欢迎来到学术参考网
当前位置:发表论文>论文发表

生活中的数学小论文一元一次

发布时间:2023-12-05 19:22

生活中的数学小论文一元一次

一元一次函数的应用 一元一次函数在我们的日常生活中应用十分广泛。当人们在社会生活中从事买卖特别是消费活动时,若其中涉及到变量的线性依存关系,则可利用一元一次函数解决问题。 例如,当我们购物、租用车辆、入住旅馆时,经营者为达到宣传、促销或其他目的,往往会为我们提供两种或多种付款方案或优惠办法。这时我们应三思而后行,深入发掘自己头脑中的数学知识,做出明智的选择。俗话说:“从南京到北京,买的没有卖的精。”我们切不可盲从,以免上了商家设下的小圈套,吃了眼前亏。 一元二次函数的应用 在企业进行诸如建筑、饲养、造林绿化、产品制造及其他大规模生产时, 其利润随投资的变化关系一般可用二次函数表示。企业经营者经常依据这方面的知识预计企业发展和项目开发的前景。他们可通过投资和利润间的二次函数关系预测企业未来的效益,从而判断企业经济效益是否得到提高、企业是否有被兼并的危险、项目有无开发前景等问题。常用方法有:求函数最值、某单调区间上最值及某自变量对应的函数值。 三角函数的应用 三角函数的应用极其广泛,这里仅讲最简的也是最常见的一类——锐角三角函数的应用:“山林绿化”问题。

谁知道关于数学在生活中应用的论文

数学在生活中的应用 数学是一门很有用的学科。早在远古时代,就有原始人“涉猎计数”与“结绳记事” 如今,数学知识和数学思想在工农业生产和人们日常生活中有极其广泛的应用。譬如,人们 购物后须记账,以便年终统计查询;去银行办理储蓄业务;查收各住户水电费用等,这些便 利用了算术及统计学知识。此外,社区和机关大院门口的“推拉式自动伸缩门” ;运动场跑 道直道与弯道的平滑连接;底部不能靠近的建筑物高度的计算;隧道双向作业起点的确定; 折扇的设计以及黄金分割等,则是平面几何中直线图形的性质及解 Rt 三角形有关知识的应 用。 因此我们的研究性课题是数学在生活中的运用,希望通过这次小研究,提高我们的数 学能力,能够在生活中自觉地运用数学知识。 结合高中知识:函数、不等式、数列等方面,我们上网查了资料相关资料,并结合自身生活 实际思考,整理归纳如下。 第一部分 函数的应用 我们所学过的函数有:一元一次函数、一元二次函数、分式函数、无理函数、幂、指、 对数函数及分段函数等八种。这些函数从不同角度反映了自然界中变量与变量间的依存关 系,因此代数中的函数知识是与生产实践及生活实际密切相关的。 一、一元一次函数的应用 一元一次函数在我们的日常生活中应用十分广泛。 当人们在社会生活中从事买卖特别是 消费活动时,若其中涉及到变量的线性依存关系,则可利用一元一次函数解决问题。 例如,当我们购物、租用车辆、入住旅馆时,经营者为达到宣传、促销或其他目的,往 往会为我们提供两种或多种付款方案或优惠办法。 这时我们应三思而后行, 深入发掘自己头 脑中的数学知识,做出明智的选择。俗话说: “从南京到北京,买的没有卖的精。 ”我们切不 可盲从,以免上了商家设下的小圈套,吃了眼前亏。 过年这几天和家人上街购物, 商家纷纷采取各种优惠措施, 我就运用自己的数学函数知 识精打细算了一次。 我去“好日子”超市购物,一块醒目的牌子吸引了我,上面说购买茶壶、茶杯可以优惠, 这似乎很少见。更奇怪的是,居然有两种优惠方法: (1)卖一送一(即买一只茶壶送一只茶 杯)(2)打九折(即按购买总价的 90% 付款) ; 。其下还有前提条件是:购买茶壶 3 只以上 (茶壶 20 元/个,茶杯 5 元/个) 。由此,我不禁想到:这两种优惠办法有区别吗?到底哪种 更便宜呢?我便很自然的联想到了函数关系式, 决心应用所学的函数知识, 运用解析法将此 问题解决。 我在纸上写道: 设某顾客买茶杯 x 只,付款 y 元,(x>3 且 x∈N),则 用第一种方法付款 y1=4×20+(x-4)×5=5x+60; 用第二种方法付款 y2=(20×4+5x)×90%=4.5x+72. 接着比较 y1y2 的相对大小. 设 d=y1-y2=5x+60-(4.5x+72)=0.5x-12. 然后便要进行讨论: 当 d>0 时,0.5x-12>0,即 x>24; 当 d=0 时,x=24; 当 d<0 时,x<24. 综上所述,当所购茶杯多于 24 只时,法(2)省钱;恰好购买 24 只时,两种方法价格相等; 购买只数在 4—23 之间时,法(1)便宜. 可见,利用一元一次函数来指导购物,即锻炼了数学头脑、发散了思维,又节省了钱财、杜 绝了浪费,真是一举两得啊! 二、一元二次函数的应用 在企业进行诸如建筑、饲养、造林绿化、产品制造及其他大规模生产时, 其利润随投资的变化关系一般可用二次函数表示。 企业经营者经常依据这方面的知识预计企 业发展和项目开发的前景。他们可通过投资和利润间的二次函数关系预测企业未来的效益, 从而判断企业经济效益是否得到提高、 企业是否有被兼并的危险、 项目有无开发前景等问题。 常用方法有:求函数最值、某单调区间上最值及某自变量对应的函数值。 三、三角函数的应用 三角函数的应用极其广泛,最简的也是最常见的一类——锐角三角函数的应用: “山林 绿化”问题。 在山林绿化中, 须在山坡上等距离植树,且山坡上两树之间的距离投影到平地上须同平地 树木间距保持一致。 (如左图)因此,林业人员在植树前,要计算出山坡上两树之间的距离。 这便要用到锐角三角函数的知识。 第二部分 不等式的应用 日常生活中常用的不等式有:一元一次不等式、一元二次不等式和平均值不等式。前两 类不等式的应用与其对应函数及方程的应用如出一辙, 而平均值不等式在生产生活中起到了 不容忽视的作用。下面,我们主要谈一下均值不等式和均值定理的应用。 在生产和建设中, 许多与最优化设计相关的实际问题通常可应用平均值不等式来解决。 平均 值不等式知识在日常生活中的应用, 均值不等式和极值定理通常可有如下几方面的极其重要 的应用: (表后重点分析“包装罐设计”问题) 实践活动 已知条件 最优方案 解决办法 设计花坛绿地 周长或斜边 面积最大 极值定理一 经营成本 各项费用单价及销售量 成本最低 函数、极值定理二 车船票价设计 航行里程、限载人数、 票价最低 用极值定理二求出 速度、各项费用及相应 最低成本,再由此 比例关系 计算出最低票价 (票价=最低票价+ +平均利润) 包装罐设计 (见表后) (见表后) (见表后) 包装罐设计问题 1、 “白猫”洗衣粉桶 “白猫”洗衣粉桶的形状是等边圆柱(如右图所示) , 若容积一定且底面与侧面厚度一样,问高与底面半径是 什么关系时用料最省(即表面积最小)? 分析:容积一定=>лr h=V(定值) =>S=2лr +2лrh=2л(r +rh)= 2л(r +rh/2+rh/2) ≥2л3 (r h) /4 =3 2лV (当且仅当 r =rh/2=>h=2r 时取等号), ∴应设计为 h=d 的等边圆柱体. 2、 “易拉罐”问题 圆柱体上下第半径为 R,高为 h,若体积为定值 V,且上下底 厚度为侧面厚度的二倍,问高与底面半径是什么关系时用料最 省(即表面积最小)? 分析:应用均值定理,同理可得 h=2d∴应设计为 h=2d 的圆柱体. 事实上, 不等式特别是均值不等式在生产实践中的应用远不止这些, 在这里就不一一列 举了。 第二部分 第二部分 数列的应用 在实际生活和经济活动中,很多问题都与数列密切相关。如分期付款、个人投资理财以及人 口问题、资源问题等都可运用所学数列知识进行分析,从而予以解决。 重点分析等差数列、等比数列在实际生活和经济活动中的应用。 (一)按揭货款中的数列问题 随着中央推行积极的财政政策,购置房地产按揭货款(公积金贷款)制度的推出,极大 地刺激了人们的消费欲望,扩大了内需,有效地拉动了经济增长。 众所周知, 按揭货款 (公积金贷款) 中都实行按月等额还本付息。 这个等额数是如何得来的, 此外若干月后,还应归还银行多少本金,这些人们往往很难做到心中有数。下面就来寻求这 一问题的解决办法。 若贷款数额 a0 元,贷款月利率为 p,还款方式每月等额还本付息 a 元.设第 n 月还款后的本 金为 an,那么有: a1=a0(1+p)-a, a2=a1(1+p)-a, a3=a2(1+p)-a, ...... an+1=an(1+p)-a,.........................(*) 将(*)变形,得 (an+1-a/p)/(an-a/p)=1+p. 由此可见,{an-a/p}是一个以 a1-a/p 为首项,1+p 为公比的等比数列。日常生活中一切有关 按揭货款的问题,均可根据此式计算。 研究总结 第三部分 研究总结这次研究运用数学知识解决实际问题给我们带来了许多发现和思考的愉快,这也正验证 了苏霍姆林斯基所说的: “在人的心灵深处,都有一种根深蒂固的需要,这就是希望自己是 一个发现者 、研究者、探索者。 ”这也正是研究性学习的意义所在。作为中学生,我们不仅 要学会数学知识,而且要会应用数学知识去分析、解决生活中遇到的问题.这样才能更好地 适应社会的发展和需要。 但这次研究性学习也有不足之处, 首先寒假大家联系不便, 也较难取得辅导老师的帮助, 我们想,毕竟高中所学数学知识有限,如果能在数学老师指导下,学习一些大学深入研究的 数学应用知识,可以更好的拓宽知识面,加深理解。其次,我们的生活和经济理财打交道较 少, 如果能结合学校的饭卡使用过程中的经济问题问题结合统计学知识, 调查出同学们的消 费水平,一些节俭消费的措施和手段,那数学知识就真的帮上大忙了。最后,希望学校能将 其他同学较为优秀的研究性学习成果进行展示,为我们提供借鉴。 高二(22)班 刘丽华 张晶晶 洪泓 曹静 沈彤 夏叶宁 潘玥

初一数学论文,有具体事例,关于一元一次方程的

0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。”

“任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。

“105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示……

爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。
生活中的数学
有一个谜语:有一样东西,看不见、摸不着,但它却无处不在,请问它是什么?谜底是:空气。而数学,也像空气一样,看不见,摸不着,但它却时时刻刻存在于我们身边。
奇妙的“黄金数”
取一条线段,在线段上找到一个点,使这个点将线段分成一长一短两部分,而长段与短段的比恰好等于整段与长段的比,这个点就是这条线段的黄金分割点。这个比值为:1:0.618…而0.618…这个数就被叫作“黄金数”。
有趣的事,这个数在生活中随处可见:人的肚脐是人体总长的黄金分割点;有些植物茎上相邻的两片叶子的夹角恰好是把圆周分成1:0.618…的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最佳。
建筑师们对数0.618…特别偏爱,无论是古埃及的金字塔,还是巴黎圣母院,或是近代的埃菲尔铁塔,都少不了0.618…这个数。人们还发现,一些名画,雕塑,摄影的主体大都在画面的0.618…处。音乐家们则认为将琴马放在琴弦的0.618…处会使琴声更柔和甜美。
数0.618…还使优选法成为可能。优选法是一种求最优化问题的方法。如在炼钢时需要加入某种化学元素来增加钢材的强度,假设已知在每吨钢中需加某化学元素的量在1000—2000克之间。为了求得最恰当的加入量,通常是取区间的中点进行试验,然后将实验结果分别与1000克与2000克时的实验结果作比较,从中选取强度较高的两点作为新的区间,再取新区间的中点做实验,直到得到最理想的效果为止。但这种方法效率不高,如果将试验点取在区间的0.618处,效率将大大提高,这种方法被称作“0.618法”,实践证明,对于一个因素的问题,用“0.618法”做16次试验,就可以达到前一种方法做2500次试验的效果!
“黄金数”在生活中竟有如此多的实例和运用。或许,在它的身上,还有更多的奥秘,等待我们去探寻,使它能更好地为我们服务,为我们解决更多问题。
美妙的轴对称
如果在一个图形上能找到一条直线,将这个图形沿着条直线对这可以使两边完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴。
如果仔细观察,可以发现飞机是一个标准的轴对称物体,俯视看,它的机翼、机身、机尾都呈左右对称。轴对称使它飞行起来更平稳,如果飞机没有轴对称,那飞行起来就会东倒西歪,那时,还有谁愿意乘飞机呢?
再仔细观察,不难发现有许多艺术品也成轴对称。举个最简单的例子:桥。它算是生活中最常见的艺术品了(应该算艺术品吧),就拿金华的桥来说:通济桥、金虹桥、双龙大桥、河磐桥。个个都呈轴对称。中国的古代建筑就更明显了,古代宫殿,基本上都呈轴对称。再说个有名的:北京城的布局。这可是最典型的轴对称布局了。它以故宫、天安门、人民英雄纪念碑、前门为中轴线成左右对称。将轴对称用在艺术上,能使艺术品看上去更优美。
轴对称还是一种生物现象:人的耳、眼、四肢、都是对称生长的。耳的轴对称,使我们听到的声音具有强烈的立体感,还可以确定声源的位置;而眼的对称,可以使我们看物体更准确。可见我们的生活离不开轴对称。

上一篇:浅谈会计职业道德论文的注释

下一篇:书籍装帧毕业设计论文怎么写