欢迎来到学术参考网
当前位置:发表论文>论文发表

关于stem教育的论文

发布时间:2023-12-11 12:59

关于stem教育的论文

源于美国的STEM,即便搬迁到中国,其核心也基本变化不大。美国STEM教育强调是培养孩子成为Problem Solver,应对未来挑战,肩负美国继续领先的重任。中国教育专家(清华附中王校长)强调是培养创新力、提高学习效率,最终提升应试成绩。

向左转|向右转

首先,国内幼儿教育是否趋于完善,是否不需要修改。《学前教育》2014年第25期的一篇论文中提到中国学前教育与美国相比,存在三个方面的差距:一是教师(师资能力、过度关注、奖惩言辞),二是课程设置(类别划分过清、知识灌输、不追求创造、重知识轻实践、强调模仿、一视同仁批量生产),三是过度秩序(约束行为)。最后提出中国幼儿教育应把“克制”教育纳入“松散和舒适的”教育,把“封闭”教育纳入“开放式”教育。《比较教育研究》中有一篇论文《中美幼儿科学教育课程的差异性比较》(华南师大教育科学院,袁爱玲)。中国对“科学”的定义比较狭窄,重视教幼儿现成的概念,认识具体事实,形成简单的概括能力。把科学探索过程中的技能、科学态度或价值观视为附属品。虽然是一篇来自2001年的古老论文,但其中的观点与数据恰恰可以用来验证说明中国幼儿教育正在不断的调整修改。牛叔从自己孩子的教育经验谈起:“学前教育要做的很多,STEM如果占内容比较多的话,恐怕有成了另一条起跑线了”。当然,类似华工启明星这种将美国麻省理工学院FabLab实验室研发的课程体系进行本土化的二次开发也为中国STEM教育的发展提供了一种非常好的选择。

向左转|向右转

回顾题主的问题:到底STEM教育能否融入进学前教育环节,又是否能真正应用到实践中去,做到本土化,而不单单停留在理念的表面?我们在游戏化STEM教育探索与实践中,有几点认识:1、首先从解决身边的问题开始。这个从3岁开始,不分年龄大小。尽量选取在孩子认知边界的问题,激发好奇心。非要把波粒二象性、海森堡不确定性、波函数讲给孩子,怕是可能都超出某些大学生的认知范畴。华工启明星的课程体系便是从4岁开始的。2、基础是快乐的解决问题。英国的赫伯特·斯宾塞在一百多年都已经实践证明,快乐教育对幼儿来说是多少重要。当然很多人坚定认为学习一定是痛苦的,新的认知是对已知的否定。但必须承认真正优秀学生都更加快乐学习,或者说,是因为快乐才优秀。3、重点是在解决问题中发现/探索/学习各学科知识,少划边界,少讲解,一块发现探索。这个对课程设计和老师教学的要求较高。新《纲要》中强调了“幼儿科学教育是科学启蒙教育,重在激发幼儿的认识兴趣和探究欲望。科学教育应来源于生活,在生活中取材,促进儿童探究能力的培养”。4、短期目标是开发潜能,开发智力,养成习惯,提高效率,综合提升(包括成绩)。在中国,不能提升成绩的教育课程,都不是受欢迎的好课程。能力再强,创新再好,幼升小、月考季考期末考,是躲不过去的。总不能让孩子和家长等到5年10年之后看课程效果。5、长期目标是培养锻炼创新能力,合作能力,表达沟通,社会能力等。在短期目标的基础上,这些综合能力的培养锻炼就如同日复一日的跑步、引体向上、俯卧撑,虽然看不到一时的效果,但增强了体质,未来才有用。6、终极理想是让孩子更好应对未来挑战。这几天055大驱下水,战略忽悠局张召忠局长感慨,中国后来居上,跨越发展,老海军都看花眼了。谁会知道20年之后的中国在世界上会怎么样,将完全无法想象。所以,无论是我们自己在幼儿园、学前机构、游乐场、家庭等初步探索实践,还是上海的24所幼儿园引入STEM课程,都说明STEM教育在中国的学前阶段正在逐步的发展。当然,STEM教育小范围的应用与实践,不能推断出未来一定会在中国进行大范围的推广。

关于STEM教学的几点思考

近期,为了做一个STEM的教学设计而绞尽脑汁。从构思,否定,再构思,再否定……到初步设计出一个简单的STEM教学,渐渐明白了什么是STEM教学。

一、STEM其实就是科学(Science)、技术(Technology)、工程(Engineering)和数学(Mathematics)四门学科的英文首字母缩写。STEM教学其实就是运用以上四门学科来解决现实生活中的实际问题。相对于普通课堂教学而言,它更注重学生对以上四学科知识的综合运用能力的培养,而这正是普通课堂单学科教学所不能完成的。

二、STEM教学注重实践,强调在做中学。普通课堂只教给学生理论或知识点,忽略了理论或知识点的来源和现实生活中的应用。如教学生打蝴蝶结,普通课堂中我们只是教给学生蝴蝶结的打法,甚至打法的分类。而STEM教学则注重让学生自主合作打蝴蝶结的活动来探究蝴蝶结的打法。更有利于学生知识的掌握和社会实践能力的培养,而实践恰好是普通课堂教学所缺乏的。

三、STEM教学真正突出了学生在学习活动中的主体地位。普通的课堂教学,主要是学生在课堂中通过听老师讲解或在老师的引导下思考针对文本的一些问题,而STEM教学更注重社会实践情景和社会实际问题,学生在一定情景中,在老师的引导下小组合作活动,在活动中去思考、探索、总结获得知识,更有利于学生的社会生活。

四、STEM教学注重创新,更符合时代对教育的要求。创新是社会发展的主旋律,而教育要跟上这个以创新为主题的时代,就必须要推行注重创新过程和成果为主的STEM教学。

五、STEM教学有利于培养学生的合作能力。STEM教学要求学生小组合作,制图,准备材料,制作成果等一系列活动来完成。更有利于学生生活中合作精神的培养。

中国stem教育现状

本文章从STEM教育的起源与发展开始,描述了我国STEM教育发展现状。

一、STEM教育的起源与发展

进入21世纪,科学技术发展越来越快,对社会和经济发展的作用越来越重要,科学技术和社会的关系发生了质的变化,对人的素质提出了更高的要求。层出不穷的新工作要求从业者具有综合技能、专业知识和创新能力。面向未来的教育也不能停留在孤立的学科教育层面上,各学科知识和技能的整合与应用将成为教育的主旋律。

二十世纪八十年代末,美国为了提高整个国家公民的科学和技术水平,大量培养工程技术领域的杰出人才,率先提出了将科学、数学、工程和技术教育集成的教育模式,旨在通过加强科学、工程、技术和数学教育中创新人才培养的力度,提升国家的综合国力。在教育界和科技界的共同努力下,这种教育模式逐渐从高等教育延伸到K-12阶段,而随着美国《新一代科学标准》的颁布与实施,围绕重要科学概念以学习进程的形式开展科学教育,以及将工程教育与科学教育结合成为国际科学教育的前沿与新理念。①STEM教育具有详实的脑科学、认知科学和教育科学研究基础,并具有知识社会对创新人才需求的内涵和教育意义,是科技界与教育界携手推进科学教育的一种教育模式和新体系。

STEM教育是科学(Science)、技术(Technology)、工程(Engineering)、数学(Mathematics)教育的融合,它不是简单把这四个领域的内容堆叠在一起,强调在STEM教育中四个领域之间的关联是有目的、有方法、有系统的整合,以发展学生日常生活所需的思维、推理、团队合作、调查和创造性技能。②STEM课程是以问题/项目为导向的四个领域知识和技能的学习、整合、应用与发展,将不同的学科知识融合到现有课程的一种教学方法。STEM教育力图把学生学习到的零碎知识与机械过程转变为一个探究世界相互联系的不同侧面的过程,强调知识和技能的应用与解决真实情境的问题,培养学生的综合解决问题能力和创新能力。STEM教育的目标强调五个方面内容,即STEM素养、21世纪技能、STEM的工作愿景、兴趣和参与性、连接STEM学科的能力。其中STEM素养即指学生科学素养、技术素养、工程素养和数学素养,这四方面素养密切联系。③通过STEM素养和21世纪技能两项目标的达成,学生可以做到:①理解科学、技术、工程和数学对当代社会的重要意义;②至少熟悉每个领域涉及的基本概念,并能教育熟练地运用这些概念与原理;③发展学生在认知(批判思维、创造性)、人际交往(沟通、合作)和个性特征(灵活性、主动性、元认知)等三个方面的基本素养。

2009年11月,奥巴马总统发起了“教育创新”运动,在全国范围内促使STEM教育达到卓越的水平。2011-2013年,美国科学教育改革进入一个关键时期,《K-12年级科学教育框架》(Framework)和《新一代K-12年级科学课程标准》(NGSS)在此期间完成了从编写、修订到发布的过程,将STEM教育写进了K-12的科学教育中。欧洲从20世纪80年代开始就关注工程与科学的结合,以英国为例,强调工业情境下的科学教育,其开发的课程内容已深入到具体而实际的课堂教案与教学策略,并在英国约克大学建有国家STEM教育中心。2010年左右,在科学院的推动下,澳大利亚和加拿大等国教育部纷纷加大对科学教育中工程技术教育的研究和实践力度,推动科学教育向STEM教育转型。2015年7月15日英国Nature期刊上推出“培育21世纪的科学家”的专题,系统审视了全球STEM教育的挑战和希望。④2016年美国科学院出版社出版《发展国家STEM劳动力策略》一书,指出STEM的知识和技能能增加个体的从业机会和增强国家竞争力,国家需要保障所有不同层次的学生和所有不同职业岗位的从业人员都有获得高质量STEM教育和培训的渠道。⑤这一切掀起了STEM教育在全球范围内的热潮。

STEM教育不仅对国家未来的创新能力和竞争力有决定性的影响,而且是社会进步的必要基础。对青少年进行STEM教育既是社会发展的需要,也是青少年个人生存和终身发展的需要。更是面对知识社会和经济科技全球化的挑战,培养创新型的工程科技人才,建设创新型国家、增强国家竞争力的必然需求,还是保障人类社会得以持续、健康发展的唯一可行道路。

二、我国STEM教育发展现状

我国的STEM教育率先在科协、高校、学会、科技场馆等社会资源的推动下走进中小学,并逐渐被教育行政部门所重视。从2010年开始,在STEM教育的推动过程中,科协系统发挥了重要的引领和促进作用,科技工作者参与到各层级的STEM教育,与教育工作者一道推进我国STEM教育的发展,为建设创新型国家、提升国家未来竞争力发挥着积极的作用。

2015年9月,教育部发布《关于“十三五”期间全面深入推进教育信息化工作的指导意见(征求意见稿)》提出“探索STEAM教育、创客教育等新教育模式”的思路,要通过信息技术促进各学科教学内容和模式的变革,探索STEAM新教育模式,培养学生的信息意识与创新意识。2016年6月,教育部印发《教育信息化“十三五”规划》,指出有条件的地区要积极探索信息技术在“众创空间”、跨学科教育(STEAM教育)、创客教育等新的教育模式中的应用。2017年元旦,教育部在教育改革的会议上提出了要在教育方式上落实教育的体验性、探究性和实践性;2017年2月颁布的国家《义务教育小学科学课程标准》中,明确提出倡导跨学科学习方式,STEM教育是一种以项目学习、问题解决为导向的课程组织方式,将科学、技术、工程、数学有机融为一体,有利于学生创新能力的培养。

我国的STEM教育发展尚处于起步阶段,国内STEM教育尚未形成完整的理论体系和操作性强的课内外结合模式。在实践层面又受到科学教育基础薄弱,区域间发展不平衡,课内教育与课外教育未能协调发展,课内科学教育和课外科技活动脱节;科学教育资源不足,分布不均,利用不充分;科学教师专业能力亟需提升,科学教师兼职比例大,非理科专业居多,科技辅导员和科技教师在学校被边缘化等因素的影响。这些现状都制约或误导了我国的STEM教育的发展。

项目组向全国27个省级科协青少中心发放了调查问卷,回收了25份有效问卷,其中有两个省份没有开展省级STEM项目或活动,没有填写问卷。通过对这些问卷的分析,大多数省级科协青少年工作的组织管理者了解并支持STEM教育,但当地的STEM教育多以学校自主开展相关活动为主,超过60%的地区举办过STEM教育专题的交流活动或专家讲座,但缺少相关的政策引领(只有六个地区出台了省级的支持鼓励政策,其中大部分开展STEM教育活动的学校有相关政策支持)。大多数省份的科协系统并没有举行过系统的或者专门的STEM教育教师培训,多在科技辅导员培训中加入一些相关专题报告或交流内容。各地参与STEM教育的学校数普遍低于5%,教师数量低于10%,未形成规模,缺乏对STEM教育系统的和全面的了解,也缺乏相关的师资力量和培训资源。场地、评估反馈机制和奖惩机制都没有建立起来(只有极少数地区如上海、广东等地区建立了一些机制)。从问卷反馈的情况看,一些学校的校本课程开发过程中考虑到了要与国家现行的科技类课程标准相结合,开展的STEM活动多在科技竞赛和交流展示方面。省级科协普遍希望学校更为主动,采取购买优质服务的方式推进STEM教育。总体看来,东部经济发展较好的地区在政策引领和培训支持方面比中西部地区要好一些。

在开展STEM教育和活动需要的支持方面,普遍反映需要全面系统师资培训、教学资源配置、资金支持和推进政策等,主要集中在需要专家队伍支持,开展专项培训和交流,课程、器材和交流活动等。已经开展了省级STEM教育的省份提出的需求更为具体和明确。①需要课程资源支持,STEM课程案例,学术研究成果,国内外科普场所、研究中心及企业工厂资源的支持,专项经费,相关政策支持。

②系统的课程、最好有年级区别、教师培训课程如有教材和微课最好,主要缺少系统教材和辅导员的培训,需要相关的器材支持或可以与项目上级单位进行合作研发。如果能有与STEM相配合的素质测评等资源就更好了。有些社会机构办的培训炒概念的多、掌握实质的少,希望能够开展规范的教师培训,建立一些STEM教育示范学校。

③开展STEM教育,需要把STEM作为课内外科技活动的课程之一,强化师资队伍建设,组织科技辅导员开发适合本地区、本校的校本材料。各地中小学校科学教师、实验场地和器材严重不足,缺乏专业人员探究STEM教育,需要全国专家指导和服务,实现课程共享,最好能提供开发好的课程资源。

回收的企业和校外机构有效问卷22份,这些机构都较为积极地参与到STEM教育中,投入大量的研发经费或购买资源打造校内外结合的STEM教育解决方案(从课程资源、教师培训或入校、硬件配置、场馆建设、活动拓展等入手)。但主要以硬件提供和特色课外活动开展为主要突破口,完整的课程资源(特别是与课内教育的有机结合)是其弱点。

在问卷中,这些机构反映青少年STEM教育不是单纯的让学生学习基础知识和手工制作,而是一种注重实践、注重过程、注重审美、注重创新并利用学科间交叉互动,在提供给学生基本装备、工具以及基础知识的前提下,让学生通过观察与思考发现生活及学习中出现的问题并发挥想象力与创造力解决问题的教育方式。STEM教育理念传入中国并逐步被大力提倡。但STEM教育缺乏顶层推动,STEM师资缺乏是难题,缺乏社会联动机制。打造江苏省乃至全国范围内具有影响力的STEM教育资源平台,用互联网思维,积极构建一个多元化、多层次的科学教育服务平台。

①Rodger W. Bybee. What is STEM Edcuation. Scinece

基于STEAM教育理念的小学课程体系重构研究

一.问题的提出

1986年,美国国家科学委员会首次使用STEM一词来描述多门STEM学科的相关政策或文件。至此,STEM教育正式开始。STEM是以科学(Science)、技术(Technology)、工程(Engineering)和数学(Mathematics)为主要课程的教育。它强调多门学科之间的相互联结和整合,支持学生以多学科、多视角、多维度的方式认识世界并改造世界。学科知识的获取是STEM教育的基础,而能够理解学科知识之间的内在联系是STEM教育的本质。

STEM教育通常以项目驱动或问题驱动的方式开展活动,引导学生通过与他人合作,联系多学科的相关知识,搜集并筛选信息,最终完成项目成果或形成问题解决方案。2006年,美国弗吉尼亚理工大学Georgette Yakman教授及其团队在原有STEM教育的基础上融入了艺术(Arts)学科,使得原有偏理工科特点的STEM教育学科更加广泛、视野更加开阔。在培养学生的科学素养、技术素养、工程素养、数学素养的同时,也体现了对艺术素养的关注和重视。

STEAM教育发展至今,在教育平台搭建、学习项目开展、应用领域拓展以及教育产品研发等方面都取得了一定的业绩和成果,如美国明尼苏达大学(University of Minnesota)和麻省理工学院(Massachusetts Institute of Technology,简称MIT)联合成立的STEM中心网站、上海长周期实证研究基地项目(STEM+国际科学教育研究),以及随着STEAM教育发展而不断涌现出来的乐高、机器人、小牛顿等STEAM教育产品。此外,STEAM教育中相关模式构建、路径探索以及案例分析等基础教育的应用实践方面也有所研究,但主要集中于机器人教育、3D打印以及创客教育等通用技术类课程,对课程整合与重构、课程改革等学科知识内容之间的融合类课程研究较少,而这也正是STEAM教育所关注的重点。

因此,本文立足于STEAM教育理念,尝试提出小学课程体系重构的原则及方法,并进一步对其在课堂上应用的实施模式加以分析设计,以期推动我国STEAM教育发展,促进学生创新意识和创新能力的培养。

二.STEAM教育理念推动小学课程体系重构的适切性分析

小学课程标准分析

自1977年高考恢复以来,我国基础教育教学课程标准经历了从教学大纲、课程标准到新课程标准的演变和改进。其主要变化是课程目标由原来的只重视知识讲授、忽视情感的培养和实践的训练,到培养学生的主体意识、动手实践能力的过渡和转变。

近年来,在我国兴起STEM教育热潮,得到中小学校教师的不断关注和支持。2017年2月,教育部颁布《义务教育小学科学课程标准》,明确指出STEM是一种以项目学习、问题解决为导向的课程组织方式,旨在以科学、技术、工程与数学四门学科的有机融合来培养学生的创新意识和创新能力。

由此说明,我国基础教育对跨学科学习的关注和重视,我国基础教育课程改革应着眼这一方向并不断完善课程体系建设。

支持小学课程体系重构

虽然我国的课程标准经历了数次调整和改革,但目前仍存在课程与目标之间、教学目标与社会需求之间的不平衡问题。这一系列问题的根源追溯到课程体系上,主要表现为学科本位、学科科目过多,且学科之间缺乏有效整合的情况。这种学科知识碎片化、独立化的现状导致学生综合实践能力不足、学生片面发展等情况,不利于学生创新意识和创新能力的培养。

与此同时,STEAM正是以“跨学科”为主要特点而不断引起更多教育工作者的关注。它主要以完成项目或解决问题的方式带动学生学习,使得学生在不断探索中逐渐增强创新意识、形成创新思维并不断养成创新能力。由于STEAM教育的诸多特点与我国现行课程体系之间存在着某种吻合和关联,我们认为STEAM教育理念在某种程度上能够缓解我国课程体系建设中存在的问题。

三、基于STEAM教育理念的小学课程体系重构

小学课程体系重构理论基础

01.能力发展观

无论是21世纪人才必备技能,还是核心素养的提出,都强调以发展学生能力为核心。阿玛蒂亚·森认为,能力是一个人所拥有的有可能实现的、各种可能的功能性活动组合。而功能性活动是指个体认为值得去做或能够达到的各种事情或状态,包括吃、穿、住、行、营养、健康、社交、尊严等。

由此可见,在学习过程中,能力是学生能够完成项目或解决问题所应具备的一种力量。能力的形成与培养是个体在学习中能够不断发展、不断成长的动力源泉。以能力为导向的发展观也正是本研究所倡导的一种教育理念。

02.跨学科教学观

研究表明,如果把学习分割成单独的学科,学生就不能很好地理解各学科领域之间是如何相互联系的。虽然具体的一门学科知识学习很重要,但是跨学科学习可以帮助学生建立并发展高阶思维能力,也可以帮助学生建立起各学科领域之间的联系,从而更好地认识世界并改造世界。

跨学科教学,即是有意识地参与并整合多个学科领域和多种学习方法来研究某个核心问题或项目。这一点与STEAM教育理念所倡导的跨学科、整合性学习不谋而合,都强调在学习中涉及多门学科的参与以及多项能力的形成。

小学重构课程体系与现行的异同

一般认为,课程体系指在一定的教育价值理念指导下,将课程各构成要素进行排列组合,以使得其在动态过程中达成课程体系目标的系统。

通常,课程体系主要由课程观、课程目标、课程内容、课程结构、课程活动方式以及课程评价等方面构成。由此,本文从这些方面探讨基于STEAM教育理念的小学重构课程体系与现行课程体系的异同,见表1。

小学课程体系重构流程

基于STEAM教育理念的小学课程体系重构,即是在STEAM教育理念指导下,将现有课程重新改编成STEAM教育课程的过程。本文从反向和正向两个方向同时出发,建构STEAM教育课程。

反向而言,我们认为应当从学生应该掌握的能力出发,以真实的实践项目或问题为途径,分析完成项目或解决问题所需的知识体系,并形成知识模块,将同一能力培养下的知识体系的所有模块整合为一门课程。但是由于能力导向的课程知识体系并非完整、全面,因此考虑结合现有的课程结构及其知识体系,即为正向建构。重构流程如图1所示。

能力 是指STEAM教育理念指导下学生应当具备的能力,是课程体系重构的起点和依据。新世纪的教育应当是能力培养的教育,而不应是以知识传授为主的教育。知识是认识世界并改造世界的媒介和阶梯,但能力是发现新事物、创造新机遇的力量和工具。按照能力所属的活动领域,可将能力划分为一般能力、特殊能力、再造能力、创造能力、认知能力以及元认知能力等。正如STEAM教育所重点关注的问题解决能力和创新能力,有关重构课程体系的能力界定及其范围所属,应当由课程体系重构课题组的专家结合其自身经验以及其他教育工作者的建议,制定翔实、科学的能力体系及其标准。

项目 是为了达成一定的能力标准所应完成的各项活动的集合。此流程中所指的项目并非根据相关知识人为设计的“假”项目,而是从真实的生活生产中所筛选、修饰出来的“真”项目,是由课程体系重构课题组人员与地方企业、生产商等一线工作单位合作,或从实际生活中,通过获取、筛选、加工、修饰等工作,使其能够适应学生学习。其中,一项能力应由多个能够培养该能力的项目组成,一个项目由能够完成该项目所需的若干活动构成,活动由完成该活动所需的知识点构成,若干活动及其所属知识点连同其相应项目一起组成一个模块。由一项能力引导出的多个模块就构成一个课程,即是由能力导向的课程构成。

活动 是完成一个项目所需完成的子任务的过程或步骤。其中,活动的生成及活动间顺序的安排应当符合客观规律和生活实际。活动中应尽可能涉及多门学科知识的运用,引导学生使用多视角的方式去考虑问题并积极主动去寻求问题的答案,避免思维定式。活动的安排与任务布置要考虑到学生的学习能力、学习风格等特征,合理安排学习任务,并给予不同的学生以不同的学习目标。

知识 是完成一个活动所需的知识点及知识之间的关联。此时的知识应当包括完成活动相关的各学科知识,要摒弃、避免学科本位以及只考虑一门学科或将各门学科知识单独列出的情况。对于完成活动应当包括的知识而言,知识的范畴、难易度等标准的指定,应当由课程体系重构课题组人员与相关课程专家依据现有的课程体系联合制定,以保证其有效性、合理性。现有的小学学科主要包括语文、数学、英语、音乐、美术、科学、体育与健康、信息技术、道德与法治以及地方学校的特色课程等。通过对各学科的课程结构、知识点分析,形成系统的小学知识体系库,将其与反向建构中由项目带动的知识库进行对比分析,查缺补漏,最终形成科学、系统、合理的小学重构课程体系。

​ 模块 是课程的组成部分,主要包括项目及其相关知识。同一课程下的模块项目,在其难易度、知识综合度以及涉及领域、主题等方面都各有不同。课程学习时,可根据学生理解力、生活实际等灵活选取模块展开学习。

重构课程与能力存在着一一对应关系。能力之间可能有平行或层级两种关系。因此,课程之间也可能存在这两种关系。在实际教学中,应根据学生的学习水平、已有能力等实际情况灵活选取课程进行学习。

现行课程与重构课程之间存在着相互制约、相互促进的关系。一方面现行课程为重构课程提供了系统的知识库,另一方面重构课程也能够为现行课程增加一定的知识结构,提供实际的问题素材,并改变其课程安排顺序等。STEAM教育理念指导下的重构课程以项目为途径,带动多学科知识的学习与掌握。为了适应这种多学科交叉融合重构课程的教学,现行课程中各学科知识内容及课程结构安排可能会存在一定的调整和变化,从而带动整个现行课程体系的重构。

重构后的知识分类及阐释

完成项目的过程就是知识建构的过程。项目研究的每一关键步骤都涉及相关学科知识的习得与深化。这些学科知识可以是先前已经习得的知识,也可以是将要学习的新知。

综合运用先前习得的知识,可以帮助学生顺利完成本次项目。同时,对于未来将要学习的新知,项目完成过程可以帮助学生围绕特定项目问题的解决,建构知识支架,甚至生成新的知识。在一次项目完成中应当掌握哪些学科知识,以及这些学科知识是否属于已经掌握的旧知,应当在课程体系重构及课程安排中给予关注并及时调整。以此,以项目完成为途径的STEAM学习便带动了其他学科知识的理解与掌握,驱动其他学科的课程活动安排,充分体现了STEAM教育跨学科学习的思想,并带动整个课程体系的变动与调整。

需要特别指出的是,本文中所指的STEAM课程体系重构并非是各学科知识的简单组合,而是在综合运用各学科知识的基础上,对各学科结构及课程安排进行重新调整和把握,以适应项目完成的需要,从而培养学生的问题解决能力和创新能力。

由此,基于STEAM教育理念的小学重构课程在实施过程中,会与现行课程中的知识体系产生一定的交叉、融合等现象。根据现行课程中的预期准备与重构课程中知识体系的交叉、融合情况,本文将其知识类型分为 基础型知识、应用型知识、拓展型知识 三类。

如若在现行课程中已经学习,而在重构课程中并未涉及其应用,只是作为基础知识来体现,此类知识便称之为基础型知识;如若在现行课程中已经学习,而在重构课程中只是简单应用,此类知识便称之为应用型知识;如若在现行课程中已经学习,而在重构课程中并非简单应用,是在基本应用的基础上拓宽了其应用领域、应用方式等方面,此类知识便称之为拓展型知识。

此外,如前文所述,在项目完成过程中,学生会形成自己的知识支架,甚至生成新的知识,此类知识既不属于现行课程中知识的应用,又不属于其知识的拓展,是学生在学习过程中生成的对事物新的理解和认识,此类知识称之为生成型知识。生成型知识是在项目完成过程中产生的,并不绝对属于重构课程体系范畴,但将对课程重构具有一定的影响作用。

图2即为课程及其相关知识之间的关系图。其中,基础型知识和应用型知识属于现行课程的范畴。同时,与拓展型知识一起归属于重构课程的范畴。生成型知识是在项目完成过程中产生的,并不绝对属于重构课程。四者之间并不存在高级知识与低级知识之分。

知识类型的划分意义,一方面在于从知识类型的角度阐释了课程重构后的结果,另一方面在于厘清现行课程与重构课程之间的关联关系,以便分析出重构课程对现行课程带来的影响,从而使现行课程的内容结构及其课程安排产生一定的变化。

四、基于STEAM教育理念的小学课程体系重构案例

2014年以来,深圳市教育信息技术中心依托东北师范大学进行“智慧校园”案例建设。其中,宝民小学在我们所提出课程体系重构思路的指导下,设计并实施了基于STEAM教育理念的小学课程体系重构。“3D建模与打印口哨”即是其中一例(如图3所示)。

案例介绍

该案例以动手实践能力为主要培养目标,以3D建模与打印口哨项目为培养途径,在项目完成过程中将涉及信息技术、音乐、科学、英语、美术、数学、语文等学科知识。依据上文中小学课程体系重构流程,将其重构课程体系设计如下:

在本案例中,项目驱动的重构课程与现行课程之间知识的交叉、融合以及项目完成过程中所产生的知识类型,主要从以下几方面来体现:

其一,在该项目完成之前所学习过的其他知识,如数学学科的长度单位、角的初步认识等知识,在本节课中虽未直接应用,但在其学习过程中所获得认知与素养的提高亦对项目完成有着一定的帮助和支持;

其二,在搜集资料过程中,对搜索引擎的使用是简单的知识应用,属于应用型知识;

其三,在3D建模环节中,对数学学科中位置与方向、图形拼接等知识的应用属于拓展型知识应用,因其并非是对已学知识的简单应用,而是在应用的基础上加入了设计的成分,融入了自己的思考和探索;其四,在3D打印环节中,涉及英文版使用说明书的学习与掌握,这在现行英语课程中很少涉及,因此不属于现行课程所预期准备的知识范畴,而是属于在STEAM学习过程生成的新知,即生成型知识。

案例实施效果

案例的实施在四个方面产生了实际效果。

01.有助于解决“盲人摸象”的问题

现行课程中的项目设计一般是单学科的、局部的、零散的,多数情况下学生是在单一问题情境中学习单一学科知识内容,容易产生“盲人摸象”的问题。而在本研究案例中,学生是处于真实项目的复杂问题情境中,需要将不同学科知识融合以认识并解决问题。

02.促进了学生综合能力提升

学生在作品完成过程中,能够熟练使用网络获取有用信息,并能够利用3D软件设计模型,利用3D打印机完成作品打印,最终能够用中英文两种语言自如地讲解自己作品的设计理念,支持了学生以多学科、多视角、多维度的方式认识世界并改造世界的过程。

03.有助于解决“STEAM师资”缺乏的问题

案例中所涉及的多学科内容被分配到了相应学科教学中,即降低了对授课教师的跨学科专业知识和技能的要求,不需要其对所涉及的所有学科专业知识和技能的熟练掌握,同时也准确定位了STEAM教师的角色,为培养STEAM教师提供了思路和方向。

04.有助于STEAM普及和特色人才培养

STEAM教育理念指导下的重构案例展示的不只是学生参与机器人比赛等相关比赛的过程,而是融合多学科及其相应教师参与,并逐渐带动其他班级、其他年级学生学习STEAM知识的过程。STEAM教学课堂逐渐由小变大,在学校范围内扩展开来,使得STEAM教学由单一多学科教学的特点逐渐上升为校本特色,并逐渐影响学校中每一位学生的成长与发展。

结语

STEAM教育倡导跨学科教育,注重对学生创新能力、问题解决能力的培养。本文分别以能力导向为反向建构依据,以现行课程知识体系为正向建构依据,建构了基于STEAM教育理念的小学课程体系重构流程,并设计案例进行应用实践。

结果表明,基于STEAM教育理念的小学课程重构,对于提升学生综合能力、解决STEAM教师缺乏以及促进STEAM教育普及产生了有益的效果。课程重构不是一朝一夕的事情,也不是某个独立的高校或小学所能解决的事情,它需要多方的共同努力。此外,课程重构也必然带来教学方式、方法的变革和创新,STEAM教育理念指导下小学重构课程的教学方法研究也是需要重点关注的研究主题。

浅谈STEM教育真谛,国内STEM教育缺失的是什么呢?

近两年来,STEM教育如同一阵飓风席卷中国,诸多中小学将STEM标榜为学校的特色教育,纳入学科教学和日常活动,社会上的各类机构也纷纷加入队列,群分STEM教育这块“蛋糕”。

一时间,这个由Science(科学)、Technology(技术)、Egineering(工程)、Maths(数学)四部分构成的单词缩写令整个社会躁动不已。

但在一片繁荣的盛景背后,似乎少有人追问原点,STEM到底是什么?在中国应该如何做STEM教育?

观念:认知的混乱

“美国在上世纪80年代最早提出STEM教育战略是因为当时的美国缺乏理工科人才,但反观中国,其实并不那么缺乏理工科人才。”早些年,做过STEM教育国家政策比较研究的北师大物理系教授李春密告诉记者。

在北师大中国教育创新研究院副院长魏锐看来,STEM并非是个全新的概念,早在上世纪80年代所提倡的“STS教育”(科学、技术、社会)与STEM便有异曲同工之处,同样强调跨学科,强调技术和工程,并以实际的问题为导向。

对于STEM教育理念引入中国本身,李春密表示绝对认同,因为它培养学生的跨学科思维、批判性思维、合作能力以及解决问题的能力等,这对于创新人才的培养意义深远。

“STEM教育这个理念本身完全没有问题,但问题在于现在很多学校只是扣了一个STEM教育的帽子,玩儿新奇概念,而并没有实质内容。”李春密强调。

“现在卖3D打印机的器材公司火了一大片。” 中国基础教育质量监测协同创新中心副主任胡卫平教授这些年调查了市面上开展STEM教育的学校后发现,很多学校引入了3D打印机,但只是让学生学会操作3D打印机的技能,更有甚者仅仅将这些仪器当做摆设。

李春密同样注意到了这一现象,在他看来如今中国的STEM教育主要被商业机构所“绑架”。“不同于美国为STEM提供公益支持的企业,中国企业的第一考虑是为了盈利。”

他认为,这个现状的关键在于STEM缺乏顶层设计,学术界也未能形成一套系统的关于STEM的理论体系。对STEM的认知亟需规范。

STEM的四个维度之间存在一定的联系, Science(科学)和Mathematics(数学)是基础,而Engineering(工程)是目标,Technology(技术)是实现目标的手段和过程。

李春密用杯子做了一个形象的类比,“要做一个杯子,容积、尺寸、形状是数学;材料硬度、强度、耐温程度是科学;用什么样的工艺做出来是技术;而最后呈现出来的这个杯子的产品是工程。”

而现在的STEM教育主要落在了技术层面上,“比如计算机、编程这些通用信息技术和互联网+的内容,但如能源、环境问题、城市建设规划这些实际生活中的问题仅仅靠这些是不能解决的。”魏锐强调。

李春密还观察到了一种普遍的现象,就是将STEM教育和创客教育结合在了一起,而开展创客教育的主要以小学和初中为主。他觉得这是一种“抢跑行为”,因为小学阶段学生科学知识的积累不够,而“创客”需要有一定的专业积淀和思维能力。“可以在小学阶段做STEM 教育,但更关键的是培养孩子的学科基础。”

在魏锐看来,这和现在教育圈的浮躁性不无关系。“很多学校都在求新求异,但少有静下心来锤炼STEM理念,将真正有价值的东西深化下去。”

困境:“软件”和教师的缺失

如果说,外部器材是STEM教育的硬件,那么课程体系则是STEM的“软件”,而“软件”恰恰是目前国内STEM教育最为缺乏的。魏锐将它归因为教育体制改革的迟滞性和市场机制的不健全。

一方面,教育采购系统主要还是支持硬件,但对课程这类软件的支持力度不够,无法对它进行精准评估,这就导致学校在购买课程上的艰难和迷惑。

从企业的角度来说,因为现阶段,研发和创新的知识产权不受保护,企业不会投入太多钱在STEM课程体系的开发上,卖设备和耗材是最直接的盈利手段。

而“软件”的缺失也便导致了STEM教育当中理性精神的缺失,致使STEM教育停留在了动手的阶段,却不注重培养孩子的理性思维,而理性思维的培养是STEM教育中近乎于“灵魂”的一环。魏锐与很多企业接触后发现,即便有一些打着培养孩子设计思维的口号,但力度仍然远远不够。

上一篇:小学阅读教学论文文献

下一篇:初中科技小论文300