调培养初步的逻辑思维能力,只是表明以它为主,并不意味着排斥其他思维能力的发展。例如,学生虽然在小学阶段正在向抽象逻辑思维过渡,但是形象思维并不因此而消失。在小学高年级,有些数学内容如质数、合数等概念的教学,通过实际操作或教具演示,学生更易于理解和掌握;与此同时学生的形象思维也会继续得到发展。又例如,创造思维能力的培养,虽然不能作为小学数学教学的主要任务,但是在教学与旧知识有密切联系的新知识时,在解一些富有思考性的习题时,如果采用适当的教学方法,可以对激发学生思维的创造性起到促进作用。教学时应该有意识地加以重视。至于辩证思维,从思维科学的理论上说,它属于抽象逻辑思维的高级阶段;从个体的思维发展过程来说,它迟于形式逻辑思维的发展。据初步研究,小学生在10岁左右开始萌发辨证思维。因此在小学不宜过早地把发展辩证思维作为一项教学目的,但是可以结合某些数学内容的教学渗透一些辩证观点的因素,为发展辩证思维积累一些感性材料。例如,通用教材第一册出现,可以使学生初步地直观地知道第二个加数变化了,得数也随着变化了。到中年级课本中还出现一些表格,让学生说一说被乘数(或被除数)变化,积(或商)是怎样跟着变化的。这就为以后认识事物是相互联系、变化的思想积累一些感性材料。 二 培养学生思维能力要贯穿在小学数学教学的全过程 现代教学论认为,教学过程不是单纯的传授和学习知识的过程,而是促进学生全面发展(包括思维能力的发展)的过程。从小学数学教学过程来说,数学知识和技能的掌握与思维能力的发展也是密不可分的。一方面,学生在理解和掌握数学知识的过程中,不断地运用着各种思维方法和形式,如比较、分析、综合、抽象、概括、判断、推理;另一方面,在学习数学知识时,为运用思维方法和形式提供了具体的内容和材料。这样说,绝不能认为教学数学知识、技能的同时,会自然而然地培养了学生的思维能力。数学知识和技能的教学只是为培养学生思维能力提供有利的条件,还需要在教学时有意识地充分利用这些条件,并且根据学生年龄特点有计划地加以培养,才能达到预期的目的。如果不注意这一点,教材没有有意识地加以编排,教法违背激发学生思考的原则,不仅不能促进学生思维能力的发展,相反地还有可能逐步养成学生死记硬背的不良习惯。 怎样体现培养学生思维能力贯穿在小学数学教学的全过程?是否可以从以下几方面加以考虑。 (一)培养学生思维能力要贯穿在小学阶段各个年级的数学教学中。要明确各年级都担负着培养学生思维能力的任务。从一年级一开始就要注意有意识地加以培养。例如,开始认识大小、长短、多少,就有初步培养学生比较能力的问题。开始教学10以内的数和加、减计算,就有初步培养学生抽象、概括能力的问题。开始教学数的组成就有初步培养学生分析、综合能力的问题。这就需要教师引导学生通过实际操作、观察,逐步进行比较、分析、综合、抽象、概括,形成10以内数的概念,理解加、减法的含义,学会10以内加、减法的计算方法。如果不注意引导学生去思考,从一开始就有可能不自觉地把学生引向死记数的组成,机械地背诵加、减法得数的道路上去。而在一年级养成了死记硬背的习惯,以后就很难纠正。 (二)培养学生思维能力要贯穿在每一节课的各个环节中。不论是开始的复习,教学新知识,组织学生练习,都要注意结合具体的内容有意识地进行培养。例如复习20以内的进位加法时,有经验的教师给出式题以后,不仅让学生说出得数,还要说一说是怎样想的,特别是当学生出现计算错误时,说一说计算过程有助于加深理解“凑十”的计算方法,学会类推,而且有效地消灭错误。经过一段训练后,引导学生简缩思维过程,想一想怎样能很快地算出得数,培养学生思维的敏捷性和灵活性。在教学新知识时,不是简单地告知结论或计算法则,而是引导学生去分析、推理,最后归纳出正确的结论或计算法则。例如,教学两位数乘法,关键是通过直观引导学生把它分解为用一位数乘和用整十数乘,重点要引导学生弄清整十数乘所得的部分积写在什么位置,最后概括出用两位数乘的步骤。学生懂得算理,自己从直观的例子中抽象、概括出计算方法,不仅印象深刻,同时发展了思维能力。在教学中看到,有的老师也注意发展学生思维能力,但不是贯穿在一节课的始终,而是在一节课最后出一两道稍难的题目来作为训练思维的活动,或者专上一节思维训练课。这种把培养思维能力只局限在某一节课内或者一节课的某个环节内,是值得研究的。当然,在教学全过程始终注意培养思维能力的前提下,为了掌握某一特殊内容或特殊方法进行这种特殊的思维训练是可以的,但是不能以此来代替教学全过程发展思维的任务。 (三)培养思维能力要贯穿在各部分内容的教学中。这就是说,在教学数学概念、计算法则、解答应用题或操作技能(如测量、画图等)时,都要注意培养思维能力。任何一个数学概念,都是对客观事物的数量关系或空间形式进行抽象、概括的结果。因此教学每一个概念时,要注意通过多种实物或事例引导学生分析、比较、找出它们的共同点,揭示其本质特征,做出正确的判断,从而形成正确的概念。例如,教学长方形概念时,不宜直接画一个长方形,告诉学生这就叫做长方形。而应先让学生观察具有长方形的各种实物,引导学生找出它们的边和角各有什么共同特点,然后抽象出图形,并对长方形的特征作出概括。教学计算法则和规律性知识更要注意培养学生判断、推理能力。例如,教学加法结合律,不宜简单地举一个例子,就作出结论。最好举两三个例子,每举一个例子,引导学生作出个别判断〔如(2+3)+5=2+(3+5),先把2和3加在一起再同5相加,与先把3和5加在一起再同2相加,结果相同〕。然后引导学生对几个例子进行分析、比较,找出它们的共同点,即等号左端都是先把前两个数相加,再同第三个数相加,而等号右端都是先把后两个数相加,再同第一个数相加,结果不变。最后作出一般的结论。这样不仅使学生对加法结合律理解得更清楚,而且学到不完全归纳推理的方法。然后再把得到的一般结论应用到具体的计算(如57+28+12)中去并能说出根据什么可以使计算简便。这样又学到演绎的推理方法至于解应用题引导学生分析数量关系,这里不再赘述。 三 设计好练习题对于培养学生思维能力起着重要的促进作用 培养学生的思维能力同学习计算方法、掌握解题方法一样,也必须通过练习。而且思维与解题过程是密切联系着的。培养思维能力的最有效办法是通过解题的练习来实现。因此设计好练习题就成为能否促进学生思维能力发展的重要一环。一般地说,课本中都安排了一定数量的有助于发展学生思维能力的练习题。但是不一定都能满足教学的需要,而且由于班级的情况不同,课本中的练习题也很难做到完全适应各种情况的需要。因此教学时往往要根据具体情况做一些调整或补充。为此提出以下几点建议供参考。 (一)设计练习题要有针对性,要根据培养目标来进行设计。例如,为了了解学生对数学概念是否清楚,同时也为了培养学生运用概念进行判断的能力,可以出一些判断对错或选择正确答案的练习题。举个具体例子:“所有的质数都是奇数。( )”如要作出正确判断,学生就要分析偶数里面有没有质数。而要弄清这一点,要明确什么叫做偶数,什么叫做质数,然后应用这两个概念的定义去分析能被2整除的数里面有没有一个数,它的约数只1和它自身。想到了2是偶数又是质数,这样就可以断定上面的判断是错误的

急求小学五年级数学小论文,好的我会给50~100分,不要太深奥,700~800字左右!

1、生活中的数学
数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具,而生活也是缺不了数学的。
现实生活中,我们会看到用正多边形拼成的各种图案,例如,平时在家里、在商店里、在中心广场、进入宾馆、饭店等等许多地方会看到瓷砖。他们通常都是有不同的形状和颜色。其实,这里面就有数学问题。
在用瓷砖铺成的地面或墙面上,相邻的地砖或瓷砖平整地贴合在一起,整个地面或墙面没有一点空隙。这些形状的地砖或瓷砖为什么能铺满地面而不留一点空隙呢?
例如,三角形。三角形是由三条不在同一条直线上的线段首尾顺次连结组成的平面图形。我们知道,三角形的内角和是180度,外角和是360度。用6个正三角形就可以铺满地面。
再看正四边形,它可以分成2个三角形,内角和是360度,一个内角的度数是90度,外角和是360度。用4个正四边形就可以铺满地面。
正五边形呢?它可以分成3个三角形,内角和是540度,一个内角的度数是108度,外角和是360度。它不能铺满地面。
……
由此,我们得出了。n边形,可以分成(n-2)个三角形,内角和是(n-2)*180度,一个内角的度数是(n-2)*180÷2度,外角和是360度。若(n-2)*180÷2能整除360,那么就能用它来铺满地面,若不能,则不能用其铺满地面。
瓷砖,这样一种平常的东西里都存在了这么有趣的数学奥秘,更何况生活中的其它呢?
至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理.
正如华罗庚先生所说的:近100年来,数学发展突飞猛进,我们可以毫不夸张地在用:宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,用“无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.
可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域

小学五年级数学论文

小学数学教学论文:“分数的意义”课后反思
1、《课标》中指出:通过数学学习,学生能够积极参与数学学习活动,对数学有好奇心与求知欲。在数学学习活动中获得成功的体验,建立自信心。在“分数的意义”一课中有如下体现:(1)师:我们通过平均分一个物体,得到的一份或几份可以用分数来表示。今天我们继续研究分数,我们是仍然来分一个物体呢,还是试着来分一堆物体? 生:分一堆吧。教师创设条件,由学生选择教学的起点,充分体现了以人为本的教育理念。奥苏伯尔说过:“影响学生的最重要原因是学生已经知道了什么,学生还想知道什么。”在教师的组织下,学生主动参与教学过程,自觉地成为学习的主体。(2)师:出示一个装有苹果的果盘,果盘上用布遮盖,使学生能看到苹果,但无法看到苹果的个数。 师:老师这里有一堆苹果,如果把这堆苹果看作一个整体,平均分成2份,你们能根据已有的知识,说一说1份与这个整体之间的关系吗?把苹果盖起来,无法看到苹果的个数,这对小学生来说是有趣的,令人好奇的,虽然不好猜苹果的个数,但部分与整体的关系还是比较清楚的,这一环节的设计不仅抓住了学生的求知欲,更重要的是巧妙地铺垫了平均分的一堆物品具体有多少个并不重要,重点要研究平均分份后,部分与整体的关系。2、《课标》中指出:教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在动手实践,自主探索与合作交流的过程中真正理解和掌握基本的数学知识与技能,数学思想和方法。“分数的意义”是一节概念课,在概念课的教学中更要注重数学活动的过程。本节课先后2次安排学生通过操作逐步经历从现实生活中抽象出分数的过程。(1)在复习阶段设计了“用你手中的学具能得到哪些分数?”目的在于帮助学生复习回忆对分数的已有认识。(2)在学习新知阶段设计了“请大家用纸袋内的学习材料动手分一分,然后用分数来表示你想要的部分。请同学们分组讨论后,用填表的形式记录讨论结果。”学生通过操作领悟到平均分的是什么物品不重要,平均分的是1个物品还是多个物品组成的群体也不重要,重要的是平均分了几份,我们要表示的是几份,学生在几十分钟的学习探索中,能对分数有如此深刻的认识,应归功于大量的数学活动。3、《课标》中指出:数学课程应突出体现发展性,数学学习内容应当是富有挑战性的,学生的学习活动应当是一个生动活泼、主动和有个性的过程。让概念教学具有一定的开放度,有利于提高学生的创造能力,实现不同的人在数学上得到不同发展。(1)本课在设计2次动手操作时具有一定的开发度。表现在学习材料是开放的,即每组学具的物品不同,多少也不同。使每组学生的操作结果各不相同。(2)在理解单位“1”时,具有一定的开发度。表现在分组探讨前面的谈话:“如果这不是一堆苹果,是一堆棋子、一堆卡片、一堆硬币……,你们能通过不同的分法,得到不同的分数吗?”以及抽象概括,构建新知时设问:“既然与分的是什么、是多少没关系,那么我们给象这样的一个物体、一个图形、一个计量单位、以及多个物体组成的一个整体,起个统一的名字叫做单位“1”。单位“1”除了可以是这些,还可以是哪些?”

小学五年级数学论文

抓好基础知识,重视培养思维能力
一、基础知识必须让学生切实学好
1.从学生已有的知识和经验出发进行教学
数学具有严密的逻辑性,前后知识联系紧密,某一新的知识点往往是前一部分知识的发
展和延伸,同时又 是后一部分知识的基础。就课本上新知识点来说,一般包含着许多旧有
知识。因此,充分利用学生已有知识和 经验学习新知识,能激发学生学习兴趣,提高学习
积极性,又能形成良好的知识结构。如分数乘法中分数乘以 整数的意义没有变,仍是求几
个相同加数的和的简便算法。教学时通过对原有知识的复习,学生是容易理解的 。在讲例
1前我们可以提出:4个2是多少?用加法如何计算?用乘法如何计算?此时我们可以提问:
整数乘法的 意义是什么?在此基础上,我们进一步提出:4个2/9是多少?用加法如何列
式?用乘法又如何列式?学生列出(2/9)+(2/9)+(2/9)+(2/9),(2/9)×4。因为做分数加法时是以
原来的分母做分母,分子部分是相同加数求和, 所以(2/9)×4=(2×4)/9=8/9;引导学生观
察算式得出:分数乘以整数的方法是用分数的分子和整数相乘的积 作分子,分母不变。本
册分数除法中分数除以整数的意义与整数除法意义相同,教学时可通过学生已有知识引 入,
使学生掌握新知识。
2.通过实物、教具、学具或者实际事例使学生在理解的基础上掌握知识
小学阶段是儿童从形象思维向抽象逻辑思维发展的转变阶段,仍应重视运用实物、教具、
学具进行教学, 增加感性认识,促进学生对知识的理解和掌握。如长方体和正方体是学生
第一次接触的立体图形,如果空间观 念不强,在计算长方体的表面积与体积时就会混淆。
教师要重视实物、教具的演示作用,教学时可分为以下三 步:一是让学生搜集大小不同、
形状各异的长方体实物,引导学生观察,使学生对长方体的特征有一个初步的 感性认识。
二是用“切土豆”的方式使学生认识长方体的特征,如取一个较大的土豆,切一刀切出一个
平面, 切两刀出来两个面、一条棱,切三刀出来三个面、三条棱和一个顶点……切六刀就
成为六个面、十二条棱、八 个顶点的长方体(注意面与面要成直角)。三是出示长方体的框
架模型,让学生指出长方体的面、棱和顶点, 并画出长方体的直观图,引导学生对照长方
体框架模型指出相对应的面、棱和顶点。这样才能使学生牢固掌握 长方体的特征,形成长
方体的概念。

二、引导学生参与获取知识的思维过程,培养思维能力
1.计算教学要让学生参与探究法则和算理的形成
法则和算理是计算的根据,掌握法则和算理对于提高计算能力会起到重要作用。因此在
计算教学时要让学 生参与探究法则和算理的形成,从而帮助学生熟练地掌握、使用算理和
法则。
教学分数乘以分数的计算法则时,教师先出示例题:“一台拖拉机每小时耕地3/5公顷,
3/4小时耕地多少 公顷?提问:如果把已知条件换成整数或小数应怎样计算?接着让学生根
据整数和小数乘除法的算理给例题列 式,这样学生就能明白,分数乘除法的算理和计算法
则是从整数和小数的计算法则中演绎过来的。然后教师出 示下列三幅图,引导学生观察、
分析、思考,并演示计算过程,最后让学生讨论归纳出分数乘以分数的计算法 则,这样,
学生得到的不仅仅是法则。
引导学生得出:任何物体都占有一定的空间,“物体所占空间的大小叫做物体的体积”。这样
教学,学生得到的绝不仅仅是一个文字概念。

2.几何教学让学生参与公式的推导过程
长方体的体积公式:长方体的体积=长×宽×高,学生记住这个公式并不难,但是要理
解为什么计算长方 体的体积要这样计算是比较困难的,为此,我们必须让学生参与公式的
推导过程。教学时可这样进行:
(1)把一个土豆(或萝卜及其他容易切开的物体)切成一个长4厘米、宽3厘米、高2
厘米的长方体,引导学 生观察后指导学生把这个长方体切成1立方厘米的小正方体,再让
学生数一数这个长方体切成了多少个1立方厘 米的小正方体,并说明小正方体的总和就是
这个长方体的体积,每个小正方体都是这个长方体的体积单位。然 后组织学生讨论:是怎
么切的,长方体的体积应如何计算?
(2)让学生把24块1立方厘米的正方体,摆成体积是24立方厘米的长方体,进行操作
实验,然后整理出如下 的摆法: 每排块数 排数 层数 总块数(体积) 4 3 224 6 4 1 24 6 2
2 24 8 3 1 24 12 2 1 24
引导学生从上面实验得出:长方体的体积=长×宽×高。
为了全面提高教学质量,着眼于学生素质的提高,数学教学还应注重学生的操作和实践
活动,在操作和实践活动中培养学生解决简单实际问题的能力。

五年级数学论文!!!!!!!!!!

【论文关键词】数学课
【论文摘要】同样的教材、同样的学生、同样的45分钟,为什么课堂教学效果却不同呢?这就是我们今天所要讨论的话题,也就是在新的教学理念下.怎样才能上好一堂数学课。首先要有正确的教育理念,其次完美的教学设计也是必不可少的,还要尊重学生的需要,保护学生的自尊心和自信心,为学生留下思考的时间,还要认识到练习的重要性。
老师们天天都在上课,也常常去听别人的课 ,大家看到的课堂教学往往有两种不同的场面:其一,教师满怀激情,生动传神,学生投入兴趣盎然,教与学双方都沉浸在一种轻松愉快的气氛中;其二,则是另一种场面,教师枯燥乏味地讲解,学生机械重复地做题,呆板的教法沉闷的课堂气 氛 .学生木然置之,毫无反应,整个课堂犹如一潭死水。这是为什么呢?同样的教材、同样的学生、同样 的 45分钟,为什么课 堂教学效果却不同呢?这就是我们今天所要讨论的话题,也就是在新的教学理念下,怎样才能上好一堂数学课。
1.正确的教育理念
上好一堂课.首先要有正确的教育理念作向导。本数学教育家米山国藏认为:“无论是对于科学工作者、技术人员,还是数学教育工作者,最重要的就是数学的精神 、思想和方法.而数学知识是第二位的。”这个看法是正确的。因为从某种意义上讲,数学思想与数学方法是数学知识体系的灵魂。从素质教育 的角度看,数学教育中培养各种人才所需的共性的东西,既不是数学知识.也不是解题 能力,而是数学观念——“数学地”思考 、处理问题的思想方法 。不论一个人今后从事怎样的工作,哪怕他对现在所学的数学知识都忘得一干二净,或者不再会解中学的数学习题,只要他形成了一定的数学观念他就会在自己的工作中自觉或不自觉地,或多或少地运用数学的思想和观点思考问题。数学观念永远支配着人的思维,发挥着无形的作用。
因此,数学教育工作者应该象俄罗斯数学教育家 A·斯托利亚尔所说 的那样 .把数学教学看作“数学活动的教学,即看作某种思维活动的教学”。这样我们才能教学生学会思考 ,我们的教育才能为学生的终身发展奠定坚实的基础。
2.完美的教学设计
应该向优秀教师学习、与同事合作 ,同时也必 须结合 自己的教学风格 、基于学生的学 习起点精心预设。我的做法是与生活实践相结合。很多内容学生在学习之前都已经积累了较多的生活经验.教师习惯于创设一个生活情境以架起数学与生活的桥梁。生活情境必须是“真情境”,尤其当生活数学与课本数学不统一时教师更不能回避.应从容面对、巧妙应对 。如教学《角的概念的推广》,老师都只讲数学角,而学生的起点则是认识了大量的生活角。我曾做过一次跟踪调查,发现传统的教学是没有效果的,主要是因为教学没 有链接生活,教师没有 准确把握现实起点。我是先让学生明确生活角.再通过分类学习数学角的。再如教学《数列》,我们可以先举一个兔子繁衍的例子,然后再说明这就是斐波那契数列,这样学生会更容易理解数列的意义。
3.要尊重学生的需要。保护学生的自尊心和自信心
不同班级的学生会有不同的特征,同一班级的学生也存在一定的差异。好的课程应当关注学生的差异,尊重不同学生在知识、能力、兴趣等方面的需要。应当有针对性地设计不同层次的问题、不同类型和不同水平的题目,使学生都有机会参与教学活动,都能在学习过程 中有所收获。应恰当处理学生学习活动中不同类型的反馈信息,保护学生的自尊心和自信心。注意倾听各种学生的回答,即使知道学生可能回答不对,也应让学生表达出来自己的见解。相信学生的每一个回答都会对学生自己和别人带来一些启示,这些启示有的来自正面,有的可能来自反面。

上一篇:以十四五为主题的论文

下一篇:个人社会实践报告论文