欢迎来到学术参考网
当前位置:发表论文>论文发表

合成氨论文3000字

发布时间:2023-12-11 20:06

合成氨论文3000字

在世界范围内, 高分子材料的制品属於最年轻的材料.它不仅遍及各个工业领域, 而且已进入所有的家庭, 其产量已有超过金属材料的趋势, 将是 21 世纪最活跃的材料支柱. 高分子材料是有机化合物, 有机化合物是碳元素的化合物.除碳原子外, 其他元素主要是氢、氧
在世界范围内, 高分子材料的制品属於最年轻的材料.它不仅遍及各个工业领域, 而且已进入所有的家庭, 其产量已有超过金属材料的趋势, 将是 21 世纪最活跃的材料支柱.
高分子材料是有机化合物, 有机化合物是碳元素的化合物.除碳原子外, 其他元素主要是氢、氧、氮等.碳原子与碳原子之间, 碳原子与其他元素的原子之间, 能形成稳定的结构.碳原子是四价, 每个一价的价键可以和一个氢原子键连接, 所以可形成为数众多的、具有不同结构的有机化合物.有机化合物的总数已接近千万种, 远远超过其他元素的化合物的总和, 而且新的有机化合物还不断地被合成出来.这样, 由於不同的特殊结构的形成, 使有机化合物具有很独特的功能.高分子中可以把某些有机物结构(又称为功能团)替换, 以改变高分子的特性.高分子具有巨大的分子量, 达到至少1 万以上, 或几百万至千万以上, 所以, 人们将其称为高分子、大分子或高聚物.高分子材料包括三大合成材料, 即塑料、合成纤维和合成橡胶(未加工之前称为树脂).
面向21 世纪的高科技迅猛发展, 带动了社会经济和其他产业的飞跃, 高分子已明确地承担起历史的重任, 向高性能化、多功能化、生物化三个方向发展.21 世纪的材料将是一个光辉灿烂的高分子王国.
现有的高分子材料已具有很高的强度和韧性, 足以和金属材料相媲美, 我们日用的家用器械、家具、洗衣机、冰箱、电视机、交通工具、住宅等, 大部分的金属构造已被高分子材料所代替.工业、农业、交通以及高科技的发展, 要求高分子材料具有更高的强度、硬度、韧性、耐温、耐磨、耐油、耐折等特性, 这些都是高分子材料要解决的重大问题.从理论上推算, 高分子材料的强度还有很大的潜力.
在提高高分子的性能方面, 最重要的还是制成复合材料第一代复合材料是玻璃钢, 是以玻璃纤维和合成树脂为粘合剂制成.它具有重量轻、强度高、耐高温、耐腐蚀、导热系数低、易於加工等优良性能, 用於火箭、导弹、船只和汽车躯体及电视天线之中.其后, 人们把玻璃纤维换成碳纤维, 其重量更轻, 强度比钢要高3~5 倍, 这就是第二代的复合材料.如果改用芳纶纤维, 其强度更高, 为钢丝的5 倍.高性能的高分子材料的开拓和创新尚有极大的潜力.科学家预测, 21 世纪初, 每年必须比目前多生产1500~2000 万吨纤维材料才能满足需要, 所以必须生产大量的合成纤维材料, 而且要具有更轻型、耐火、阻燃、防臭、吸水、杀菌等特性.有许多新型纤维, 如轻型空腔纤维、泡沫纤维、各种截面形状的纤维、多组份纤维材料等纷纷被研制出来, 人们可指望会有耐静电、耐脏、耐油, 甚至不会沾灰的纤维材料问世.这些纤维材料将用於宇航天线、宇航反射器、心脏瓣膜和人体大动脉.
高分子功能材料, 在高分子王国里是一片百花争艳的盛景.由於高分子的功能团能够替代, 所以只要采用极为简便的方法, 就可以制造各种各样的高分子功能材料.常用的吸水性材料, 如棉花、海绵, 其吸水能力只有本身重量的20 倍, 在挤压时, 已吸收的大部分水将被挤出来.而用淀粉和丙烯腈制成的高分子吸水材料, 它不仅能吸收自身重量数百倍到上千倍的水, 而且受到挤压也不会挤出水来.人们可以期望, 将高吸水性的高分子材料制成能将化学能转变成机械能的装置, 以及具有类似於肌肉的功能或制造测量仪器.在微电子工业的光刻集成块工艺, 常用的光刻胶(又称光致抗蚀材料), 就是能使高分子相连接一种功能团, 光照射时会起化学反应, 使其溶解度降低或提高.应用这种光刻胶制备集成块, 可以使集成块的线宽达到0.1 到0.01 微米(1p毫米), 只有用其他工艺制成的集成块的线宽的1/10 到1/100, 是适合於21 世纪的电子计算机的主要元件mm微细元件的开关.光刻胶并能用於各种精细加工, 如半导体元件, EP 刷线路板, 金属板膜或表面的精细加工、玻璃、陶瓷的精细刻蚀、精密机械零件加工等.
高分子功能材料应用在信息工程方面, 已经生产了光电导摄影材料、光信息记录材料、光mm能转换材料, 并都已进入实用阶段.
像"当代摩西神树"的离子交换树脂的高分子功能材料也发展很快, 许多高分子离子交换膜、高分子反渗透膜、高分子气体分离膜、高分子透过蒸气膜等都在化学工艺的筛分、沉淀、过滤、蒸馏、结晶、萃取、吸附等过程中获得应 用, 而且分离结果优於其他方法, 可节约大量能量.日本的制盐工业早已用离子交换膜去代替盐田和电解食盐工艺.利用反渗透膜对有机化工、酿造工业的三废进行处理, 可回收胺、酯、醇、醚、酮、酚等重要有机化合物.气体分离膜对不同气体的透过率和选择性不同, 可以利用这一性质从混合气体中选择分离某种气体, 如从空气中富集氧, 从合成氨中回收氢, 从天然气中收集氦, 还可以制备一种水下呼吸器(人工鳃), 它是直接从海水中提取氧的潜水装置, 人类可望能长期生活在海水中, 进入海龙王的宫殿, 分享海龙王海底宁静的幸福生活的梦想可变成现实.还有各种信息转换膜、反应控制膜、能量输送膜等正在研制阶段.一种富有吸引力的生物膜也正在研究之中.生 物膜具有奇特的性能, 不仅能主动起能量、信息、物质的传递作用, 还能参加光合作用及有机物质的生命合成等生命活动.这就是21 世纪的高科技的一颗明珠, 摘取这颗明珠需要有极大的勇气和百折不挠的精神.
高分子功能材料的另一极为重要的发展就是用於催促化学反应, 这类高分子功能材料被称为高分子催化剂.早在本世纪40 年代, 人们已经使用一种叫交联磺化聚苯乙烯的离子交换树脂作催化剂, 用於化学反应的各个过程, 如水解、缩合、聚合等.尔后, 这类高分子功能材料发展很快, 高分子金属络合物催化剂接着问世, 它能够在化学反应中加速捕捉金属离子, 实现金属化合物的迅速分离, 在工业生产和工业分析上是一种十分重要的方法.还有高分子金属催化剂, 是促进化合物中金属离子迅速完成化学反应的材料, 它已获得了成功的应用.自然界存在一种最有效的催化剂, 称为酶.这一类高分子材料像酶一样有很强的催化作用, 称为人工合成酶.酶是由氨基酸组成的蛋白质高分子化合物, 它是生物体内各种生物化学反应的高效催化剂, 是性能最优异的天然的高分子功能材料.现在, 各种人工合成酶已经研制成功并逐步投入应用, 其种类越来越多, 科学家根据酶的作用原理试图模仿应用於化学工业的催化剂, 在化学工业上进行一场革命.它可以制作进行化工生产, 可以充分利用再生的生物资源, 以摆脱传统的以石油系列为主要原料的合成工艺, 而且还可用酶的催化原理, 避开传统的合成工艺中的高温, 高压的条件, 在各种物质混合的状态下, 有选择地使特定物质发生化学反应, 使反应物能够不加分离地连续反应至生产出最终产物.这样, 生物反应器将会改变化工企业高塔林立的传统面貌, 不仅能节约能源, 改善工作环境, 同进还可以广开化工资源, 消灭废水、废气和废料(又称三废), 使建立无污染的理想化学工业成为可能.例如天门冬酰胺酶制成的中性树脂的前景就非常光明.
高分子材料在医学和生命科学上的应用已有很长的历史, 但是依靠着高科技的进步, 近期来这个领域的发展令人惊讶, 人工心脏瓣膜、人工肺、人工肾、人工血管、人造血液、人工皮肤、人工骨骼、人工关节, 从研制迅速成功到不断完善, 并且已付诸使用.高分子材料制作的手术器械、医护用品已不计其数.
高分子材料生物化的最大特色就是控制人的健康和生命, 利用不带药剂性的高分子与其他药剂合成的高分子药剂, 可大大改善治疗效果, 这一类药剂人体易於吸收, 毒性和副作用小.如引起恶心、全身不适等不良反应的抗癌药, 把它们高分子化, 其效果就大大改善, 像抗癌药芳庚酚酮和甲基丙烯酸结合为高分子, 其效果更佳.另一类高分子药物, 本身就有很高的药效, 如合成的聚乙烯吡咯烷酮, 就可以作为血浆的代用品.商品化的聚醚与聚氨酯合成的高分子药物与血浆蛋白质中的白蛋白的亲和力特别高, 相处很融洽, 是一种解决人体血凝的医用高分子材料.
纵观上述, 高分子已经成为21 世纪材料科学中强有力的支柱, 高分子材料的发展在21 世纪将会取得更大的成就

石油制合成氨,毕业论文着急,谢谢

高尔基说过:“(开头)好像音乐里定调一样,全曲的音调都是它给予的,也是作者花功夫的所在。”议论文的开头要讲究“短、快、靓”。短,即要简捷,最好三两句成段,引入本论。开头短,可避免冗长之赘,而且短句成段,在空间上突出其内容的重要性。快,即入题要快,最好三言两语就点明文章的基本观点或议论的话题。因为评分标准中有“中心明确”的细则。开篇确定中心,有利于阅卷者按等计分,也有利于作者展开论述,不致出现主旨不清、中途转换论题等作文大忌。靓,即要精彩。这也是传统文论中所说的“凤头”。精彩的开头,最突出的效果是吸引阅卷者,给阅卷者留下好的印象。文章开头要精彩,多用比喻、类比、排比等修辞引入论点,还可引述名言,讲述寓言故事导入话题。

关于工业合成氨

弗里茨·哈伯(Fritz Haber,1868年12月9日-1934年1月29日),德国化学家,出生在德国西里西亚布雷斯劳(现为波兰的弗罗茨瓦夫)的一个犹太人家庭。从小就对化学工业有极浓厚的兴趣。

高中毕业后,哈伯先后到柏林、海德堡、苏黎世上大学。上学期间,他还在几个工厂中实习,得到了许多实践的经验。他喜爱德国农业化学之父李比希的伟大职业——化学工业。

读大学期间,哈伯在柏林大学霍夫曼教授的指导下,写了一篇关于有机化学的论文,并因此获得博士学位。1904年,哈伯在两位企业家答应给予大力支持开始研究合成氨的工业化生产,并于1909年获得成功,成为第一个从空气中制造出氨的科学家。使人类从此摆脱了依靠天然氮肥的被动局面,加速了世界农业的发展。哈伯也从此成了世界闻名的大科学家。为表彰哈伯的这一贡献,瑞典皇家科学院把1918年的诺贝尔化学奖颁给了哈伯。由于在第一次世界大战中,哈伯担任化学兵工厂厂长时负责研制、生产氯气、芥子气等毒气,并使用于战争之中,造成近百万人伤亡。虽然按照他自己的说法,这是“为了尽早结束战争”,但哈伯这一行径,仍然遭到了美、英、法、中等国科学家们的谴责,哈伯的妻子伊美娃也以自杀的方式以示抗议。

一战结束后,哈伯又做了从海水中提取黄金的试验,但最后宣告失败。1934年初被派遣去巴勒斯坦德理化学研究所任职。1934年1月29日哈伯因突发心脏病逝世于瑞士的巴塞尔。

一种新的环保方法:如何用钴和晶体合成氨

研究人员报告说,一种新的无机合成氨方法既环保又能在环境条件下按需生产有价值的化学物质。

研究人员操纵了一种二维晶体——二硫化钼——并通过从晶格状结构中去除硫原子,并用钴代替暴露的钼,将其转化为催化剂。

这使得这种材料能够模仿细菌用来将大气中的二氮转化为氨的天然有机过程,包括在使用氨来帮助肝脏功能的生物体中。

无机工艺将允许氨作为工业的小规模附属物在任何需要的地方生产,工业每年通过无机哈伯-博施工艺生产数百万吨的化学物质。

这项研究来自莱斯大学布朗工程学院材料科学家军楼实验室 美国化学学会杂志 。

“哈伯-博施工艺产生大量二氧化碳,消耗大量能源,”合著者兼研究生小银·田说。“但是我们的过程使用电来触发催化剂。我们可以从太阳能或风能中获得。”

研究人员已经知道二硫化钼与二氮有亲和力,二氮是由两个强键氮原子组成的天然分子,约占地球大气的78%。

布鲁克海文国家实验室的研究人员刘明杰的计算模拟显示,用钴代替一些暴露的钼原子将增强化合物促进二氮还原成氨的能力。

莱斯的实验室测试表明情况确实如此。研究人员通过在碳布上生长有缺陷的二硫化钼晶体并添加钴来组装纳米材料样品。(从技术上讲,这些晶体是2D的,但看起来像一个钼原子平面,上面和下面都有硫层。)在施加电流的情况下,使用1千克催化剂,该化合物每小时产生10克以上的氨。

莱斯大学博士后研究员、合著者张箐说:“这种规模无法与发达的工业过程相提并论,但在特定情况下,它可以是一种替代方案。”。"它将允许在没有工厂的地方生产氨,甚至在太空应用中."他说实验室实验使用了专用的二氮饲料,但是这个平台可以很容易地把它从空气中取出来。

卢说,其他掺杂剂可能会让这种材料催化其他化学物质,这是未来研究的主题。“我们认为这里有一个机会去做一些我们非常熟悉的事情,尝试做大自然几十亿年来一直在做的事情,”他说。"如果我们以正确的方式设计一个反应堆,这个平台就可以不间断地执行它的功能."

论文的合著者来自莱斯、布鲁克海文国家实验室和新加坡南洋理工大学。

韦尔奇基金会和美国能源部科学办公室支持这项研究。

找一篇石油化工类的论文

石油化工的范畴  以石油及天然气生产的化学品品种极多、范围极广。石油化工原料主要为来自石油炼制过程产生的各种石油馏分和炼厂气,以及油田气、天然气等。石油馏分(主要是轻质油)通过烃类裂解、裂解气分离可制取乙烯、丙烯、丁二烯等烯烃和苯、甲苯、二甲苯等芳烃,芳烃亦可来自石油轻馏分的催化重整。石油轻馏分和天然气经蒸汽转化、重油经部分氧化可制取合成气,进而生产合成氨、合成甲醇等。从烯烃出发,可生产各种醇、酮、醛、酸类及环氧化合物等。随着科学技术的发展,上述烯烃、芳烃经加工可生产包括合成树脂、合成橡胶、合成纤维等高分子产品及一系列制品,如表面活性剂等精细化学品,因此石油化工的范畴已扩大到高分子化工和精细化工的大部分领域。石油化工生产,一般与石油炼制或天然气加工结合,相互提供原料、副产品或半成品,以提高经济效益(见石油化工联合企业)。 编辑本段石油化工的作用 1.石油化工是能源的主要供应者  石油化工,主要指石油炼制生产的汽油、煤油、柴油、重油以及天然气是当前主要能源的主要供应 石油者。我国1995年生产了燃料油为8千万吨。目前,全世界石油和天然气消费量约占总能耗量60%;我国因煤炭使用量大,石油的消费量不到20%。石油化工提供的能源主要作汽车、拖拉机、飞机、轮船、锅炉的燃料,少量用作民用燃料。能源是制约我国国民经济发展的一个因素,石油化工约消耗总能源的8.5%,应不断降低能源消费量。 2.石油化工是材料工业的支柱之一  金属、无机非金属材料和高分子合成材料,被称为三大材料。全世界石油化工提供的高分子合成材料目前产量约1.45亿吨,1996年,我国已超过800万吨。除合成材料外,石油化工还提供了绝大多数的有机化工原料,在属于化工领域的范畴内,除化学矿物提供的化工产品外,石油化工生产的原料,在各个部门大显身手。 3.石油化工促进了农业的发展  农业是我国国民经济的基础产业。石化工业提供的氮肥占化肥总量的80%,农用塑料薄膜的推广使用,加上农药的合理使用以及大量农业机械所需各类燃料,形成了石化工业支援农业的主力军。 4.各工业部门离不开石化产品  现代交通工业的发展与燃料供应息息相关,可以毫不夸张地说,没有燃料, 就没有现代交通工业。金属加工、各类机械毫无例外需要各类润滑材料及其它配套材料,消耗了大量石化产品。全世界润滑油脂产量约2千万吨,我国约180万吨。建材工业是石化产品的新领域,如塑料关材、门窗、铺地材料、涂料被称为化学建材。轻工、纺织工业是石化产品的传统用户,新材料、新工艺、新产品的开发与推广,无不有石化产品的身影。当前,高速发展的电子工业以及诸多的高新技术产业,对石化产品, 尤其是以石化产品为原料生产的精细化工产品提出了新要求,这对发展石化工业是个巨大的促进。 5.石化工业的建设和发展离不开各行的支持   石油化工国内外的石化企业都是集中建设一批生产装置,形成大型石化工业区。在区内,炼油装置为“龙头”,为石化装置提供裂解原料,如轻油、柴油,并生产石化产品;裂解装置生产乙烯、丙烯、苯、二甲苯等石化基本原料;根据需求建设以上述原料为主生产合成材料和有机原料的系列生产装置,其产品、原料有一定比例关系。如要求年产30万吨乙烯,粗略计算,约需裂解原料120万吨, 对应炼油厂加工能力约250万吨,可配套生产合成材料和基本有机原料80 ~ 90万吨。由此可见, 建设石化工业区要投入大量资金,厂区选址适当,不但要保证原料和产品的运输,而且要有充分的电力、水供应及其他配套的基础工程设施。各生产装置需要大量标准、定性的机械、设备、仪表、管道和非定型专用设备。 制造机械设备涉及材料品种多,要求各异,有些重点设备高速超过50米,单件重几百吨;有的要求耐热1000°C,有的要求耐冷 - 150°C。有些关键设备需在国际市场采购。所有这些都需要冶金、电力、机械、仪表、建筑、环保各行业支持。 石化行业是个技术密集型产业。生产方法和生产工艺的确定,关键设备的选型、选用、制造等一系列技术,都要求由专有或独特的技术标准所规定, 如从国外引进,要支付专利或技术诀窍使用费。因此,只有加强基础学科,尤其是有机化学、高分子化学、催化、化学工程、电子计算机、自动化等方面的研究工作,加强相关专业技术人员的培养,使之掌握和采用先进科研成果,再配合相关的工程技术,石化工业才有可能不断发展,登上新台阶。 编辑本段石油化工的发展  石油化工的发展与石油炼制工业、以煤为基本原料生产化工产品和三大合成材料的发展有关。石油炼制起 石油炼制源于19 世纪20年代。20世纪20年代汽车工业飞速发展,带动了汽油生产。为扩大汽油产量,以生产汽油为目的热裂化工艺开发成功,随后,40年代催化裂化工艺开发成功,加上其他加工工艺的开发,形成了现代石油炼制工艺。为了利用石油炼制副产品的气体,1920年开始以丙烯生产异丙醇,这被认为是第一个石油化工产品。20世纪50年代,在裂化技术基础上开发了以制取乙烯为主要目的的烃类水蒸汽高温裂解 简称裂解)技术,裂解工艺的发展为发展石油化工提供了大量原料。同时,一些原来以煤为基本原料(通过电石、煤焦油)生产的产品陆续改由石油为基本原料,如氯乙烯等。在20世纪30年代,高分子合成材料大量问世。按工业生产时间排序为:1931年为氯丁橡胶和聚氯乙烯,1933年为高压法聚乙烯,1935年为丁腈橡胶和聚苯乙烯,1937年为丁苯橡胶,1939年为尼龙66。第二次世界大战后石油化工技术继续快速发展,1950年开发了腈纶, 1953年开发了涤纶,1957年开发了聚丙烯。 编辑本段石油化工高速发展的原因是  有大量廉价的原料供应(50 ~ 60年代,原油每吨约15美元);有可靠的、有发展潜力的生产技术;产品应用广泛,开拓了新的应用领域。原料、技术、应用三个因素的综合,实现了由煤化工向石油化工的转换,完成了化学工业发展史上的一次飞跃。 20世纪70年代以后,原油价格上涨(1996年每吨约170美元),石油化工发展速度下降,新工艺开发趋缓, 并向着采用新技术,节能,优化生产操作,综合利用原料,向下游产品延伸等方向发展。一些发展中国家大力建立石化工业,使发达国家所占比重下降。1996年,全世界原油加工能力为38亿吨,生产化工产品用油约占总量的10%。 编辑本段石油化工在国民经济中的地位石油化工是近代发达国家的重要基干工业  由石油和天然气出发,生产出一系列中间体、塑料、合成纤维、合成橡胶、合成洗涤剂、溶剂、涂料、农药、染料、医药等与国计民生密切相关的重要产品。80年代,在工业发达国家中,化学工业的产值,一般占国民生产总值 6%~7%,占工业总产值7%~10%;而石油化工产品销售额约占全部化工产品的45%,其比例是很大的。    石油化工2石油化工是能源的主要供应者  石油炼制生产的汽油、煤油、柴油、重油以及天然气是当前主要能源的主要供应者。我国1995年生产了燃料油为8千万吨。目前,全世界石油和天然气消费量约占总能耗量60%;我国因煤炭使用量大,石油的消费量不到20%。石油化工提供的能源主要作汽车、拖拉机、飞机、轮船、锅炉的燃料,少量用作民用燃料。能源是制约我国国民经济发展的一个因素,石油化工约消耗总能源的8.5%,应不断降低能源消费量。 石油化工是材料工业的支柱之一  金属、无机非金属材料和高分子合成材料,被称为三大材料。全世界石油化工提供的高分子合成材料目前产量约1.45亿吨,1996年,我国已超过800万吨。除合成材料外,石油化工还提供了绝大多数的有机化工原料,在属于化工领域的范畴内,除化学矿物提供的化工产品外,石油化工生产的原料,在各个部门大显身手。 石油化工促进了农业的发展  农业是我国国民经济的基础产业。石化工业提供的氮肥占化肥总量的80%,农用塑料薄膜的推广使用,加上农药的合理使用以及大量农业机械所需各类燃料,形成了石化工业支援农业的主力军。   石油化工可创造较高经济效益。以美国为例,以50亿美元的石油、天然气原料,可生产100亿美元的烯烃、苯等基础石油化学品,进一步加工得240亿美元的有机中间产品(包括聚合物),最后转化为400亿美元的最终产品。当然,原料加工深度越深,产品越精细,一般来说成本也相应增加。 编辑本段世界石油化工  1970年,美国石油化学工业产品,已有约3000种。资本主义国家所建生产厂已约1000个。国际上常用乙烯和几种重要产品的产量来衡量石油化工发展水平。乙烯的生产,大多采用烃类高温裂解方法。一套典型乙烯装置,年产乙烯一般为300~450kt,并联产丙烯、丁二烯、苯、甲苯、二甲苯等。乙烯及联产品收率因裂解原料而异。目前,这类装置已是石油化工联合企业的核心。   70年代以前,世界石油化工的生产基地主要分布在美国、日本及欧洲等国。1973年后世界原油价格不断上涨,1983年以来又趋下跌,价格大起大落,使石油化工企业者对原料稳定、持久供应产生忧虑。发达国家改革生产结构,调整设备开工率,以适应新的经济形势。发展中国家尤其是产油国近年则在大力发展石油化工。80年代,世界乙烯生产能力的分布已发生变化,亚非拉等发展中国家所占比例有所提高。如将东欧国家的乙烯生产能力计算在内,则这些新兴石油化工生产地区的乙烯生产能力,约占世界乙烯总生产能力的四分之一。   1958年,世界乙烯生产能力达到49Mt(不包括社会主义国家),其中新增乙烯生产能力约3.3Mt,约1/3建在非洲和中东地区,1/3建在拉美和东欧;传统石油化工生产地区,只新增生产能力800kt,且今后五年内,计划也很少新建乙烯装置,主要是进行现有装置的技术改造。 编辑本段中国石油化工  起始于50年代,70年代以后发展较快,建立了一系列大型石油化工厂及一批大型氮肥厂等,乙烯及三大合成材料有了较大增长。   中国石油化工行业占工业经济总量的20%,因而对国民经济非常重要。石油化工行业包括石油石化和化工两个大部分,这两大部分在2006年都保持了较快地增长。如果把这两个部分作为一个整体来看,2006年石油化工累计实现的利润达到了4345亿,增长达到了17.9%,增量达到了658亿元,在整个规模以上工业新增利润中占到17%左右。    石油化工32007年前三季度全行业实现现价工业总产值38211亿元,同比增长20.2%。重点跟踪的65种大宗石油和化工产品中,产量较2006年同期增长的有62种,占95.4%,其中增幅在10%以上的有47种,占72.3%,天然气、电石、纯苯、甲醇、轮胎外胎等产品产量呈较快增长态势。   原油及加工制品平稳增长。2007年前三季度,全国原油生产较为平缓,天然气产量则增长较快。2007年1~9月累计生产原油13992.6万吨,同比增长1.4%;天然气累计产量为501.4亿立方米,同比增长19.8%。原油加工量24289.1万吨,同比增长7.0%。汽、煤、柴油产量继续保持稳定增长,累计生产汽油4475.9万吨,同比增长8.5%;生产煤油867万吨,同比增长17.4%;生产柴油9175.1万吨,同比增长6.1%。   农化产品生产供应正常。由于农业生产的季节性特征,农用化学品生产也呈现比较强的季节性。化肥(折纯)2007年1~9月累计产量为4310.5万吨,同比增长13.8%,其中氮肥3144.7万吨,同比增长12.2%。2007年前三季度,农药原药累计产量为127.4万吨,同比增长20.6%,杀虫剂、除草剂产量增幅分别为10.7%和33.3%,农药产品结构进一步改善,杀虫剂占农药的比例已下降到37.1%。   展望 以石油和天然气原料为基础的石油化学工业,虽然在70年代经历两次价格上涨的冲击,但由于石油化工已建立起整套技术体系,产品应用已深入国防、国民经济和人民生活各领域,市场需要尤其在发展中国家,正在迅速扩大,所以今后石油化工仍将得到继续发展。80年代,世界石油化工所耗石油量仅为世界原油总产量的8.4%,所耗天然气为天然气总产量10%,更由于从石油和天然气生产化工品可取得很大的经济效益,故石油化工的发展有着良好的前景。为了适应近年原料价格波动,石油化工企业正在采取多种措施。例如,生产乙烯的原料多样化,使烃类裂解装置具有适应多种原料的灵活性;石油化工和炼油的整体化结合更为密切,以便于利用各种原料;工艺技术的改进和新催化剂的采用,提高产品收率,降低生产过程的能耗及原料消耗;调整产品结构,发展精细化工,开发具有特殊性能、技术密集型新产品、新材料,以提高经济效益,并对石油化工生产环境污染进行防治等。 编辑本段石油化工专业  石油化工专业是伴随着中国的石油化工的发展同时产生的化工学习专业课程,目的是培养石油化工人才,石油化工专业技术专业人才,一般各大理工科院校都设有此专业,该专业主要课程涉及:计算机应用、英语、有机化学、物理化学、化工分析、 化工原理、石油加工工程系、化工节能、化工设备、化工安全与环保、精细化工,质量管理。   就业方向:石油、化工、医药、食品等企业生产操作与管理。   ☆工业分析与检验专业:   主要课程:计算机应用、英语、有机化学、无机化学、化工分析、电化学分析、光学分析 、常规仪器分析、化工安全与环保。   就业方向:石油加工、石油化工、精细化工、医药、食品企业和环保部门从事化验分析操作与管理。 编辑本段现代以石油化工为基础的三大合成材料  塑料、合成橡胶、合成纤维

上一篇:因材施教论文3000字

下一篇:大学生心理健康安全论文