初中数学论文写作方法张维忠
初中数学论文写作方法张维忠
数学硕士论文开题报告
导语:数学是一门博大高深的学科,要想学好数学必须进行艰苦的研究与知识的积淀。数学硕士撰写论文可以提高学术水平,在写作之前需要提交开题报告。下面和我一起来看数学硕士论文开题报告,希望有所帮助!
一、数学文化的内涵
数学作为一种科学的语言、工具和技术渗透在现代科技的方方面面早已是不争的事实,但是现代数学在人们心中的地位却远远没有达到它应当达到的高度。随着数学专业化程度的提高,它仿佛离人们越来越远了。专业的知识因为艰涩和高深仅仅掌握在少数人手中而无法被大众共享,这直接导致了新的成果无人理解,获得的奖项无人关注,所以数学人是“孤独的”.孤独造成高傲,高傲造成疏远,这其中有误解也有无奈。所以我们强调文化,因为脱离了文化基础的数学只能离人们越来越远。
受目前学校教育情况的影响,很多人认为数学是高高在上的,除了作为升学的工具,毫无用处。这样一来,对于数学这样一门富有深刻文化内涵的学科,就连一些受过良好教育的人也持无视的态度,对数学的无知成了一种很普遍的社会现象,这是一个令人十分担忧的事实。就像美丽的图画并非只是线条和色彩,动人的乐曲并非只是音符和节拍,数学也不是只有数字、符号和运算。了解数学的人都知道,运算只是数学微不足道的方面,数学的精神、思想、方法都蕴藏着无比深刻的内涵,渗透到科学的每个角落。如果将数学比作一棵大树,那么这棵大树的生命力是旺盛的,这种生命力体现在数学起源、发展、完善和应用的每一个过程当中,而数学文化就像土壤一样几百几千年来滋养这棵大树,使它繁衍生息,长盛不衰。因此,扎根于文化土壤的数学教育是十分必要的,也是我们目前十分需要的,这一点将在第五章进行详细论述。
19世纪末到20世纪初的几十年是数学哲学研究领域的黄金时代,关于数学基础的讨论十分活跃,也形成了不同的学派,包括逻辑主义学派、形式主义学派、直觉主义学派、集合论公理化学派等,大家都在筹划为数学建立牢固的哲学基础。虽然几个学派各有优缺点,但都为数学基础的严密性做出了贡献。然而哥德尔的工作击碎了他们的幻想,使数学哲学的研究一度陷入谷底。直到20世纪60年代,西方学者提出了数学文化观,从新的立场为数学哲学研究提出新的观点、新的方法。最早系统地完成这一开创性工作的是美国数学家怀尔德(),他提出了数学作为文化体系的数学哲学观。怀尔德是一名出色的数学家,主要从事拓扑学和数学基础的研究。他的《数学基础引论》和《数学概念演变初探》对数学基础研究有着深远的意义。受到人类学家朋友的影响,他对人类学产生了浓厚的兴趣,并大胆地从人类学的视角考察数学的本质和发展,在数学研究中融入了人类学的研究体会,出版了着作《数学概念的进化》和《作为文化体系的数学》。
他在著作中从文化生成和发展的理论等角度考察数学,率先提出了数学文化的概念并构建了数学文化的理论体系,形成了很长时期以来出现的第一个成熟的数学哲学观,强调了数学的发展动力、发展规律、思维方式等文化内涵,强调了遗传、环境、人类以及人类文化等对数学的作用影响。
二、数学文化研究的意义
区别于其他文化,数学文化具有独特的研究对象、研究视角及价值评判标准,它的出现为数学研究提出了新的思想和方法,使得我们可以从人类文化的任意一个角度切入数学、理解数学、解构数学,最大范围地打开研究思路,拓宽研究范围。
数学文化首先研究的是数学本身,包括从科学体系角度对数学科学进行研究和从哲学角度对数学哲学进行研究。数学科学研究就是一般意义上的数学理论研究,而数学哲学研究则是对数学基础、数学悖论和数学本体论进行探讨,包括数学的对象、性质、特点、地位与作用,数学新分支、新课题提出的哲学意义,着名数学家和数学流派的数学和哲学思想以及数学方法、数学的实在性和真理性等。
数学文化同时研究的是数学学科与其他学科、数学文化与其他文化之间的交互作用,比如数学与文学、数学与经济学之间的渗透影响等。
数学文化研究从文化因素思考数学的演变和发展,为数学史的研究提供新的思考方向。数学文化的历史研究不同于数学史的研究,数学史研究追求的是完善数学知识、数学思想的演化史,数学文化的历史研究是基于全局视角,思考数学与其他文化系统历史的互动关系,关注这些关系对现代数学发展的影响和启示。
如中国的传统文化和实用哲学使中国传统数学重视实用性,制定实际问题的算法成为中国传统数学的本质,也是中国数学存在和发展的基点。古希腊的数学思想产生在城邦航海贸易的氛围中,兼容并追求独立的思辨思想孕育了演绎数学,这是古希腊哲学的深入渗透和文化价值观的体现。从中西文化的差异角度,我们找到了东西方数学体系大相径庭的原因,不是数学本身的要求,而是文化的要求。
数学文化研究强调和突出社会文化心理、价值观念以及人类文化对数学发生的作用,从新的角度诠释了某些理论出现、发展、停滞或覆灭的原因。如古希腊的数学之所以昌盛,是因为希腊人以数学为万学之基,二元论的宇宙观也引导科学家将物质与自身分离而进行科学有效的客观分析。中国的儒家思想将数学放在六艺之末,天人合一的宇宙观使得东方人表现出长于直觉而短于抽象,擅于综合而不擅分析。这也是古代东方数学不能蓬勃发展的原因。
三、数学的文化特征
1.数学的抽象性
在早期的人类文明,数学的创始之初,人类学会了思考数字并进行一定程度的运算。苏联数学家亚历山大洛夫(ndrov)说:“抽象性在简单的计算中就已经表现出来。我们运用抽象的数字,却并不打算每次都把它们同具体的对象联系起来。我们在学校学的是抽象的乘法表--总是数字的.乘法表,而不是男孩的数目乘上苹果的数目,或者苹果的数目乘上苹果的价钱等等。”
数学成为抽象的学科,人们将这一巨大的功劳记在希腊人身上,毕达哥拉斯学派纯凭心智考虑抽象问题,认为数是真实物质的终极组成部分,是宇宙的要素,完全的演绎推理证明也加深了数学的抽象程度。希腊人有意识地承认并强调:数学上的东西如数和图形是思维的抽象,同实际事物或实际形象是完全不同的。物质实体是短暂的、不完善的,而抽象概念却是永恒的、完美的。虽然抽象相对实体更困难,但它的优点也是实体无法企及的,那就是一般性。在抽象的世界里,点没有大小,线没有宽度,面没有厚度,堆积的石子、成捆的树枝都可以表示数量关系。
2.数学的确定性
数学追求一种完全确定、完全可靠的知识。这种结果得益于数学体系的特殊而有效的方法,即从一系列不证自明的公理出发,准确地描述将要讨论的概念和定义,经过严密的逻辑推理演绎得出明确无误的结论,这也是数学得以长足发展的动力因素。几千年来,数学的真理性得到人们的高度认同和尊崇。
然而,十九世纪以后,数学的这种真理性地位却一次次受到巨大的冲击。非欧几何、四元数理论、集合论悖论给数学“真理的化身”形象笼罩上了阴影,使得数学丧失了揭示客观世界的“真理性”,也丧失了自身基础的严密性。克莱因(Morris Kline)在《数学:确定性的丧失》中提到“数学的当前困境是有许多种数学而不是只有一种,而且由于种种原因每一种都无法使对立学派满意。显然,普遍接受的概念、正确无误的推理体系--1800年时的尊贵数学和那时人的自豪--现在都成了痴心妄想。与未来数学相关的不确定性和可疑,取代了过去的确定性和自满。关于”最确定的“科学的基础意见不一致不仅让人吃惊,而且,温和一点说,是让人尴尬。”
3.数学的继承性
科学知识是在长期的历史发展过程中形成的,其过程就说明了知识具有继承性,没有继承,就没有积累。我认为继承性应该从两方面理解。
从个人来讲,我们学习一些知识,无须重新经历科学家们艰苦的实践过程,短时间内就可以掌握到一门学科千百年来积累的成果。这种继承通过教育实现,极大的加速了科学技术的发展,故而现在一个中学生掌握的知识可以超过若干古代著名的科学家。“只有有效地继承人类知识,同时把世界最先进的科学技术知识拿到手,我们再向前迈出半步,就是最先进的水平,第一流的科学家(诺贝尔物理学奖得主温伯格(Steven Weinberg))。”正因如此,知识领域才能发展成今天的面貌。法国的着名科学家庞加莱被誉为“全能数学家”,因为他在数学、天文、物理的几乎每一个领域都做出了杰出的贡献,然而今天,一个人想要掌握全部数学知识的三分之一都是不可能的。
四、提纲
目录
第1章 概述
1.1文化的内涵
1.2文明的内涵
1.3数学文化的内涵
1.4数学文化研究的意义与现状
第2章 数学的文化特征
2.1数学的文化特征
2.1.1数学的抽象性
2.1.2数学的确定性
2.1.3数学的继承性
2.1.4数学的简洁性
2.1.5数学的统一性
2.2数学的功能特征
2.2.1数学的渗透性
2.2.2数学的传播性
2.2.3数学的工具性
2.2.4数学的预见性
2.3数学的艺术特征
2.3.1数学的艺术性
2.3.2数学与音乐
2.3.3数学与美术
2.3.4数学与文学
第3章 数学与人类文明
3.1数学是人类逻辑能力的来源
3.2数学唤醒人类理性精神
3.3数学促进人类思想解放
3.4数学改善人类生活
3.5数学完善人类品格
3.6数学提高人类文化素质
第4章 数学与社会文明
4.1数学促进社会进步
4.2数学推动知识发展
第5章 我国数学文化与数学教育的研究进展
5.1数学文化与数学教育研究综述
5.2数学文化与数学教育活动进展
第6章 对数学教育的若干思考
6.1数学素养是国民文化素质的重要构成.
6.2数学教育现状
6.3数学文化教育亟需解决的问题与建议
结束语
参考文献
致谢
五、亟需解决的问题与建议
1.数学技能的培养与数学素养的培育应当紧密结合为一个有机的整体,一方面提高学生对于数学的学习兴趣,另一方面,也可以使学生在学习数学技能的过程中,不断地加深对于数学的理解,提高逻辑思维能力,养成理性思考的习惯。高等学校数学文化教育普遍存在的一个问题是数学文化与数学技能培养相脱节。目前,数学文化课或者数学教育课都是选修课,在本质上仍属于“弥补型”课程,通常都是在学生入学一到两个学期以后开设的。当数学文化课引发了学生对于数学的兴趣和思考的时候,数学基础课程已经修完或即将修完,于是,对于学生来说,数学文化课有着某种“相见恨晚”的感觉。正像有些学生所反映的那样,如果早一点开设数学文化课,早一点了解数学的文化内涵,他们的高等数学会学得更好。由于一直以来积重难返的应试教育所致,学生在初、高中阶段主要接受的是数学技能方面的知识,而极少接触到数学文化方面的知识,于是,在进入高等学校以后,学生对于数学文化的了解几近空白。这也在客观上造成了数学文化与技能的培养脱节。
2.近年来,由于各个领域对工作者建模能力的需要,数学建模教育逐渐得到了重视。在建模过程中培养学生的创新意识、思维能力,培养学生良好的数学素养是数学建模教育的主要目标。路易斯安那州立大学一项研究表明,与细菌的生存发展方式类似,学生对知识的探求和接受并非只是个体行为,学生与学生之间形成的交流网络会使学生相互影响、相互促进,对教学效果产生质的影响。数学建模教育形式正是突破了时间和空间的限制,改变“师对生”的传统、单一的教学
六、进度安排
20XX年11月01日-11月07日 论文选题。
20XX年11月08日-11月20日 初步收集毕业论文相关材料,填写《任务书》。
20XX年11月26日-11月30日 进一步熟悉毕业论文资料,撰写开题报告。
20XX年12月10日-12月19日 确定并上交开题报告。
20XX年01月04日-02月15日 完成毕业论文初稿,上交指导老师。
20XX年02月16日-02月20日 完成论文修改工作。
20XX年02月21日-03月20日 定稿、打印、装订。
20XX年03月21日-04月10日 论文答辩。
七、参考文献
[1]曹红军,厉树忠,刘亚楠.《易经》卦象符号的拓扑群结构[J].周易研究.
[2](美)塞缪尔·亨廷顿.文明的冲突与世界秩序的重建[M].北京:新华出版社,2005.
[3]范森林.中国政治思想的起源[M/OL].
[4]黄秦安.论数学文化的本质、功能及其在人类文化变革中的角色[J].陕西师范大学学报,1993(2):54-61.
[5]郑毓信.数学哲学的内容和意义[J/OL].
[6]普通高中数学课程标准(实验)[M].北京:人民教育出版社,2003.
[7]顾沛.数学文化[M],北京:高等教育出版社,2008.
[8]南开大学数学文化课程简介.
[9]吉林大学本科生数学文化课程教学大纲--数学文化.
[10](美)莫里斯·克莱因.古今数学思想(第一册)[M].上海:上海科学技术出版社,2002.
[11]郑毓信.数学方法论[M].南宁:广西教育出版社,2001.
[12]张维忠.数学:丧失了确定性吗?[J]自然辩证法研究,1998,14(11).
[13]郭光华,常春艳,王小燕.试论数学的文化特性[J].par数学教育学报,2005,14(3):25-27.
[14]蒋岚.论数学美[J].温州职业技术学院学报,2003,3(2):38-42.
[15]杨毅.论体育数学与体育科学[J].衡阳师范学院学报,2002,23(3):95-96.
[16]数学地质四川省高校重点实验室.
[17]林履端.《易经》与模糊数学[J].闽江学院学报,2002,22(2):116-118.
求3000字有关数学史的论文
从算法教学管窥中国古代数学史
俞 昕
( 浙江湖州市第二中学 313000)
关于算法的涵义, 人们有着不同的界定. 普
通高中数学课程标准( 实验) 在学生算法目标达
成度上,重在算法思想的理解与应用,界定现代算
法的意义就是解决某一类问题的办法. 确切地说,
就是对于某一类特定的问题,算法给出了解决问
题的一系列(有穷) 操作, 即每一操作都有它的确
定性的意义( 使计算机能够按照它的指令工作) ,
并在有限时间( 有穷步骤)内计算出结果.
普通高中数学课程标准( 实验) 对! 算法部
分∀进行说明时,突出强调! 需要特别指出的是, 中
国古代数学中蕴涵了丰富的算法思想∀. 吴文俊
先生曾经说过! 我们崇拜中国传统数学,决非泥古
迷古、 为古而古. 复古是没有出路的. 我们的目的
不仅是要显示中国古算的真实面貌, 也不仅是为
了破除对西算的盲从,端正对中算的认识,我们主
要的也是真正的目的, 是在于古为今用. ∀算法教
学中蕴涵着丰富的数学史教育价值, 作为新时代
的高中数学教师是有必要了解这一点的.
1 中国古代数学的特点
古代数学思想分为两大体系, 一个是以欧几
里得的几何原本 为代表的西方数学思想体系,
这个体系以公理化的思想、 抽象化的方法、 封闭的
演绎体系为特色. 另一个则是以我国的九章算
术 为代表的东方数学思想体系,这个体系以算法
化的思想、 构造性的方法、 开放的归纳体系为特
色.我国传统数学在从问题出发,以解决问题为主
旨的发展过程中, 建立了以构造性与机械化为其
特色的算法体系, 这与西方数学以欧几里得几何
原本 为代表的所谓公理化演绎体系正好遥遥
相对.
中国古代数学中的! 术∀相当于现代数学术语
中的! 公式∀,两者虽有相同点(都可以用来解决一
类有关问题) , 其差异也非常之大. 主要表现在,
! 公式∀只提供了几个有关的量之间的关系, 指明
通过哪些运算可由已知量求出未知量,但并没有
列出具体的运算程序,一般地,认为这种程序是已
知的了. 但! 术∀则由怎样运算的详细程序构成的,
可以说它是为完成公式所指出的各种运算的具体
程序,即把! 公式∀展开为使用某种计算工具的具
体操作步骤. 从这点看, ! 术∀正是现代意义上的算
法, 是用一套! 程序语言∀所描写的程序化算法,可
以照搬到现代计算机上去. 我国古代数学包括了
今天初等数学中的算术、 代数、 集合和三角等多方
面的内容.由于受实用价值观的影响, 中国传统数
学的研究遵循着一种算法化思想,这种思想从九
章算术 开始一直是中国古代数学著作大都沿袭
的模式:
实际问题# # # 归类# # # 筹式模型化# # # 程序化算法
即将社会生产生活中的问题,先编成应用问题,按
问题性质分类, 然后概括地近似地表述出一种数
学模型, 借助于算筹, 得到这一类问题的一般解
法. 把算法综合起来, 得到一般原理, 分别隶属于
各章,人们按照书中的方法、 原理和实例来解决各
种实际问题. 可以说,中国传统数学以确定算法为
基本内容,又以创造和改进算法为其发展的方向.
受九章算术 的影响,在之后的几个世纪,一
些数学家的著作都以算法为主要特点,包括王孝
通的辑古算经 、 贾宪的黄帝九章算法细草 、 刘
益的议古根源 、 秦九韶的数书九章 、 李冶的
测圆海镜 和益古演段 、 杨辉的详解九章算
法 、 日用算法 和杨辉算法 , 这些著作中包括
了增乘开方术、 贾宪三角、 高次方程数值解法、 内
插法、 一次同余式组解法等一些著名的算法,进一
步发展了中国古代数学算法化的特点,使得算法
的特点得到了进一步的强化和发展.
1 1 中国古代数学的算法化思想
算法化的思想是中国古代数学的重要特点,
并贯穿于中国古算整个发展过程之中.即使是与
24 数学通报 2010 年 第49 卷 第2 期图形有关的几何问题也不例外,中算家们将几何
方法与算法有机地结合起来,实现了几何问题的
算法化.这样,从问题出发建立程序化的算法一直
是古代中国数学研究的传统,也是中算家们努力
的方向.这种算法化的思想着重构造实践,更强调
! 经验∀、 ! 发现∀和构造性思维方式下从无到有的
发明,对今天的算法教学与研究具有重要的启迪
作用.
中国古代数学算法化的思想具体表现如下:
第一步,把实际中提出的各种问题转化为数学模
型;第二步,把各种数学模型转化为代数方程; 第
三步,把代数方程转化为一种程序化的算法; 第四
步,设计( 并逐步改进)、 归纳、 推导(寓推理于算法
之中)出各种算法; 第五步,通过计算回溯逐步达
到解决原来的问题.
1 2 中国古代数学的构造性方法
所谓构造性方法是解决数学问题的一种方
法,是创造性思维方式直接作用的结果.按照现代
直觉主义者,特别是构造主义者的观点,对于一个
数学对象,只有当它可以通过有限次的操作而获
得,并且在每步操作之后都能有效地确定下一步
所需要采取的操作, 才能说它是存在的.按照这种
思维方式,可以使概念和方法按固定的方式在有
限步骤内进行定义或得以实施,或给出一个行之
有效的过程使之在有限步骤内将结果确定地构造
出来.换言之,就是能用有限的手段刻画数学对象
并针对问题提出具体的解法.
中国古代数学的算法化思想与构造性的方法
紧密相连.由于古代中算家所关心的大多是较为
实用的问题,他们在解决问题时首先考虑是如何
得到可以直接应用的、 可以方便操作的解,而不会
满足于仅仅知道解在理论上的存在性. 因为这种
纯粹的理论解对于受实用价值观影响的中算家来
说是没有多大意义的.从而我们推断,构造性方法
的产生是算法化思想直接作用的结果.
从我国许多经典算书中可以发现, 数学构造
性方法在算法中有许多精彩的体现. 例如就! 方
程∀的筹算图阵及其程序设计而言,首先, ! 群物总
杂,各列有数,总言其实∀,这是对每行中未知数的
系数和常数项的安排,其次, ! 令每行为率,二物者
再程,三物者三程,皆如物数程之∀,这是对诸行关
系的安排, ! 并列为行∀又说明了什么叫! 方程∀. 这
为中国古代数学的构造性方法提供了一个具有说
服力的样板.
由于构造性的方法特别强调运算的可操作程
度, 所以构造出的! 术∀可以通过一系列有限的运
算求出解来, 具有一般性.时至今日我国古算家所
设计的许多算法几乎都可以整套照搬到现代的电
子计算机上实现.这也是我国古算在算法上长期
居于领先地位的一个重要原因.
2 中国古代数学中的优秀算法案例
2. 1 中国古代的代数学
代数学是中国传统数学中一个值得骄傲和自
豪的领域.中小学数学中的算术、 代数内容, 从记
数以至解联立的线性方程组, 实质上都是中国古
代数学家的发明创造.结合新课程的算法教学,笔
者选取我国古代著名算法进行分析.
2. 1. 1 求最大公约数的算法(更相减损术)
中国古代数学中,未曾出现素数、 因数分解等
概念,但是发明了求两整数的最大公约数的方
法# # # 更相减损术: ! 可半者半之,不可半者,副置
分母子之数, 以少减多, 更相减损,求其等也.以等
数约之. ∀事实上此术中包含了三个步骤:
第一步, ! 可半者半之∀, 即进行观察, 若分子、
分母都是偶数,可先取其半;
第二步, ! 不可半者, 副置分母、 子之数, 以少
减多,更相减损,求其等也∀;
第三步, ! 以等数约之∀.
其中第二步! 以少减多, 更相减损∀是关键,又
是典型的机械化程序.在中国古代数学中, 将最大
公约数称作! 等∀.由于! 更相减损∀过程终可以在
有限步骤内实现, 所以它是一种构造性的方法.若
用现代语言翻译即为:第一步,任意给定两个正整
数, 判断它们是否都是偶数. 若是,用2 约减,若不
是, 执行第二步. 第二步, 以较大的数减去较小的
数, 接着把所得的差与较小的数比较, 并以大数减
小数.继续这个操作, 直到所得的数相等为止, 则
这个数( 等数)或这个数与约简的数的乘积就是所
求的最大公约数.下面运用 QBA SIC 语言来编写
相应的程序( 见程序1) .
25 2010 年 第49 卷 第2 期 数学通报程序 1
INPUT! m, n= ∀ ; m, n
IF m< n T HEN
a= m
m= n
n= a
END IF
k= 0
WHILE m MOD 2= 0 AND n MOD2= 0
m= m/ 2
n= n/ 2
k= k+ 1
WEND
d= m- n
WHILE d< > n
IF d> n TH EN
m= d
ELSE
m= n
n= d
END IF
d = m- n
WEND
d= 2 ∃ k * d
PRINT d
END
程序 2
INPUT A, B
WHILE A < > B
IF A> B T H EN
A = A- B
ELSE
B= B - A
END IF
WEND
PRINT B
END
程序 3
INPUT ! M, N (M> N )∀ ; M, N
DO
R= M- N
IF R> N TH EN
M= R
ELSE
M= N
N= R
END IF
LOOP UNTIL R= 0
PRINT M
END
程序 4
INPUT ! n= ∀ ; n
INPUT! an= ∀; a
INPUT! x= ∀ ; x
v= a
i= n- 1
WH ILE i> = 0
PRINT ! i= ∀; i
INPUT! ai= ∀ ; a
v= v * x+ a
i= i- 1
WEND
PRINT v
END
程序 2和 3 是两个简化的参考程序, 是从不
同的角度来实现更相减损的过程.
! 更相减损术∀提供了一种求两数最大公约数
的算法, 这是九章算术 的一个重要成就, 与古希
腊欧几里得的几何原本 中用来求最大公约数的
! 欧几里得算法∀, 即辗转相除法, 有异曲同工之
妙. 欧几里得在几何原本 中针对这个问题引入
了许多概念, 给出了冗长的逻辑证明. 尽管如此,
他还是暗用了一条未加说明的公理, 即如果 a, b
都被c 整除, 则a- mb也能被c 整除.中国古算采
用的! 更相减损∀方法,实际上也暗用了一条未加
说明的公理, 即若 a- b 可以被c 整除,则 a, b 都
能被c 整除. 正如刘徽在九章算术注 中! 其所以
相减者, 皆等数之重叠∀. 从形式上看! 更相减损
术∀比! 辗转相除法∀更复杂, 循环次数要比辗转相
除法多, 但对于计算机来说, 作乘除运算要比作加
减运算慢得多, 因此更相减损术在计算机上更为
好用.
26 数学通报 2010 年 第49 卷 第2 期2. 1. 2 求一元 n 次多项式值的算法(秦九韶算
法)
秦九韶,南宋著名数学家,其学术思想充分体
现在数书九章 这一光辉名著中,该著作不仅继
承了九章算术 的传统模式, 对中算的固有特点
发扬光大,而且完全符合宋元社会的历史背景, 是
中世纪世界数学史上的光辉篇章. 书中记载了! 正
负开方术∀、 ! 大衍求一术∀等著名算法.
在数书九章 卷五第 17 个问题以! 尖田求
积∀为例的算法程序中,可以看出秦九韶对于求一
元n 次多项式f ( x ) = anx
n
+ an- 1 x
n- 1
+ %+ a1x
+ a0 的值所提出的算法.秦九韶算法的特点在于
通过反复计算n 个一次多项式,逐步得到原多项
式的值. 在欧洲, 英国数学家霍纳( Horner ) 在
1819 年才创造了类似的方法, 比秦九韶晚了572
年.秦九韶算法把求f ( x ) = anx
n
+ an- 1 x
n- 1
+ %
+ a1x + a0 的 值 转 化 为 求 递 推 公 式
v0= an
vk= vk- 1x+ an- k k= 1, 2, %, n
中 v n 的值. 通
过这种转化, 把运算的次数由至多( 1+ n) n
2
次乘
法运算和n 次加法运算,减少为至多 n 次乘法运
算和n 次加法运算,大大提高了运算效率.这种算
法的QBASIC 语言程序如程序 4 所示.算法步骤
是如下的五步: 第一步, 输入多项式次数 n、 最高
次项的系数an 和x 的值;第二步,将 v 的值初始
化为a v ,将i 的值初始化为n- 1; 第三步, 输入 i
次项的系数ai ;第四步, v= v x+ ai , i= i- 1; 第五
步,判断i 是否大于或等于 0, 若是, 则返回第三
步,否则输出多项式的值v .
2. 2 中国古代的几何学
中国古代的几何学从田亩丈量等生产生活中
的一些实际问题中产生, 并为生产生活服务. 基于
传统实用价值观的影响, 中国古代的几何学并没
有发展成为像欧氏几何那样严密的公理化演绎体
系,所以中国古代几何学在整个数学史上的地位
并不突出,但在许多几何问题的处理上也突出了
算法化这一特色. 下面以! 割圆术∀为例作简要
分析.
中国古代数学家刘徽创立! 割圆术∀来求圆的
面积及其相关问题. 刘徽! 瓤而裁之∀,即对与圆周
合体的正多边形进行无穷小分割,分成无穷多个
以正多边形每边为底、 圆心为顶点的小等腰三角
形, 这无穷多个小三角形的面积之和就是圆的面
积. 这样通过对直线形的无穷小分割, 然后求其极
限状态的和的方式证明了圆的面积公式.刘徽的
算法! 割之弥细,所失弥少,割之又割, 以至于不可
割, 则与圆合体而无所失矣∀体现出程序化的过
程, 可以看出圆内接正多边形逐渐逼近圆的变化
趋势,并且刘徽依此开创了求圆周率精确近似值
的方法, 将这种极限思想用于近似计算.其中包含
有迭代过程和子程序,是一种典型的循环算法,充
分体现了程序化的特点.
中算家的几何学,并不追求逻辑论证的完美,
而是着重于实际计算问题的解决, ! 析理以辞, 解
体用图∀, 以建立解决问题的一般方法和一般原
则. 但另一方面,这种几何学又是以面积、 体积、 勾
股相似等为基本概念,以长方形面积算法、 长方形
体积算法、 相似勾股形的性质为出发点的, 整个几
何理论建立在! 出入相补原理∀等基本原理之上.
例如,由勾股定理自然地引起平方根的计算问题,
而求平方根和立方根的方法, 其步骤就是以出入
相补原理为几何背景逐步索骥而得.这方面内容
的介绍, 不仅可以丰富学生的算法知识,而且可以
通过揭示蕴藏其中的数学背景和文化内涵, 激发
学生学习算法的兴趣,体会算法在人类发展史中
的作用.
3 中国古代数学算法的教学价值
3. 1 培养正确数学观的良好平台
中国传统算法尽管与现代算法在具体形式上
差别很大,但是重要的是形式后面的认识论发展
线索可以为现代算法教学的体系、 教学层次提供
依据.它的具体数学知识载体也是现代算法教学
的重要源泉. 各种算法的创立就是创造性劳动的
产物,即是创造思维的一种! 凝固∀和! 外化∀. 其
次, 通过把一部分问题的求解归结为对于现成算
法的! 机械应用∀, 这就为人们积极地去从事新的
创造性劳动提供了更大的可能性. 从而算法化也
就意味着由一个平台向更高点的跳跃.
吴文俊先生的研究使中国传统数学的算法重
见天日, 开拓了数学机械化的新领域, 吴先生提出
! 数学教育的现代化就是机械化∀.他在研究中这
样写道: 数学问题的机械化, 就要求在运算和证明
过程中, 每前进一步之后,都有一个确定的必须选
27 2010 年 第49 卷 第2 期 数学通报择的下一步, 这样沿着一条有规律的, 刻板的道
路,一直达到结论.证明机械化的实质在于, 把通
常数学证明中所固有的质的困难,转化为计算的
量的复杂性.计算的量的复杂性在过去是人力不
可能解决的,而计算机的出现解决了这种复杂性.
吴先生的理论和实践已经表明,证明和计算是数
学的两个方面, 且又是统一的,这在数学教育中具
有重要意义.我们应当引导学生了解古人对问题
思考的角度,学会站在巨人的肩膀上,比如按照中
国古代开方术的思路就可以编造程序在现代计算
机上实现开方.
培养学生在学习数学知识的同时更多地关心
所学知识的社会意义和历史意义,力图在面向未
来的同时,通过同传统上的哲学、 历史和社会学的
思想结合起来, 形成正确的数学观.算法教学就为
此搭建了一个良好的平台, 并且承载丰富的历史
底蕴.
3. 2 渗透爱国主义教育的最佳契机
与西方相比, 中算理论具有高度概括与精练
的特征, 中算家经常将其依据的算理蕴涵于演算
的步骤之中, 起到! 不言而喻, 不证自明∀的作用,
可以认为中国传统数学乃是为建立那些在实际中
有直接应用的数学方法而构造的最为简单, 精巧
的理论建筑物. 因此, 中算理论可以说是一种! 纲
目结构∀:目是组成理论之网的眼孔;纲是联结细
目的总绳.以术为目, 以率为纲,即是依算法划分
理论单元,而用基本的数量关系把它们连结成一
个整体. 纲举目张,只有抓住贯串其中的基本理论
与原理, 才能看清算法的来龙去脉.下面是吴文俊
先生总结的! 关于算术代数部分发明创造的一张
中外对照表∀.
从算法教学管窥中国古代数学史
中国 外国
位值制十进位记 最迟在九章算术 成书时已十分成熟 印度最早在 6 世纪末才出现
分数运算 周髀算经 中已有, 在九章算术 成
书时已成熟 印度最早在 7 世纪才出现
十进位小数 刘徽注中引入, 宋秦九韶 1247年时已
通行 西欧 16 世纪时始有之, 印度无
开平方、 立方 周髀算经 中已有开平方, 九章算
术 中开平、 立方已成熟
西方在 4 世纪末始有开平方, 但还无开立方, 印度
最早在 7 世纪
算术应用 九章算术 中有各种类型的应用问题 印度 7 世纪后的数学书中有某些与中国类似的问
题与方法
正负数 九章算术 中已成熟 印度最早见于 7 世纪,西欧至 16 世纪始有之
联立一次方程组 九章算术 中已成熟 印度 7 世纪后开始有一些特殊类型的方程组, 西
方迟至 16 世纪始有之
二次方程 九章算术 中已隐含了求数值解法,
三国时有一般解求法 印度在 7 世纪后,阿拉伯在 9世纪有一般解求法
三次方程 唐初( 公元 7 世纪初) 有列方程法, 求
数值解已成熟
西欧至 16 世纪有一般解求法, 阿拉伯 10 世纪有
几何解
高次方程 宋时( 12 # 13 世纪)已有数值解法 西欧至 19 世纪初始有同样方法
联立高次方程组与消元法 元时( 14 世纪初) 已有之 西欧甚迟,估计在 19 世纪
28 数学通报 2010 年 第49 卷 第2 期3. 3 品位数学美学思想的美妙境界
中国古代数学不但具有实用性特征, 还蕴涵
着丰富的美学思想. 比如九章算术 中列方程的
方式,相当于列出其增广矩阵,其消元过程相当于
矩阵变换,而矩阵是数学美学方法中对称最典型
的表现形式之一; 九章算术 中用几何方法巧妙
地解决了很多代数问题, 这是数形结合的统一: 把
数学问题改编成歌诀,以便于掌握和传授,这是文
学艺术与数学的统一. 总之, 在算法教学中, 应努
力把握和利用自己文化传统中的积极因素进行教
学,这对数学教育的发展具有重要的意义.
参考文献
1 中学数学课程教材研究开发中心. 普通高中课程标准实验教
材书(数学) [ M] . 北京: 人民教育出版社, 2007
2 中华人民共和国教育部. 普通高中数学课程标准(实验) [ M] .
北京: 人民教育出版社, 2003
3 李文林. 数学史概论(第二版) [ M ] . 北京: 高等教育出版
社, 2002
4 王鸿钧, 孙宏安. 中国古代数学思想方法[ M] . 南京: 江苏教育
出版社, 1988
5 张维忠. 数学, 文化与数学课程[ M] . 上海: 上海教育出版
社, 1999
6 吴文俊. 吴文俊论数学机械化[ M ] . 济南: 山东教育出版
社, 1995
7 代钦. 儒家思想与中国传统数学[ M] . 北京: 商务印书馆, 2003
8 费泰生. 算法及其特征[ J] . 数学通讯, 2004, 7
9 张奠宙. 算法[ J] . 科学, 2003, 55( 2)
10 李建华. 算法及其教育价值[ J ] . 数学教育学报, 2004, 3
11 李亚玲. 算法及其学习的意义[ J ] . 数学通报, 2004, 2
(上接第23 页) 实验教师对课改实验进行探索、 总
结、 反思、 调整, 推广比较成熟的经验,同时纠正实
验过程中的偏颇与极端行为,教学过程逐步进入
新的稳定阶段.教学过程逐步过渡到以问题为主
线、 以活动为主线的! 无环节∀模式.
( 2)受不同的教学理念影响, 教师角色、 学生
角色、 教学目标、 教学过程关注点等方面, 在教学
过程中有很大差异.
教师角色 学生角色 教学目标 教学过程关注
领导者
(权威)
接 受 者
(被动)
让 学 生 掌
握 数 学 知
识技能
知识 引入, 讲 解
本质, 巩固练习
主导者
(决定)
观 察 者
(协助)
让 学 生 观
摩 数 学 产
生过程
展示 过程, 注 重
建构, 强化训练
引导者
(组织)
参 与 者
(主动)
让 学 生 参
与 探 究 数
学 生 成 过
程
问题 情境, 提 出
问题, 学生活动
( 3) 2004 年高中数学课程改革后, 课堂教学
发生一定的变化,广泛地进行! 创设情境∀! 提出问
题∀!引导学生探究探索∀, 出现了以! 问题主线∀、
! 活动主线∀为主的课堂, 出现了! 问题情境学生
活动建立数学运用数学同顾反思∀的整体课堂
构思.这些改变对于揭示数学的内在本质, 发展学
生的思维能力起到积极的作用.
( 4) 由于受多种因素制约(特别是高考) ,与初
中相比, 本次课改后高中数学课堂教学变化幅度
不大,近半数的课堂教学模式仍然以五环节为主.
对于课改倡导的教学理念, 只是渗透在传统的教
学模式中,目前高中数学课堂教学改革的力度、 深
度与课改的预期目标还有一定的距离.我们看到
2008 年的赛课教案的创新、 探索力度, 远没有
1990 年的名师授课录 大, 那时还没有明确提出
课改理念,但他们却进行积极的探索, 关注学生主
体. 而今天,课改的理念已经系统培训 5 年, 许多
教师仍停留在形式层面,未能变成自觉的行为.
参考文献
1 李善良. 我国数学教学设计的探索与评析# # # 兼及十年初中
数学教师说课评比活动[ J ] . 中国数学教育(初中版) , 2007, 9
2 编委会. 名师授课录(中学数学高中版) [ M] , 上海教育出版
社, 1991
3 2000 年全国首届高中青年数学教师优秀课观摩与评比的教
案(会议资料)
4 2008 年全国第四届高中青年数学教师优秀课观摩与评比的
教案(会议资料)
5 李善良. 关于数学教学中问题的设计[ J] . 高中数学教与学,
2008, 1
29 2010 年 第49 卷 第2 期 数学通报
数学教师必读书目
数学教师必读书目有哪些呢?下面是我精心为您整理的数学教师必读书目,希望您喜欢!
数学教师必读书目:
1、皮连生,《学与教的心理学》,华东师范大学出版社,1997年。
2、王桐,《美丽教师》,广西师范大学出版社,2002年。
3、[美]T.丹齐克著,《数:科学的语言》,上海教育出版社,2000年。
4、郑毓信编著,《问题解决与数学教育》,江苏教育出版社,1994年。
5、张奠宙编著,《现代数学思想讲话》,江苏教育出版社,1991年。
6、俄国人著,《直观几何》,华东师范大学出版社,2001年。
7、李俊著,《中小学概率的教与学》,华东师范大学出版社,2003年。
8、张天孝,《小学数学应用题教学》,科学出版社,1993年。
参考书目:
本体性知识类的:
1、波利亚著,《怎样解题》,上海科技教育出版社,2002年。
2、张奠宙主编,《数学史选讲》,上海科学技术出版社,1997年。
3、袁小明著,《数学思想史导论》,广西教育出版社,1991年。
条件性知识类的:
1、张奠宙编,《中国数学双基教学》,上海教育出版社,2006年。
2、张维忠著,《文化视野中的数学与数学教育》,人民教育出版社,2005年。
3、弗赖登塔尔著,《作为教育任务的数学》,上海教育出版社,1995年。
4、李善良著,《现代认知观下的数学概念学习与教学》, 2005年。
5、沃建忠著,《小学数学教学心理学》,北京教育出版社,2001年。 背景性知识类的:
1、薛涌:《美国人是如何培养精英的》、《精英的阶梯》
2、《素质教育在美国》
3、珊伊:《我在美国教高中》
4、杜威:《学校与社会.明日之学校》
5、李泽厚:《论语今读》
6、《道德经》
7、黑柳彻子:《窗边的小豆豆》
8、卢梭:《爱弥尔》
9、王小波:《沉默的大多数》
10、周国平、余秋雨散文
11、张民生、于漪:《教师人文读本》
12、谢泳:《胡适还是鲁迅》《鲁迅全集》《胡适全集》
13、肖川:《教育的理想与信念》《教育的真情与智慧》
14、刘铁芳:《守望教育》《走在教育的边缘》
15、张文质:《唇舌的授权》《幻想之眼》《保卫童年》
16、亨特:《心理学的故事》
17、朱晨海:《天平上的心灵——实验心理学的故事》
18、各种名人传记
19、肖川、刘铁芳、张文质、许锡良、刘良华等的个人博客 若干本数学教育的杂志:
1、《课程 教材 教法》
2、《小学数学教师》
3、《小学青年教师》
数学教师必读书目
一、数学纵横
1.1华罗庚,华罗庚科普著作选集,沪教,84[必读]
1.2张奠宙,数学的明天,桂教,99
[纵论数学与数学教育,书中的一些观点高屋建瓴,发人深省。系“走向科学的明天丛书”之一,数学方面另有:平面几何定理的机器证明,集合与面积,组合数学方兴未艾,精益求精的最优化,大千世界的随机现象]
352注:张奠宙的 20世纪数学经纬经纬(张奠宙) 也很好
1.3石钟慈,第三种科学方法——计算机时代的科学计算,暨南、清华,00
[本书乃“院士科普书系”之一,另有:计算机怎样解几何题——谈谈自动推理,机会的数学]
1.4徐利治,数学方法论选讲,华中工学院,88年2版
1.5 M·克来因,古今数学思想,沪科技,79
[由北大数学系组织翻译]
数学丛书.-.[古今数学思想1].pdf 数学丛书.-.[古今数学思想2].pdf
数学丛书.-.[古今数学思想3]. 数学丛书.-.[古今数学思想3].
数学丛书.-.[古今数学思想3]. 数学丛书.-.[古今数学思想4].pdf
1.6 胡·施坦豪斯,数学万花镜,湘教,99
[本书51年,80年,81年均有译本,作者另有:一百个数学问题,又一百个数学问题(沪教,80),三册书在国际上较有影响]
1.7梁之舜 吴伟贤,数学古今纵横谈,科学普及社广州分社,82
1.8盛立人,生活中的数学——管理必读,中科大,99
[书分12章,有实用价值,有深厚背景,有现代意识,书中内容将会日益受到关注]
1.9王梓坤,科学发现纵横谈,沪人,80[有多个版本,院士妙笔,必读]
1.10顾迈南,华罗庚传,冀人,85
1.11康斯坦西·瑞德,希尔伯特,沪科技,82[近有新版]
1.12储嘉康,现代数学的巨星——希尔伯特的故事,川少儿,83
1.13袁向东 李文林,三个女数学家,川少儿,81
1.14周培源 苏步青等,在茫茫的学海中——谈科学的学习方法,辽人,84
[系36位各学科名家所写治学经验,徐利治教授的文章最有味道]
1.15徐胜蓝 孟东明,杨振宁传,复旦,97
[两岸三地已出了五种版本,本书是第五版,我们能从这本不平凡的传记中获得启示和力量]
二、波利亚理论与解题研究
2.1 G·波利亚,怎样解题,科学,82
2.2 G·波利亚,数学的发现(二卷),蒙人,80
2.3 G·波利亚,数学与猜想(二卷),科学,84
2.4 刘云章 赵雄辉,数学解题思维策略——波利亚著作选讲,湘教,92年初版,99年2版
[本书从我国实情出发精选了波利亚的三大名著的内容及有关论文,其中也不乏作者自已的观点和态度,便于读者尽快了解波利亚数学教育理论的梗慨。必读]
2.5 杨世民 王雪琴,数学发现的艺术,青岛海洋大学,98
[本书有51万字,乃国人研究波利亚理论之杰作,必读]
2.6罗增儒,数学解题学引论,陕师大,97
[作者系硕士导师,在大学里开设同名课程,写有书、文约200万字。本书有50万字,必读]
2.7张国栋,数学解题过程与解题教学,京教,96
[系“北京教育丛书”之一,必读]
2.8过伯祥,怎样学好数学,苏教,95
2.9赵振威,数学发现导论,皖教,00
[本书有44万字。另有:中学数学解题研究,苏教,98,本书有32万字]
2.10戴再平,数学习题理论,沪教,96年2版
[另主编了关于数学开放题的多本书]
2.11欧阳维诚,初等数学典型方法研究,湘教,85年初版,98年2版
2.12胡炳生,数学解题思路与方法,皖科技,00
[以上两册从数学竞赛角度来谈解题方法研究,作者们数学功底深厚,极得一读]
2.13沈文选,中学数学解题典型方法例谈,湘师大,96
2.14罗增儒,怎样解答高考数学题,陕师大,95年第2版
2.15唐盛昌等,高中数学解题策略,沪教,97
[本书既有较高的立意,又能切合教学实际,可资参考]
三、数学教育与数学教学
3.1开创21世纪数学教育新局面——全国中学数学教育第九届年会论文特辑,沪科技,00
[有顾泠沅、马明等的妙文,本书有49万字]
3.2钟善基主编,中国著名特级教师教学思想录·中学数学卷,苏教,96
[收入了马明等14位特级教师教学经验介绍,本书有67万字,必读]
3.3孙维刚,孙维刚谈全班55%怎样考上北大考上清华,北方妇女儿童,99年初版,01年2版[必读]
3.4陈振宣,培养数学思维能力的探索,沪教,98
[名师多年经验,不可不读。本书系“上海教育丛书”之一,有37万字]
3.5杨之 汪杰良,返璞归真 滋兰树蕙——特级教师曾容数学教学探幽,华东理工大学,00
3.6杨象富,杨象富数学教学经验,浙教,91
[系“浙江省中小学特级教师教学经验选辑”之一,必读]
3.7胡炯涛 张芃,胡炯涛中学数学教学纵横谈,鲁教,97
[系“全国著名特级教师教学艺术与研究丛书”之一,另有:任勇中学数学教学艺术与研究]
3.8戴丽萍,中学数学思想方法的教学,沪教,99
[本书系“上海教育丛书”之一]
3.9蒋声,走向数学发现,大象社,99
[系《中学数学思维方法丛书》之一,王梓坤院士主编并作序,另有:原则与策略,猜想与合情推理,直觉探索方法,逻辑探索方法,整体方法,逻辑与演绎,综合与构造,转化与化归,抽象与模式,反思与监控,计算机与思维,观念与文化,共计13册,贴近中学实际,有较大参考价值]
3.10罗增儒,数学的领悟,豫科技,97
[系《让你开窍的数学》丛书 之一,王梓坤院士主编并作序,另有:解析几何方法漫谈,数学解题中的物理方法,数学解题中的动态思维,极端原理与解题,有趣的图形覆盖,趣味题与简捷解,从毕达哥拉斯到费尔马,贴近中学实际,有参考价值]
3.11张奠宙 过伯祥,数学方法论稿,沪教,96
3.12郭思乐 喻伟,数学思维教育论,沪教,97
3.13任樟辉,数学思维论,桂教,96
[系马忠林主编的“学科现代教育理论书系·数学·”之一,另有:数学课程论,数学学习论,数学方法论,数学教学论,数学教育评价]
3.14李明振主编,数学方法与解题研究,沪科教,00
第2 / 5页
[主编系数学教育专业硕士,编写了一半内容,本书有46万字]
3.15张奠宙主编,数学素质教育教案精编(点评本),中国青年,00
3.16张奠宙等,中学数学问题集,华东师大,97
[本书不是一般的习题集,每个学生都可从中找到自己感兴趣的问题,为数学活动课提供了良好的材料]
3.17叶其孝主编,中学数学建模,湘教,98
3.18王尚志主编,高中数学知识应用问题,湘教,99
3.19张思明,中学数学建模教学的实践与探索,京教,98
[系“北京教育丛书”之一]
3.20王守愚主编,思维与创造——北京第十五中学数学知识应用竞赛学生获奖论文选,气象社,00
[收集论文30篇。北京市数学会理事长王尚志教授撰文奖掖]
四、趣味数学
4.1阿尔伯特·H·贝勒,数论妙趣——数学女王的盛情款待,沪教,98
[序文称,数论趣题像催化剂,学生接触后可以激发学习数学的兴趣,效果极好,译者系谈祥柏,本书乃“通俗数学名著译丛”之一,另有:近代欧氏几何学,数学与联想,数学娱乐问题,数学趣闻集锦(上、下),数学:新的黄金时代,当代数学:为了人类心智的荣耀,无穷之旅——关于无穷大的文化史, 计算出人意料,站在巨人的肩膀上,数学:科学的语言,数学游戏与欣赏]
4.2马丁·加德纳,啊哈!灵机一动,沪科技文献,81
4.3《科学美国人》编辑部,从惊讶到思考,科技文献,82
4.4马丁·加德纳选编,萨姆劳埃德的数学趣题,沪科技教育,99
[系“加德纳趣味数学系列”之一,另有:萨姆劳埃德的数学趣题续篇,引人入胜的数学趣题,测试你的逻辑推理能力,逻辑推理新趣题,数学的奇妙]
4.5别莱利曼,趣味几何学,中国青年,80
[作者系前苏联著名数学普及读物作家,另有趣味代数学等]
4.6亨利·E·杜登尼,200个趣味数学故事,湘科技,84
4.7谈祥柏,趣味对策论,中国青年,1982
4.8谈祥柏,数学百草园,浙科技,83
4.9谈祥柏,数学广角镜,苏教,92年2版
4.10谈祥柏等,趣味数学辞典,沪辞书社,94[必读]
4.11谈祥柏,谈祥柏科普文集,沪科学普及,96
4.12谈祥柏,数:上帝的宠物,沪教,96
4.13唐世兴,数学游戏新编,沪教,79年初版,97年再版。
[书中称主要面向小学生,但实践证明初、高中学生皆有兴趣]
五、知识性读物
5.1华罗庚,从杨辉三角谈起,人教,64年新一版
[系“数学小丛书”之一,另有:对称,从祖冲之的圆周率谈起,力学在几何学中的一些应用,平均,格点与面积,一笔画和邮递路线问题,从刘徽割圆谈起,几种类型的极值问题,从孙子的“神奇妙算”谈起,等周问题,多面形的欧拉定理和闭曲面的拓扑分类,复数与几何,单位分数。皆为妙手偶得,不看岂不可惜]
5.2柯召 孙琦,初等数论100例,沪教,78
5.3柯召 孙琦,谈谈不定方程,沪教,78
5.4王元,谈谈素数,沪教,78
第3 / 5页
5.5常庚哲,抽屉原则及其他,沪教,78
5.6常庚哲,复数计算与几何证题,沪教,80
5.7常庚哲 苏淳,奇数和偶数,沪教,86
5.8单墫,几何不等式,沪教,80
5.9单墫,趣味的图论问题,沪教,80
5.10单墫,覆盖,沪教,83
5.11严镇军,从正五边形谈起,沪教,80
5.12严镇军,反射与反演,沪教,81
5.13冯克勤,射影几何趣谈,沪教,87
5.14管梅谷,图论中的几个极值问题,沪教,81
5.15吴利生 庄亚栋, 凸图形,沪教,82
5.16蒋声,从单位根谈起,沪教,80
5.17南山,柯西不等式与排序不等式,沪教,96
5.18俞文鱼此 陈守吉,人造卫星轨道的分析和计算,沪教,82
5.19南秀全 余石,奇数、偶数、完全平方数,沪教,98
[选读以上诸书,则数学功底自然日渐见长]
5.20黄国勋 李炯生,运动场上的数学,沪教,99年2版
[很合学生口味,系“中学生文库精选续编·数学趣谈辑”之八,另有:数学探奇,矩阵对策初步,生物数学趣谈,形形色色的曲线,世界数学名题选,SOS—编码纵横谈,棋盘上的数学]
5.21施咸亮,不等式,浙人,79
[系“数学进修用书”之一,至今仍有较大参考价值]
5.22陈培德,天平的数学与数学天平,辽教,98
[系“数学传播丛书”之一,由中国数学会数学传播委员会审定,讨论找假币问题,由浅入深,直至研究前沿,非常吸引人]
5.23柯召 魏万迪,初等组合学漫话,科学,84
[论述了30多个问题,有点专门,适合教师阅读]
5.24王志雄,数学美食城,民主与建设社,2000
[作者数学功底深厚,行笔流畅优雅,洋洋洒洒52万字,可读可研,实乃空前之佳作]
5.25 H·德里,100个著名初等数学问题,沪科技,82[名著]
5.26王长烈 朱煜民,世界数学名题趣题选,湘教,88年初版,98年再版
[适合学生课外阅读]
5.27傅钟鹏,极值巧解,辽人,80
[作者系高级工程师,有多本数学科普读物出版]
5.28马明,节约的数学,中国少年儿童,80
5.29马希文,数学花园漫游记,中国少年儿童,80
5.30 O·奥尔,有趣的数论,北大,85
[系“美国新数学丛书”之一,由北大数学系组织翻译,另有:拓扑学的首要概念,从毕达哥拉斯到爱因斯坦,科学中的数学方法,数学中的智巧,连分数,无限的用处,不等式入门,几何不等式,几何学的新探索,几何变换(共4册),选择的数学,早期数学史选篇]
5.31 D·A·约翰逊 W·H·格伦 ,大家学数学,科学,80
[英国《自修数学》小丛书之一,另有:测量世界,数型,毕达哥拉斯定理,统计世界,集合、命题与运算,数学逻辑与推理,曲线,拓扑学——橡皮膜上的几何学,概率与机率,向量基本概念,有限数学系统,无限数,矩阵,共14本]
第4 / 5页
5.32 Brian Bolt著,老谋深算,浙科技,99
[本书强调趣味性与研究性,重在培养学生的能力,业经实践,是课外活动的好材料,本书系“数学乐园”丛书之一,另有:趣味盎然,举一反三,茅塞顿开,触类旁通]
5.33王俊邦 罗振声,趣味离散数学,北大,98
[有53个问题,内容适宜向学生介绍]
5.34 李毓佩,数学天地,苏少年儿童,99
[作者写有多本优秀数学普及读物,本书系“趣味自然科学百科”丛书之一,面向中小学生,内容丰富,可读性强,有50万字,便于教师选用]
六、数学竞赛
6.1叶军,数学奥林匹克教程,湘师大,98
[书中许多问题是作者的研究成果,由此入径,必登堂奥。三次共印2万余册。本书有76万字。知识性的难题常可从本书中查到]
6.2单墫 熊斌总主编,奥数教程(高中三册),华东师大,00
[三册共计95万字,少量题目系高考难度,也可为教学所借鉴]
6.3黄宣国,数学奥林匹克大集·1994,沪教,97
[欲攻数学奥林匹克难题者,可看本书,本书有79万字]
6.4罗增儒,数学竞赛导论,陕师大,00
[其中有关国内数学竞赛的史料为它书所不备]
6.5常庚哲,初中数学竞赛妙题巧解,沪科技,87
6.6苏淳,从特殊性看问题,中科大,01
[系科大教授们写的“数学奥林匹克辅导丛书”之一,另有:组合恒等式,解析几何的技巧,算两次,构造法解题,漫谈数学归纳法]
6.7裘宗沪主编,历届全国高中数学联赛试题详解,开明社,99年修订版
6.8希望杯全国数学邀请赛试题、培训题及解答,气象社
[该赛1994年至今已有十二届,书分高中、初中,有多册]
6.9刘裔宏等译,普特南数学竞赛(1938~1980),湘科技,83
[虽系大学生数学竞赛,但其中一些内容已渗透到中学数学竞赛中]
6.10中国科协青少年部,角逐学科奥林匹克,中国少年儿童,98
[系获奖学生和教练写的体会文章]
七、初等数学研究
7.1初等数学论丛(共9册),沪教,80~86
7.2初等数学研究文集,沪教,92
7.3杨世明主编,中国初等数学研究文集(1980~1991),豫教,92
7.4杨之,初等数学研究的问题与课题,湘教,93
[杨之乃杨世明老师之笔名]
7.5单墫主编,几何不等式在中国,苏教,96
7.6陈计 叶中豪主编,初等数学前沿,苏教,96
7.7杨学枝主编,不等式研究,藏人,00
[以几何不等式为主,本书有50万字]
7.8单墫,组合几何,沪教,96
7.9冯跃峰,棋盘上的组合数学,沪教,98
[书中的大部分内容是作者在数学研究中的最新成果,有兴趣者可从中找到适合自己的课题,从而进入研究领域]
上一篇:公共事业管理论文题目小范围
下一篇:中国茶文化的传播与发展论文