关于函数的数学论文网
关于函数的数学论文网
一、函数内容处理方式的分析在整个中学阶段,函数的学习始于义务教育阶段,而系统的学习则集中在高中的起始年级。与以往相比,课程标准关于函数内容的要求发生了比较大的变化。 1. 强调函数背景及对其本质的理解无论是引入函数概念,还是学习三类函数模型,课程标准都要求充分展现函数的背景,从具体实例进入知识的学习。以往教材中,将函数作为一种特殊的映射,学生对于函数概念的理解建立在对映射概念理解的基础上。学生既要面对同时出现的几个抽象概念:对应、映射、函数,还要理清它们之间的关系。实践表明,在高中学生的认知发展水平上,理解这些抽象概念及其相互之间的关系存在很大困难。而从函数的现实背景实例出发,加强概念的概括过程,更有利于学生建立函数概念。一方面,丰富的实例既是概念的背景又是理解抽象概念的具体例证;另一方面,在实例营造的问题情境下,学生能充分经历抽象概括的过程,理解概念内涵。2.加强函数思想方法的应用函数是刻画现实世界变化规律的重要数学模型。因此,函数在现实世界中有着广泛的应用。加强函数的应用,既突出函数模型的思想,又提供了更多的应用载体,使抽象的函数概念有更多的具体内容支撑。比如,新增加的内容“不同函数模型的增长”和“二分法”,前者通过比较函数模型的增长差异,使学生能够更深刻地把握不同函数模型的特点,在面对简单实际问题时,能根据它们的特点选择或建立恰当的函数模型反映实际问题中变量间的依赖关系;后者充分体现了函数与方程之间的联系,它是运用函数观点解决方程近似解问题的方法之一,通过二分法的学习,能使学生加深对函数概念本质的理解,学会用函数的观点看待和解决问题,逐渐形成在不同知识间建立联系的意识。二、函数内容编写的基本想法函数的内容包括:函数概念及其性质,基本初等函数(Ⅰ),函数与方程,函数模型及其应用。以理解函数概念本质为线索,既可以将这些内容有机地组织为一个整体,又可以让学生以它们为载体,逐步深入地理解函数概念1.内容组织的线索:函数概念本质的理解函数概念并非直接给出,而是从背景实例出发采用归纳式的教材组织形式引入。由于函数概念的高度抽象性,学生真正理解函数概念需要一个漫长的过程,需要在不同层次上、从不同角度给学生提供理解和巩固函数概念的机会。首先,在分析典型实例的共同特征的基础上概括出函数定义后,通过讨论函数的表示、基本性质初步理解函数。它们分别是从函数的表现形式和变化规律两个方面丰富对函数概念的认识。然后,以三类基本初等函数为载体巩固函数概念,在学习了函数定义、基本性质之后,从一般概念的讨论进入到具体函数的学习。指数函数、对数函数和幂函数的概念及其性质都是一般函数概念及性质的具体化。以一类具体函数为载体,在一般函数概念的指导下对其性质进行研究,体现了“具体──抽象──具体”的过程,是函数概念理解的深化。最后,从应用的角度再一次巩固并提升对函数的理解。对一个概念真正理解的一个判断标准就是看看是否可以运用概念解决问题。教材最后安排函数的应用,包括二分法、不同函数模型的增长差异以及建立函数模型解决实际问题,就是期望学生能在“用”的过程中提高对函数概念的理解。2.突破难点的主要方法:显化过程,加强联系函数概念的理解贯穿了函数内容学习的始终,同时它也是教与学的一个难点,在教材编写中应采用什么方法突破这个难点,帮助学生更好地理解函数概念?对于形成函数这样抽象的概念,应该让学生充分经历概括的过程。概括就是把对象或关系的某些共同属性区分和固定下来。这就要求我们在编写教材时充分展示概括过程,并要充分调动学生的理性思维,引导他们积极主动地观察、分析和概括。教材选择了三个有一定代表性的实例,先运用集合与对应的语言详细地分析前两个实例中变量间的依赖关系,给学生以如何分析函数关系的示范,然后要求学生仿照着自己给出第三个实例的分析,最后通过“思考”提出问题,引导学生概括三个实例的共同属性,建立函数的概念。在这样一个从具体(背景实例)到抽象(函数定义)的过程中,学生通过自己的思考从分析单个实例上升到概括一类实例具有的共同特征,更能理解概念内涵。作为中学数学的核心概念,函数与中学数学的许多概念都有内在联系,这种联系性为理解函数概念提供了众多的角度和机会,因此加强函数与其他数学知识的联系是函数概念教学的内在要求。例如,函数有多种表示方法,加强不同表示法之间的联系和转换,使学生学会在面临一个具体问题时能根据问题的特点灵活选择表示的方法,就是促进理解的一个手段。教材通过例题给出高一某班三位同学在六次测试中的成绩及相应的班平均分的数据,要求分析三位同学的学习情况。解决这个问题的关键就是根据函数的表格表示法与图象表示法的特点,将表格表示转化为图象表示。又如,函数与现实生活有着密切的联系,所以在编写教材时注重加强函数与现实生活的联系,像由背景实例引入概念,在例题和习题中安排一定量的应用问题(碳14的衰减,地震震级,溶液的酸度等)都体现了函数与实际生活的外部联系。再如,从运用函数观点解决方程问题的角度介绍二分法,体现出函数与方程间的联系等等。三、函数内容编写中的几个关键问题1.实例如何选择无论是加强概念背景,还是突出知识的联系与应用,能达到很好效果的重要因素就是要选择合适的实例。那么,如何选择实例才能有助于学生的学习呢?对于起到不同作用的背景实例和应用实例,标准并不完全相同。但总的来说,一是实例的背景知识应该尽量简单,这样可以避免因背景的复杂性而影响对数学知识本身的理解;二是实例应丰富,这样有利于全面、准确地理解知识,不会产生偏差;三是实例应贴近学生生活、具有一定的时代性,这样才会引起学生的共鸣,激发学习的兴趣。比如,介绍函数概念时,教材选择了用解析式表示炮弹飞行的问题、用图象表示南极臭氧空洞的问题、用表格表示恩格尔系数的问题,第一个问题是学生在物理中就很熟悉的,后两个问题是日常生活中经常提及的,背景相对来说比较简单,学生就不会因为需要了解过多的背景知识而冲淡对函数概念的学习。而且重要的是,这样的三个问题包括了不同的函数表现形式,利用它们概括函数概念,就可以消除初中学习中可能存在的一些认识偏差,使学生认识到无论表示形式如何,只要对于每一个x,都有一个y与之对应,就是函数,而这正是函数的本质特征。再如,根据汽车票价制定规则写出票价和里程间的解析式,并利用解析式为售票员制作出我们在汽车上经常看到的“阶梯形票价表”这类问题,贴近学生生活并具有现实的应用价值,能引发学生的兴趣和学习的积极性。2.概念如何展开对于突破函数概念这个难点,可以在整段函数内容的学习中采用显化过程、加强联系的方法。那么具体地,在从三个方向巩固函数概念理解时,如何展开像函数的单调性、二分法这些概念,才能让学生掌握它们,从而达到巩固理解函数概念的目的呢?函数的性质就是研究函数的变化规律,这种规律最直观的获得来自于图象,图象的上升、下降就是单调性。问题在于如何帮助学生从几何直观上升到严格的数学定义。同样地,二分法也需要经历一个由直观认识到数学定义的过程。为此,就需要将直观到严格数学定义的过程划分成几个层次,为学生搭建认识的台阶,使他们逐步地获得概念。比如,介绍函数单调性时,首先给出一次函数和二次函数的图象,观察它们的图象特征,即上升或下降;然后用问题“如何描述函数图象的‘上升’‘下降’呢”引导学生用自然语言描述出图象特征;最后思考“如何利用解析式f(x)=x2描述‘随着x的增大,相应的f(x)随着减小’……”,将自然语言的描述转化成数学符号语言的描述,并一般化得到单调性的数学定义。通过这样的三步,利用数形结合的方法展开单调性的概念,既有助于学生通过自己的努力获得概念,而且也从数和形两个方面理解了概念。3.函数内容中使用信息技术的点及方式在数学课程中使用信息技术已经毋庸置疑,同样地,信息技术的使用也是教材编写中最为关注的问题之一。那么,在函数中有哪些适合使用信息技术的内容,如何使用,以及在教材中使用的方式是怎样的?信息技术具有强大的图象功能、数据处理功能和良好的交互环境,利用这些优势,在函数这部分内容中可以使用信息技术的点主要有:求函数值、做函数图象、研究函数性质、拟和函数等。运用常见的一些软件,如excel、几何画板等就可以轻松地作出函数图象,这在讨论不同函数模型增长差异时发挥很大作用,从几幅图就能直观发现增长的差异;运用计算器可以解决二分法中计算量大的问题,从而将更多精力关注到二分法的思想上,认识到函数和方程间的联系;而计算机的交互环境则为学生的自主探究提供了强有力的平台,丰富了学习方式,如讨论指数、对数函数性质时,可以充分演示出图象的动态变化过程,这样就能在变化中寻求“不变性”,发现函数具有的性质。教材编写时一方面在适合使用信息技术的地方给予提示,如“可以用计算机……”等;另一方面通过拓展栏目详细地介绍一些信息技术应用的专题,如“用计算机绘制函数图象”重点介绍使用常用软件做函数图象的方法,“借助信息技术探究指数函数的性质”给出探究的情境,要求学生亲自利用信息技术发现规律,“收集数据并建立函数模型”介绍了如何用信息技术拟合函数,等等。通过这些方式,可以为教师和学生提供使用信息技术的机会和空间。
初二数学函数论文
本学期,我们学习了许许多多的数学知识。从“几何”到“代数”再到“数形结合”。太多太多了。8个单元,分门别类,让我们看到了数学的精彩!其中我个人认为最有趣的就是第六单元“一次函数”。
一开始接触“函数”这个概念时还是非常陌生的。因为转眼望去,前面的单元基本是“小学”和“初一”接触过得。而对于“函数”来说确是几乎“一无所知”。只知道初一老师说过“可能性”和“函数”有着密切的关系。翻开这个单元时,真的有点“丈二和尚摸不着头脑”。
上面说了种种对“函数”概念的无知。所以自然在一开始学习的过程中会遇到“困难”。这单元的第一章从生活实际出发讲了“函数”的定义等等。这是一个比较“浮浅”的类容(从我现在的角度来说)。从这里我真正接触到了“函数”,但也许是学习没有完全进入。当时给我的印象就是:“函数好像是一个可有可无的好不重要的知识,甚至不明白为什么要学他。”第二章类容可以说就是对第一章的一个“浓缩”。好比第一章是个“橙子”,第二章就是把它榨成汁,然后就可以提高价值贩卖出去。学完后我对函数的印象还是那样,就像“橙子”和“橙汁”虽然“物态”不同,但味道还是差不多。真正的困难出现在第三章,谈到了“一次函数的图象”。可以老实说这章听得差不多是我本学期听的最累的一节课。老师发下来讲义,我那节课觉得您讲的奇快。我还没反应过来你就讲完了。我想班上大多数同学的感受也是如此吧!我终于意识到“函数”不是那么好学的。于是我就开始多做练习,慢慢的我对“函数”渐渐熟悉,随着课程的继续尤其是“函数的实际运用”这节课也使我对函数的印象大大改变。觉得“函数”好像是我们所学课程中与实际生活最紧密的一个单元了。
以上就是我学习“一次函数”的经历。下面我们在来分析一下“一次函数”。从类别上讲,“一次函数”是一个“数形结合”的“典范”。它体现了“代数”和“几何”的“互利”关系,说明二者“缺一不可”。使我们对“代数”“几何”有了全新认识,觉得他们的界线渐渐模糊了。其次“一次函数”我认为是一个有趣,神奇的类容。它有趣在千变万化的图象,它神奇在只用几笔简捷的线条就可以表达出需要“长篇大论”的文字所表达的变化规律。不能不觉得“一次函数”充满了“魔力”。此外这章的编排也是十分“成功”的,与前一章“位置的确定”联系紧密,可以使学过的知识由此得到“巩固”,更可以“由此及彼,举一反三,一通百通”。我想2章的联合编排更是教会我们“复习整理”的学习方法。所以由“一次函数”可以看出,北师大教材的编派不仅注重“知识”还注重“方法”。“一次函数”也使我对这本教材有了全新的认识和看法。
“一次函数”不仅有趣而且更是“历届”中考的“重中之重”。所以无论从“素质教育”和“应试教育”的角度来说“一次函数”都是一节非常好的类容。
以上就是我的这篇“数学小论文-一次函数”,所有观点只是我个人之见,谢谢!
初二数学函数论文
I、定义与定义式: \n自变量x和因变量y有如下关系: \ny=kx+b(k,b为常数,k≠0) \n则称y是x的一次函数。 \n特别地,当b=0时,y是x的正比例函数。 \n\nII、一次函数的性质: \ny的变化值与对应的x的变化值成正比例,比值为k \n即 △y/△x=k \n\nIII、一次函数的图象及性质: \n1. 作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图象——一条直线。因此,作一次函数的图象只需知道2点,并连成直线即可。 \n2. 性质:在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。 \n3. k,b与函数图象所在象限。 \n当k>0时,直线必通过一、三象限,y随x的增大而增大; \n当k<0时,直线必通过二、四象限,y随x的增大而减小。 \n当b>0时,直线必通过一、二象限;当b<0时,直线必通过三、四象限。 \n特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图象。 \n这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。 \n\nIV、确定一次函数的表达式: \n已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。 \n(1)设一次函数的表达式(也叫解析式)为y=kx+b。 \n(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程: \ny1=kx1+b① 和 y2=kx2+b②。 \n(3)解这个二元一次方程,得到k,b的值。 \n(4)最后得到一次函数的表达式。 \n\nV、一次函数在生活中的应用 \n1.当时间t一定,距离s是速度v的一次函数。s=vt。 \n2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。
浅谈初中函数教学方法论文
浅谈初中函数教学方法论文
【摘要】 在初中数学中,二次函数占据了很大的比重.二次函数对学生来说既是难点又是重点.教学过程中的难点是学生对二次函数的很多概念并不理解,另外解题过程中出现的各种问题也会影响学生学习的积极性.针对教学中的这些问题,本文对二次函数的定义重新做了系统的注释,同时对教学过程中比较适合初中学生学习的教学方法进行讨论.
【关键词】 初中数学;二次函数;教学策略
初中数学在中考中占据了很大的比重,也是学生学习过程中的很重要的基础学科,在日常生活中,数学的运用也会带来很多的好处.二次函数的学习,不仅可以提升学生对数字的敏感度,也可以提升学生的逻辑思维,改善学生对于学习的态度以及方法,进而提高学习成绩.所以,要切实改进二次函数的教学方法.
一、二次函数的概念
二次函数的概念是一个“形式化”概念,在教学时教师不能直接给出概念,而是把教学重点放在二次函数概念的形成过程上.因此,我采用了几个问题情境将学生一步步引入到概念中来.
情境一:一粒石子投入到水中,激起的波纹不断向外扩展,扩大后的圆面积y与半径x有何关系?
情境二:用16米长的篱笆围成长方形的生物园饲养小兔.(1)如果长方形的长为y米、宽为x米,那么y和x之间有何关系?(2)如果长方形的面积为y平方米、宽为x米,那么y和x之间有何关系?
情境三:运动员进行5千米的比赛,甲每小时走x千米,乙比甲每小时多走1千米,比赛结束甲比乙多用y小时,则y和x之间的关系式是什么?
情境四:要给边长为x米的正方形房间铺设地板,已知某种地板的价格为每平方米240元,踢脚线的价格为每米30元,如果其他费用为1000元,门宽0.8米,那么总费用y为多少元?
以上的问题情境,都是函数的浓缩问题,尤其是最后两个问题就是从实际问题中找到两个变量,确定函数解析式,为形成二次函数概念做准备.所以,在二次函数的教学中,教师应该就二次函数的基础概念向学生进行详尽的阐述,使得学生对二次函数概念的理解达到较为深刻的层次.
二、二次函数的教学活动讨论
(一)课堂教学多样化
在实际教学中,单一的课堂会令学生的学习活动显露疲态,而多样化的课堂教学会提升学生的学习兴趣,同时加强学生对于知识点的掌握程度,尤其是对二次函数进行的教学活动,本来就需要学生有着很大的兴趣,不断地提出心中的疑惑,并且在教师的指导下展开验证并进行发散性的思考.所以,教师更应该在实际教学中不断地进行改进.比如,在学习二次函数的通式和其他变形形式时,可以就顶点式y=a(x+m)2+n与通式y=mx2+nx+c间的异同点展开教学.两种形式除了外在上的不同,在解题思路上也有着很大的差异.可以就二者的恒等变形进行推演,帮助学生更好地学习二次函数.
(二)数形结合,在图像中发现函数的规律
相比普通函数,二次函数的图像变化更为复杂.这里用顶点式作为例子,不同参数的变化都会对二次函数的图像产生很大的影响.而随着教学活动的日益繁重,初中数学教师现在很难有时间以及精力有机会领学生绘制二次函数的图像.这就使得学生很难对二次函数进行认真的学习,很难理解二次函数和其坐标之间的对应关系.所以,初中数学教学中二次函数图像的绘制是很有用的.同时,由于课时有限,为了保障教学质量,教师应使用坐标纸来带领学生进行图像的绘制,充分保障教学质量,并保障学生也可以熟练地画出相应二次函数的图像.比如,在教学活动中,教师可以先针对y=3x2,y=3x2+5,y=3x2-5,这三个二次函数的图像进行绘制,引导学生观察三个图像之间的位置变化,思考变化的原因.而后,带领学生绘制y=-x2,y=-(x-5)2,y=-(x+5)2的图像,然后让学生观察图像的变化,并找出规律.最后,引导学生对找到的规律进行归纳总结,使得学生做到数形结合,增强这方面的`意识,加强学生对于二次函数图像的认识,进而增加对二次函数性质的理解.
(三)激发学生兴趣,提高学习效率
相比其他学科的学习,数学学科的学习,尤其是二次函数的学习,是十分枯燥、抽象的.即使在进行图像绘制时,也需要大量的计算,这些机械性的学习都使得学生对数学学习、二次函数的学习提不起兴趣.为提高学生的学习兴趣,教师要主动进行趣味性的教学,如,利用现在日益普及的网络系统,借助多媒体设备进行教学,通过视频、图片进行趣味性教学.比如,通过FLASH动画技术来展现参数不同时图像的变化情况,使得学生对于二次函数的内在含义的掌握更加熟练.这些活动会使学生对二次函数的兴趣有着极大的改善.若教师在进行教学活动中发现学生已经有了厌学心理,要根据学生的实际情况,适当放宽对于学生的要求,以改善学生的厌学心理,避免进一步打击学生学习数学的积极性.初中阶段,学生正处于青春期,针对这一时期学生的特点,不要因为二次函数的学习受阻,进而影响学生对整个数学学科的学习热情.要充分引导学生进行学习,关注学生的心理变化,提升学生学习数学的积极性.
三、总结
因为二次函数在整个初中数学教学中扮演着很重要的角色,所以教师要充分重视在教学活动中加强学生对二次函数的理解.为了保障教学质量,教师要对教学活动进行详细的思考,根据所带学生的实际情况、二次函数的特性来进行有针对性的教学活动.通过数形结合的方法,加深学生对二次函数的图像的认知,减少学生因学习不到位而引发的厌学心理,充分保护好学生的求知欲,同时对学生不容易理解的部分以及容易混淆的部分加强教学.有效地改善教学质量,帮助学生在初中学习过程中可以开心有效地进行学习.
【参考文献】
[1]王正美.初中数学中“二次函数”的教学策略研究[J].学周刊,2014(22):47.
[2]贾靖林.信息化环境下初中数学函数教学的策略研究[J].中国教育技术装备,2011(5):85-86.
上一篇:论文的出版单位怎么看
下一篇:论文的分析方法有哪几种