neo4j可以用于发论文吗
neo4j可以用于发论文吗
Neo4j是单机系统,主要做图数据库。GraphScope是由阿里巴巴达摩院智能计算实验室研发的图计算平台,是全球首个一站式超大规模分布式图计算平台,并且还入选了中 国科学技术协会“科创中 国”平台。Graphscope的代码在alibaba/graphscope上开源。SSSP算法上,GraphScope单机模式下平均要比Neo4j快176.38倍,最快在datagen-9.2_zf数据集上快了292.2倍。
neo4j可以在每个节点显示大量文字吗
不可以,在Neo4j中,节点和关系都可以包含属性。节点经常被用于表示一些实体,依赖关系也一样可以表示实体。
有哪些轻型的非关系型数据库?
常见的非关系型数据库有:1、mongodb;2、cassandra;3、redis;4、hbase;5、neo4j。其中mongodb是非常著名的NoSQL数据库,它是一个面向文档的开源数据库。
常见的几种非关系型数据库:
1、MongoDB
MongoDB是最著名的NoSQL数据库。它是一个面向文档的开源数据库。MongoDB是一个可伸缩和可访问的数据库。它在c++中。MongoDB同样可以用作文件系统。在MongoDB中,JavaScript可以作为查询语言使用。通过使用sharding MongoDB水平伸缩。它在流行的JavaScript框架中非常有用。
人们真的很享受分片、高级文本搜索、gridFS和map-reduce功能。惊人的性能和新特性使这个NoSQL数据库在我们的列表中名列第一。
特点:提供高性能;自动分片;运行在多个服务器上;支持主从复制;数据以JSON样式文档的形式存储;索引文档中的任何字段;由于数据被放置在碎片中,所以它具有自动负载平衡配置;支持正则表达式搜索;在失败的情况下易于管理。
优点:易于安装MongoDB;MongoDB Inc.为客户提供专业支持;支持临时查询;高速数据库;无模式数据库;横向扩展数据库;性能非常高。
缺点:不支持连接;数据量大;嵌套文档是有限的;增加不必要的内存使用。
2、Cassandra
Cassandra是Facebook为收件箱搜索开发的。Cassandra是一个用于处理大量结构化数据的分布式数据存储系统。通常,这些数据分布在许多普通服务器上。您还可以添加数据存储容量,使您的服务保持在线,您可以轻松地完成这项任务。由于集群中的所有节点都是相同的,因此不需要处理复杂的配置。
Cassandra是用Java编写的。Cassandra查询语言(CQL)是查询Cassandra数据库的一种类似sql的语言。因此,Cassandra在最佳开源数据库中排名第二。Facebook、Twitter、思科(Cisco)、Rackspace、eBay、Twitter、Netflix等一些最大的公司都在使用Cassandra。
特点:线性可伸缩;;保持快速响应时间;支持原子性、一致性、隔离性和耐久性(ACID)等属性;使用Apache Hadoop支持MapReduce;分配数据的最大灵活性;高度可伸缩;点对点架构。
优点:高度可伸缩;无单点故障;Multi-DC复制;与其他基于JVM的应用程序紧密集成;更适合多数据中心部署、冗余、故障转移和灾难恢复。
缺点:对聚合的有限支持;不可预知的性能;不支持特别查询。
3、Redis
Redis是一个键值存储。此外,它是最著名的键值存储。Redis支持一些c++、PHP、Ruby、Python、Perl、Scala等等。Redis是用C语言编写的。此外,它是根据BSD授权的。
特点:自动故障转移;将其数据库完全保存在内存中;事务;Lua脚本;将数据复制到任意数量的从属服务器;钥匙的寿命有限;LRU驱逐钥匙;支持发布/订阅。
优点:支持多种数据类型;很容易安装;非常快(每秒执行约11万组,每秒执行约81000次);操作都是原子的;多用途工具(在许多用例中使用)。
缺点:不支持连接;存储过程所需的Lua知识;数据集必须很好地适应内存。
4、HBase
HBase是一个分布式的、面向列的开源数据库,该技术来源于 Fay Chang 所撰写的Google论文“Bigtable:一个结构化数据的分布式存储系统”。就像Bigtable利用了Google文件系统(File System)所提供的分布式数据存储一样,HBase在Hadoop之上提供了类似于Bigtable的能力。
HBase是Apache的Hadoop项目的子项目。HBase不同于一般的关系数据库,它是一个适合于非结构化数据存储的数据库。另一个不同的是HBase基于列的而不是基于行的模式。
5、neo4j
Neo4j被称为原生图数据库,因为它有效地实现了属性图模型,一直到存储层。这意味着数据完全按照白板的方式存储,数据库使用指针导航和遍历图。Neo4j有数据库的社区版和企业版。企业版包括Community Edition必须提供的所有功能,以及额外的企业需求,如备份、集群和故障转移功能。
特点:它支持唯一的约束;Neo4j支持完整的ACID(原子性、一致性、隔离性和持久性)规则;Java API: Cypher API和本机Java API;使用Apache Lucence索引;简单查询语言Neo4j CQL;包含用于执行CQL命令的UI: Neo4j Data Browser。
优点:容易检索其相邻节点或关系细节,无需连接或索引;易于学习Neo4j CQL查询语言命令;不需要复杂的连接来检索数据;非常容易地表示半结构化数据;大型企业实时应用程序的高可用性;简化的调优。
缺点:不支持分片
硕士论文开题报告
硕士论文开题报告模板4500字
本课题来源于作者在学习和实习中了解到的两个事实,属于自拟课题。
其一,作者在2011年7月在XXX公司调研,了解到现如今各行业都面临着数据量剧增长,并由此带来业务处理速度缓慢,数据维护困难等问题。为了应对此挑战,很多企业开实施大数据发展战略。现如今的大数据发展战略可以概括为两类,一类是垂直扩展。即采用存储容量更大,处理能力更强的设备,此种方式成本较大,过去很多大公司一直采用此种方法处理大数据。但自从2004年Google发布关于GFS,MapReduce和BigTable三篇技术论文之后,云计算开始兴起,2006年Apache Hadoop项目启动。随后从2009年开始,随着云计算和大数据的发展,Hadoop作为一种优秀的数据分析、处理解决方案,开始受到许多 IT企业的关注。相较于垂直扩张所需的昂贵成本,人们更钟情于采用这种通过整合廉价计算资源的水平扩展方式。于是很多IT企业开始探索采用Hadoop框架构建自己的大数据环境。
其二,作者自2013年4月在XXX实习过程中进一步了解到,因为关系数据库在存储数据格式方面的局限,以及其Schema机制带来的扩展性上的不便,目前在大部分的大数据应用环境中都采用非结构化的数据库,如列式存储的Hbase,文档型存储的MangoDB,图数据库neo4j等。这些非结构化数据库因为可扩展性强、资源利用率高,高并发、响应速度快等优势,在大数据应用环境中得到了广泛的应用。但此种应用只解决了前端的业务处理,要真正利用大数据实现商务智能,还需要为决策支持系统和联机分析应用等提供一数据环境——数据仓库。为此,导师指导本文作者拟此题目,研究基于Hadoop框架的数据仓库解决方案。
二、研究目的和意义:
现如今,数据已经渗透到每一个行业,成为重要的生产因素。近年来,由于历史积累和和数据增长速度加快,各行业都面临着大数据的难题。事实上,大数据既是机遇又时挑战。合理、充分利用大数据,将其转变为海量、高增长率和多样化的信息资产,将使得企业具有更强的决策力、洞察发现力和流程优化等能力。因此,很多IT企业都将大数据作为其重要的发展战略,如亚马逊、FaceBook已布局大数据产业,并取得了骄人的成绩。事实上,不止谷歌、易趣网或亚马逊这样的大型互联网企业需要发展大数据,任何规模的企业都有机会从大数据中获得优势,并由此构建其未来业务分析的基础,在与同行的竞争中,取得显著的优势。
相较于大型企业,中小企业的大数据发展战略不同。大公司可以凭借雄厚的资本和技术实力,从自身环境和业务出发,开发自己的软件平台。而中小企业没有那样的技术实力,也没有那么庞大的资金投入,更倾向于选择一个普遍的、相对廉价的解决方案。本文旨在分析大数据环境下数据库的特点,结合当下流行的Hadoop框架,提出了一种适用于大数据环境的数据仓库的解决方案并实现。为中小企业在大数据环境中构建数据仓库提供参考。其具体说来,主要有以下三方面意义:
首先,目前主流的数据库如Oracle、SQL Server都有对应自己数据库平台的一整套的数据仓库解决方案,对于其他的关系型数据库如MySQL等,虽然没有对应数据库平台的数据仓库解决方案,但有很多整合的数据仓库解决方案。而对于非结构化的数据库,因其数据模型不同于关系型数据库,需要新的解决方案,本文提出的基于Hive/Pentaho的数据仓库实现方案可以为其提供一个参考。
其次,通过整合多源非结构化数据库,生成一个面向主题、集成的.数据仓库,可为大数据平台上的联机事务处理、决策支持等提供数据环境,从而有效利用数据资源辅助管理决策。
再次,大数据是一个广泛的概念,包括大数据存储、大数据计算、大数据分析等各个层次的技术细节,本文提出的“大数据环境下的数据仓库解决方案及实现“丰富了大数据应用技术的生态环境,为大数据环境下的数据分析、数据挖掘等提供支撑。
三、国内外研究现状和发展趋势的简要说明:
本文研究的主体是数据仓库,区别于传统基于关系型数据库的数据仓库,本文聚焦大数据环境下基于非结构数据库的数据仓库的构建与实现。因此,有必要从数据仓库和大数据环境下的数据库两方面进行阐述。
(一) 数据仓库国内外研究现状
自从Bill Inmon 在1990年提出“数据仓库”这一概念之后,数据仓库技术开始兴起,并给社会带来新的契机,逐渐成为一大技术热点。目前,美国30%到40%的公司已经或正在建造数据仓库。现如今随着数据模型理论的完善,数据库技术、应用开发及挖掘技术的不断进步,数据仓库技术不断发展,并在实际应用中发挥了巨大的作用。以数据仓库为基础,以联机分析处理和数据挖掘工具为手段的决策支持系统日渐成熟。与此同时,使用数据仓库所产生的巨大效益又刺激了对数据仓库技术的需求,数据仓库市场正以迅猛的势头向前发展。
我国企业信息化起步相对较晚,数据仓库技术在国内的发展还处于积累经验阶段。虽然近年来,我国大中型企业逐步认识到利用数据仓库技术的重要性,并已开始建立自己的数据仓库系统,如中国移动、中国电信、中国联通、上海证券交易所和中国石油等。但从整体上来看,我国数据仓库市场还需要进一步培育,数据仓库技术同国外还有很大差距。为此,我国许多科技工作者已开始对数据仓库相关技术进行深入研究,通过对国外技术的吸收和借鉴,在此基础上提出适合国内需求的技术方案。
(二) 非结化数据库国内外研究现状
随着数据库技术深入应用到各个领域,结构化数据库逐渐显露出一些弊端。如在生物、地理、气候等领域,研究面对的数据结构并不是传统上的关系数据结构。如果使用关系数据库对其进行存储、展示,就必须将其从本身的数据结构强行转换为关系数据结构。采用此种方式处理非结构数据,不能在整个生命周期内对非关系数据进行管理,并且数据间的关系也无法完整的表示出来。在此背景下,非结构化数据库应运而生。相较于关系数据库,非结构数据库的字段长度可变,并且每个字段的记录又可以由可重复或不可重复的子字段构成。如此,它不仅可以处理结构化数据,更能处理文本、图象、声音、影视、超媒体等非结构化数据。近年来,随着大数据兴起,非结构数据库开始广泛应用,以支持大数据处理的多种结构数据。
目前,非结构化的数据库种类繁多,按其存储数据类型分,主要包含内存数据库、列存储型、文档数据库、图数据库等。其中,常见的内存数据库有SQLite,Redis,Altibase等;列存储数据库有Hbase,Bigtable等;文档数据库有MangoDB,CouchDB,RavenDB等;图数据库有Neo4j等。近年来,我国非结构数据库也有一定发展,其中最具代表的是国信贝斯的iBASE数据库。可以预见在不久的将来,伴随这大数据的应用,非结构数据库将会得到长足的发展和广泛的应用。
四、主要研究内容和要求达到的深度:
本文研究的方向是数据仓库,并且是聚焦于大数据这一特定环境下的数据仓库建设,其主要内容包括以下几点:
1. 非结构数据库的数据仓库解决方案:本文聚焦于大数据这一特定环境下的数据仓库建设,因为大数据环境下的数据仓库建设理论文献很少,首先需要以研究关系数据库型数据仓库的解决方案为参考,然后对比关系数据库和非结构数据库的特点,最后在参考方案的基础上改进,以得到适合非结构数据库环境的数据仓库解决方案。
2. 非结构数据库和关系数据库间数据转换:非结构数据库是对关系数据库的补充,很多非结构数据库应用环境中都有关系数据库的身影。因此,非结构数据库和关系数据库间数据转换是建立非结构数据库需要解决的一个关键问题。
3. 基于非结构数据库的数据仓库构建:本文拟采用手礼网的数据,分析其具体的数据环境和需求,为其构建基于非结构数据库的数据仓库,主要包括非结构数据库的数据抽取,Hive数据库入库操作和Pentaho前台数据展现等。
五、研究工作的主要阶段、进度和完成时间:
结合研究需要和学校教务管理的安排,研究工作主要分以下四阶段完成:
第一阶段:论文提纲:20XX年6月——7月
第二阶段:论文初稿 :20XX年8月——10月
第三阶段:论文修改:20XX年11月——2014年3月
第四阶段:最终定稿:20XX年4月
六、拟采用的研究方法、手段等及采取的措施:
在论文提纲阶段,本文拟采用调查统计的方法,收集目前大数据环境下数据库应用情况,着重统计各类型数据库的应用比例。同时采用文献分析和个案研究的方法研究数据仓库构建的一般过程和对应的技术细节,并提出解决方案。在论文初稿和修改阶段,本文拟通过实证研究,依据提纲阶段在文献分析中收集到的理论,基于特定的实践环境,理论结合实践,实现某一具体数据仓库的构建。最后采用定性和定量相结合的方法,详细介绍大数据环境下数据库和数据仓库的特点,其数据仓库实现的关键问题及解决方案,以及数据仓库个例实现的详细过程。
七、可能遇见的困难、问题及拟采取的解决办法、措施:
基于本文的研究内容和特点分析,本文在研究过程中最有可能遇到三个关键问题。
其一,非结构数据库种类繁多,每类数据库又对应有不同的数据库产品,由于当下非结构数据库没有统一标准,即便同类数据库下不同产品的操作都不尽相同,难以为所有非结构数据库提出解决方案。针对此问题,本文拟紧贴大数据这一背景,选择当下大数据环境中应用最多的几类数据库的代表性产品进行实现。
其二,虽然经过二十年的发展,数据仓库的理论已日趋完善,但大数据是近几年才发展起来的技术热点,大树据环境下的数据仓库建设理论文献很少。针对此问题,本文拟参考现有的成熟的关系数据库环境下数据仓库构建方案和非结构化数据仓库理论,研究适合非结构数据库的数据仓库构建方案,请导师就方案进行指导,然后再研究具体技术细节实现方案。
其三,基于大数据环境的数据仓库实现是本文重要的组成部分,要完成此部分的工作需要企业提供数据支持,但现在数据在企业当中的保密级别都很高,一般企业都不会将自己的业务数据外传。针对此问题,本文拟采用企业非核心业务数据进行数据仓库实现。
八、大纲
本文的基本构想和思路,文章拟分为导论、大数据环境下的数据库介绍、大数据下数据仓库关键问题研究、基于XX电子商务的大数据下数据仓库实现、结论五部分。
导论
一、研究背景
二、国内外研究现状述评
三、本文的主要内容与研究思路
第一章 大数据环境下的数据库介绍
第一节 大数据对数据库的要求
第二节 关系数据库和非结构数据库比较
第三节 大数据下常用非结构数据库介绍
小结
第二章 大数据下数据仓库关键问题研究
第一节 非结构数据模型和关系数据模型的转换
第二节 基于多源非结构数据库的数据抽取
第三节 数据类型转换
第四节 数据仓库前端展示
第三章 大数据下数据仓库实现方案
第一节 大数据环境介绍
第二节 实现方案
第二节 Hive介绍
第三节 Pentaho介绍
第四章 基于XX电子商务的大数据下数据仓库实现
第一节 需求分析
第二节 模型设计
第三节 概要设计
第四节 基于Hive的数据入库操作实现
第五节 基于Pentaho的数据仓库前端展示实现
结论
上一篇:一篇ei论文够不够申请博士
下一篇:大学生人际交往论文3000