欢迎来到学术参考网
当前位置:发表论文>论文发表

大学物理论文3000字量子力学

发布时间:2023-12-08 17:43

大学物理论文3000字量子力学

据我了解,子论是现代物理学的两大基石之一。 为量子论的创立及发展作出贡献的科学家有好多,例如爱因斯坦、卢瑟福、玻尔、薛定谔和海森伯格等人。量子论的初期:1900年普朗克为了克服经典理论解释黑体辐射规律的困难,引入了能量子概念,为量子理论奠下了基石。1923年,德布罗意提出了物质波假说,把量子论发展到一个新的高度。 1926年薛定谔发现波动力学和矩阵力学从数学上是完全等价的,由此统称为量子力学,而薛定谔的波动方程由于比海森伯的矩阵更易理解,成为量子力学的基本方程。 1948-1949年,里查德·费因曼(Richard Phillips Feynman)、施温格(ger)和朝永振一郎用重正化概念发展了量子电动力学,从而获得1965年诺贝尔物理学奖。 量子力学虽然建立了,但关于它的物理解释却总是很抽象,大家的说法也不一致。波动方程中的所谓波究竟是什么? 量子论----世纪发现之微观世界中的轮盘赌。我们可以这样理解:如温度的增加或降低,我们认为是连续的,从一度升到二度中间必须经过0.1.度0.1度之前必定有0.01度。但是量子论认为在某两个数值之间例如1度和3度之间可以没有2度,就像我们花钱买东西一样,一分钱是最小的量了,你不可能拿出0.1分钱,虽然你可以以厘为单位计算钱数。这个一分钱就是钱币的最小的量。而这个最小的量就是量子。量子论不仅很自然地解释了灼热体辐射能量按波长分布的规律,而且以全新的方式提出了光与物质相互作用的整个问题。量子论不仅给光学,也给整个物理学提供了新的概念,故通常把它的诞生视为近代物理学的起点。 量子论:原子核世界中的开路先锋 。历史已经将量子论推上了物理学新纪元的开路先锋的位置,量子论的发展已是锐不可当。 量子论在工业领域的应用前景也十分美好。科学家认为,量子力学理论将对电子工业产生重大影响,是物理学一个尚未开发而又具有广阔前景的新领域。 量子论给我们提供了新的关于自然界的表述方法和思考方法。量子论揭示了微观物质世界的基本规律,为原子物理学、固体物理学、核物理学和粒子物理学奠定了理论基础。它能很好地解释原子结构、原子光谱的规律性、化学元素的性质、光的吸收与辐射等。它开阔了我们大家的视野,改变了人们认识世界的 角度和方式!

自然科学学术论文3000字范文

自然科学被公认为 经验 科学,是创新和完善马克思主义哲学意识论的重要基础和必要条件。下面是我为大家精心推荐的自然科学3000字论文,希望能够对您有所帮助。

摘要:本文以现代物理学的建立与发展过程为出发点,分析了现代物理学的建立对新的自然观形成的推动作用,并论述了自然观对科学研究的影响,作者认为,自然观影响了科研工作者对世界的认识、研究者对自身的认识与科学态度的形成,同时自然观促进了科学研究的 方法 和手段的发展。

关键词:现代物理学 自然观 科学研究

1 概述

自然观是人们对自然界总的看法和观点。任何时代的自然观都是在一定的历史 文化 背景下形成的,尤其与当时的自然科学发展水平密切相关。同时,它又对自然科学有着这样或那样的影响。

在历史上,最先出现的是神话形态的自然观;进入阶级社会以来,唯物主义自然观与唯心主义自然观的对垒日趋明显,在古代,人们基本上把自然界看作是一个普遍联系、不断运动的整体,由此形成朴素的自然观,近代科学深入自然界的各个细节进行孤立静止的考察,由此产生形而上学自然观,现代科学则日益广泛地揭示了自然界的各种联系,从各个不同的角度发展着辩证唯物主义自然观,这一科学的自然观对整个自然科学和哲学日益发挥着积极的作用。

物理学是集思想、方法、实验于一体的先导学科,在人类正确的自然观、世界观、方法论的形成和发展中,起着 其它 学科无法替代的作用,物理学研究所形成的物质观、自然观、时空观、宇宙观对科学技术的进步、生产力的发展乃至整个人类文化都产生极其深刻的影响,而现代物理学的建立和发展,则彻底改变了20世纪整个科学的面貌,也由此开始了自然科学发展的新纪元。

2 现代物理学的建立对新的自然观形成的推动作用

20世纪以来,以相对论与量子力学的创立为标志的现代物理学研究工作,从理论和实践两个方面,对人类认识和社会发展起到了难以估量的作用[1]。物理学理论的发展,把人类对自然界的认识推进到了前所未有的深度和广度。

2.1 相对论的诞生对绝对时空观的改变 相对论是关于物质运动与时间空间关系的理论,是现代物理学和科学技术的重要理论基础之一。1905年6月,爱因斯坦以“运动物体的电动力学”为题发表了关于狭义相对论的第一篇杰出论文,提出了狭义相对论的两条原理――相对性原理和光速不变原理。根据这两条原理,可以推出许多重要结论。例如,关于时空坐标相互联系的洛伦兹变换,从而改变了自牛顿以来统治物理学两百多年的绝对时空观[2]。

相对论的诞生,不仅大大推动了自然科学和技术的发展,而且在哲学世界观方面具有非常重大的意义,为辩证唯物主义的时空观提供了坚实的科学依据,广义相对论的建立,则为人类探索宇宙奥秘提供了有力的理论工具。

2.2 量子力学的建立对确定性世界的改变 量子力学的建立是二十世纪初物理学取得的最伟大成就之一。量子力学揭示了微观物质世界的基本规律,使人们认识到波粒二象性是微观世界最基本的特征,量子力学的创立,推动了原子物理学的发展,同时对物质结构理论以及化学、生物学的发展也产生了深刻的影响。

二十世纪二十年代末开始,爱因斯坦和玻尔之间展开了一场激烈争论,争论的焦点是就是量子学的哲学解释,因为爱因斯坦认为这种解释明显陷入唯心主义,而他坚信的是[3]:“有一个离开知觉主体而独立的外在世界,是一切自然科学的基础。”

然而从1972年到1982年十年的实验结果,却都显示了一个惊人的也是出乎唯物主义哲学家意料之外的结果。“贝尔不等式”这把双刃剑的确威力强大,但它斩断的却不是量子论的光辉,而是反过来击碎了爱因斯坦所执着信守的那个梦想[4]。世界是由独立于人的意识之外而存在的客体构成的这种学说,却原来和量子力学相矛盾,也和为实验所确立的事实相矛盾[5]。

欧洲核子研究中心(CERN)在2011年9月24日公布的一份研究结果显示,科研人员在让中微子进行近光速运动时,其到达时间比预计的早了60纳秒[6],如果这个研究被验证,人类的物理观将再次被改变,甚至人类存在的模式都将被改变。

3 自然观对科学研究的影响

哲学和自然科学发展的历史表明:哲学每前进一步。都依赖于和伴随着自然科学的巨大进步;同样,自然科学的每一步发展,也都凝聚着和渗透着哲学的指导,现代物理学的建立和发展,影响了新自然观的建立与形成,新的自然观又作用于科学研究,为自然科学提供了正确的世界观和方法论的指导,推动科学技术的进步。

3.1 自然观影响了科学家对世界的认识 当今科学所研究的对象,更多的是微观或者是宇观的客体,这些客体的性质与规律,已经超越了人类的感官能直接感知的范畴。如果说量子力学主要关注最微小的“基本粒子”,那么爱因斯坦的广义相对论则关注最大尺度的“宇宙”,一个研究最小,一个研究最大,由于难以获得显而易见的证明,所以在这两个领域的认识论便受研究者的自然观左右。

量子物理的理论具有高度的辩证性质,“非此即彼”的形式 逻辑思维 已不足以解释量子物理实验中众多的“亦此亦彼”的现象,而一种新的逻辑 思维方式 可能是现代物理学取得进一步突破的关键。量子力学的情况,如果从我们通常的观念看来,是充满着矛盾和难以克服的困难,但量子力学却是以独特的数学结构卓越而合理地把握了它,要理解这种逻辑结构,唯有依靠辩证逻辑[7]。为了消除用经典语言描述微观客体行为时与量子力学结论相悖的因果异常,赖辛巴哈试图建立一种消除形式逻辑排中律的三值逻辑,这种新的逻辑形式揭示了用传统形式逻辑描述不确定现象时的困难[8],沿着赖辛巴哈的思路,有人进一步发展出应用抽象代数学中“格演算”工具,用基本联词“遇”与“接”来取代“与”和“或”,用以更好地描述量子领域中的“亦此亦彼”现象,并使这种量子逻辑可以用一种广义的命题演算工具表述[9],这新的逻辑思维方式,便是受自然观影响下科研工作者对世界的认识,它成为现代物理学取得进一步突破的关键。

关于自然观影响了科学家对世界的认识这个问题,玻尔对此有过非常重要的认识,他说:“由作用量子的存在规定了的客体与测量仪器之间的有限相互作用,引起了最后放弃因果性这一经典概念并激烈地修正我们对于物理实在问题的态度”[10]。由此可见,自然观影响了科学家对世界的认识,更教会了他们辩证地认识世界。

自从辩证唯物主义自然观出现之后,人类第一次具有了客观而辩证的思维体系,可以从本质上把握到科学发展的方向与领域,再也不会像前人那样因为思维和领域的局限性,在科学研究中面对不解问题时就归咎于神学和宗教。

3.2 自然观影响了研究者对自身的认识 新的自然观从普遍联系出发,强调人和自然是相互联系的相互影响的,现代物理学的发展,完全证实了这一思想。相对论中的相对性原理表明,认识事物的运动与选择的参照系有关,即与人的主体有关,在量子力学中,海森堡的“测不准”原理也表明,在对微观世界的认识中,不能把人的因素独立在微观世界之外,对于量子论中的观测问题,尤金.维格纳认为:意识无疑在触动波函数中担当了一个重要的角色。于是当人们还在为薛定谔那只倒霉的猫而争论不休的时候,维格纳又出来捅了一个更大的马蜂窝,就是所谓的“维格纳的朋友”[4]。

所以说,自然观无时无刻不在影响着研究者对自身的认识,而这种认识,又影响着研究者对待科学研究的态度,放弃因果性,也就使得实验检验成为一句空谈,因为当科学实验与科学理论发生矛盾时,并不能证明科学理论是错的,因为二者可以不服从因果关系。

3.3 自然观促进了科学研究方法的发展 科学研究的结果跟研究者所采取的方法有很大的关系,科学的发展总是与方法的更新与发展紧密相连,相辅相成的。例如近代物理学的诞生,就得益于伽利略、牛顿等人在研究方法上的大胆创造与革新,他们把观察、实验等经验方法与数学、逻辑等理论方法有机结合起来,甚至还发明新的数学工具――微积分[11]。本世纪初,相对论与量子力学的思想一经形成,就可以在19世纪下半叶新兴的数学分支中找到相应的数学工具,如非欧几何学、张量分析、线性代数等等,这些方法上的成就不仅大大促进了现代物理学的进展,而且具有重大的方法论意义,为以后物理学的发展起了巨大的示范作用。

现代物理学的发展历程清楚地表明:物理学每前进一步,都伴随着方法上的重大革新和改进,自然观的改变,仿佛打开了一道方法学上的大门,在科学研究中,科学的理论陈述和与之相应的数学、逻辑和形而上学陈述一起组成了这个整体的知识场,现代物理学的发展已更清楚地表现出了理论与方法之间这种联动的特征。

但随着现代物理学的进一步发展,数学手段已显得不够得力,例如:目前关于大统一理论的研究难以取得有效的突破,不管超弦还是M理论[4],它们都刚刚起步,还有更长的路要走,究竟是相对论与量子力学两者自身难以统一,需要建立一种能取代二者的新理论,还是缺乏必要的数学处理方法及研究方法?这是科学家们目前亟需解决的问题。

值得注意的是,自弦论以来,人们开始注意到,似乎量子论的结构才是更为基本的,在弦论里,必须首先引进量子论,然后才导出大尺度上的时空结构。人们开始认识到,也许“自小而大”才是根本的解释宇宙的方法[4]。如今大多数弦论家都认为,量子论在其中扮演了关键的角色,量子结构不用被改正,只有更进一步地依赖量子的力量,超弦才会有一个比较光明的未来。

3.4 自然观和科学研究的相互促进 人类从古代开始到现在,经历了原始神话、宗教“自然观”、古代朴素自然观、形而上学自然观,直到产生了辩证唯物主义自然观的现在,可以说,自然观和科学研究是一种相互促进、相互推动的关系。

近代以来,随着实验科学的兴起和数学方法的应用,自然科学从自然哲学中独立出来,成为探索自然的排头兵,哲学的研究重心也从本体论转向认识论,但自然哲学仍然是哲学的一个研究领域。就自然观而言,由于中世纪宗教神学的熏陶,逐渐形成了有关自然界的有序、统一、服从简单性原理等观念,这种自然观深刻影响了近代自然科学的思维,尤其是当自然科学进入新的领域、遇到新的问题时,科学家都要从这些观念出发寻求解决的途径。

4 结束语

无论是何种自然观,都是先植根于当时的科学与自然认识的大环境,再从中吸取养分,经过深刻地思考与提炼进而产生的,从这一点说,任何一种自然观在其刚诞生之时,都是促进当时科学等方面学科的发展的,现代物理学的建立和发展,无疑对当前人类的自然观产生了深刻的影响,而新的自然观不仅影响了人类对自身的认识、对世界的认识,也改变了人类从事科学研究的手段和方法,由此开始了自然科学发展的新纪元,21世纪的曙光,交织着人类对未来的希望,已经投射出东方的地平线。

参考文献:

[1]魏凤文.当代物理学进展[M].江西 教育 出版社.1997.

[2]黄祖洽.现代物理学前沿选讲[M].科学出版社.2007.

[3]许良英,李宝恒等.爱因斯坦文集[M].商务印书馆.2009.

[4]曹天元.量子物理史话――上帝之骰子吗?[M].辽宁教育出版社.2011.

[5]何祚庥.唯物主义是否为现代科学实验所证伪[J].哲学研究.1992(8).

[6]刘霞.科技日报[N].2011.

[7]m Theory and the Schism in Physics [M].Rowman and Littlefield Prb.1982.

[8]H.赖辛巴哈.量子力学的哲学基础[M].商务印书馆.1966.

[9]Scientific American[G].1982(2).

[10]玻尔.原子物理学和人类知识[M].商务印书馆.1964.

[11]万小龙,殷正坤.当代物理学哲学研究途径浅析[J].哲学研究.1996(12).

物理及自然科学教学的有效开展要求教师优化教学设计,使物理及自然科学的教学内容更加有趣和易于理解,从而激发学生的学习信心和兴趣,提高物理及自然科学教学的质量和效果。本文从三个方面阐述了在中等师范学校中开展中等师范有效物理及自然科学教学的方式。

一、风趣讲课,创设轻松的教学氛围

教师是物理及自然科学教学的主导者,教师的一言一语都会受到学生的关注。教师只有提高自身的语言运用能力,采取风趣的讲课方式,才能营造出良好的教学氛围,减少学生上课的紧张感,同时也可以提高教材讲解的效率。如在正式开始上课前,教师可以问学生:“同学们,从古至今有三个有名的苹果,你们知道是哪三个吗?”大多数学生都摇头,纷纷说不知道。教师趁机解释:“第一个苹果,被夏娃和亚当吃了;第二个苹果,砸在牛顿头上了;第三个苹果,就是苹果手机啊!我们现在没有苹果,但是可以看看牛顿被苹果砸了之后,为物理及自然科学做了什么贡献。”教师的讲话会让学生觉得很有趣,同时对物理及自然科学课堂也有了更多的期待。这时,教师就可以讲解教材内容了。教师风趣的讲课不仅可以创设轻松的教学氛围,而且可以增加学生对物理及自然科学的喜爱之情,这都有利于物理及自然科学教学的有效开展。

二、实验导入,激发学生的学习好奇心

好奇心能够驱使人们积极思考,通过努力获得答案,从而得到心理上的满足。因此,在中等师范物理及自然科学教学中,教师应把握学生的心理特点,通过实验导入激发学生的好奇心,引导学生努力思考和认真听课。如教师可以问学生:“同学们,不同物体下降时的速度一样吗?它们会同时落到地上吗?”学生一时难以肯定地回答教师的问题,于是教师就可以做一个实验,选取几种不同的物体在同一时间从相同的高度抛下,然后与学生一起观察实验结果。当实验结果与学生的认知发生冲突时,学生一定很想弄清楚原因,这时教师就可以引入教材内容,解决学生的疑问,帮助学生学习和理解教材内容。

三、鼓励学生自己动手,加强对课本知识的理解

物理及自然科学教学之所以让学生觉得很难,主要原因是学生缺乏实践,难以验证和深入地理解所学的知识。动手实践有利于学生巩固课本知识,也有助于学生在实践中发现问题、解决问题,从而加深他们对知识的理解。因此,在中等师范的物理及自然科学教学中,教师应当鼓励学生多自己动手。如在讲关于摩擦力的知识时,教师就可以鼓励学生动手,采用不同的物体做实验,通过自己的实践发现摩擦力的大小与什么有关,然后再根据教材内容的讲解验证自己的实验结果和猜想。亲自动手可以让学生充分参与到教学当中,不仅体现了学生的学习主体地位,而且发挥了学生的主观能动性。所以,在中等师范物理及自然科学的教学中,教师应多鼓励学生动手,从而提高学生学习的自信心,强化学生对教材内容的理解和掌握。

四、 总结

中等师范物理及自然科学教学的有效开展,对学生知识的增长和能力的提高都有重要意义。因此,在物理及自然科学教学中,教师应当运用风趣的语言授课,积极导入实验,鼓励学生多动手,从而降低教学难度,激发学生的学习主动性,促使教学的有效开展。

物理力学小论文

世界上有确定的东西吗?

正如大家所知,1927年3月,海森堡在《量子论的运动学与动力学的知觉内容》论文中,提出了量子力学的另一种测不准关系,海森堡认为,科学研究工作宏观领域进入微观领域时,会遇到测量仪器是宏观的,而研究对象是微观的矛盾,在微观世界里,对于质量极小的粒子来说,宏观仪器对微观粒子的干扰是不可忽视的,也是无法控制点额,测量的结果也就同粒子的原来状态不完全相同。所以在微观系统中,不能使用实验手段同时准确的测出微观粒子的位置和动量,时间和能量。由数学推导,海森堡给出了一个测不准关系式: 。对于微观粒子一些成对的物理量,在这里指位置和动量,时间和能量,不能同时具有确定的数值,其中一个量愈确定,则另一个就愈不确定。所谓测不准关系,主要是普朗克常量h使量子结果与经典结果有所不同。如果h为零,则对测量没有任何根本的限制,这是经典的观点;如果h很小,在宏观情况下,仍然能以很大的精确性同时测定动量与位置或能量与时间的关系,但是在微观的场合就不能同时测定。实验表明,决定微观系统的未来行为,只能是观察结果所出现的概率,测不准关系已经被认为是微观粒子的客观特性。

海森堡提出了测不准关系后,立即在哥本哈根学派中引起了强烈的反响,泡利欢呼“现在是量子力学的黎明”,玻尔试图从哲学上进行概括。1927年9月,玻尔在与意大利科摩召开的国际物理学会议上提出了著名的“互补原理”,用以解释量子现象基本特征的波粒二象性,它认为量子现象的空间和时间坐标和动量守恒定律,能量守恒定律不能同时在同一个实验中表现出来,而只能在互相排斥的实验条件下出来不能统一与统一图景中,只能用波和粒子这些互相排斥的经典概念来反映。波和粒子这两个概念虽然是互相排斥的,但两者在描写量子现象是却又是缺一不可的。因此玻尔认为他们二者是互相补充的,量子力学就是量子现象的终极理论。“互补原理”实质上是一种哲学原理,称为量子力学的“哥本哈根解释”。30年代后成为量子力学的“正统”解释,波恩称此为“现代科学哲学的顶峰。”

1927年10月在布鲁塞尔第五届索尔卡物理学会议上,量子力学的哥本哈根解释为许多物理学家所接受,同时也受到爱因斯坦等一些人的强烈反对。爱因斯坦为此精心设计了一系列理想实验,企图超越不确定关系的限制来揭露量子力学理论的逻辑矛盾。玻尔和海森堡等人则把量子理论同相对论作比较,有利地驳斥了爱因斯坦。1930年10月第六届索尔卡物理学会议上,爱因斯坦又绞尽脑汁提出了一个“光子箱”的理想实验,

向量子力学提出了严峻的挑战。光子箱的结构很简单,一个匣子挂在弹簧称上,一个相机快门一样的装置控制匣子内光子的射出。每次射出光子的时间由快门控制,弹簧称上可以读出整个盒子因光子出射而减少的质量,根据大名鼎鼎的爱因斯坦质能关系: 得出光子的能量,这样原则上时间和能量不存在不能同时确定的问题。
据说玻尔看到这个装置登时口吐白沫,经过紧急抢救时的输氧加上彻夜的苦思之后,玻尔终于搬来了救星,呵呵,那竟然是爱因斯坦本人的广义相对论。发射出光子后,光子箱的质量减少纵然可以精确测出,然而弹簧秤收缩,引力势能减小,根据广义相对论的引力理论,箱子中的时钟会走慢,归根到底时间又是不确定了。
这次轮到爱因斯坦吐血三天了,他费尽心思找来的实验居然成了量子力学测不准关系的绝妙证明,还被玻尔等人堂而皇之的载入他们的论文之中。

既然在微观状态下,存在测不准关系,那么在宏观状态下,还存在测不准关系吗?这个我们应该能得出结论:当然存在测不准关系。我们做实验的时候,一旦到了处理实验数据就要同时算出相应的不确定度。这是为什么呢?测量结果都具有误差,误差自始至终存在于一切科学实验和测量的过程之中。任何测量仪器、测量环境、测量方法、测量者的观察力都不可能做到绝对严密,这就使测量不可避免地伴随着有误差产生。因此,分析测量可能产生的各种误差,尽可能可消除其影响,并对测量结果中未能消除的误差做出估计,就是物理实验和许多科学实验中必不可少的工作。但是,我们只能尽力减小误差,却不能消除它。

从上面可以看得出,世界上是不存在测得准的东西的,正所谓世界是辩证统一的,事物是相互影响的,既存在相对性,又存在绝对性。事物的测不准关系,就因为它既有相对性,又有绝对性,而我们通常所说的某某物重多少,高多少,等等看似绝对的数据其实是相对的。在某一个时段里,物体趋向于某个值的概率最大,因而我们就把这个值称作在这个时段里的相对准确值,它本是使不可能测准的。事物之间又存在着相互作用,因而又由于相互作用是具体的,因而是有限的,具有一定的认识意义;而本体则是抽象的,因而是无限的,并不具有任何确定的认识意义。所以,世界上并不存在确定的东西。

参考文献:
张三慧,《大学物理学<量子物理>》清华大学出版社2000年8月第二版34页35页
李士本,张力学,王晓峰《自然科学简明教程》,浙江大学出版社2006年2月第一版,68页.72页
资料来源:

上一篇:职称论文查重率30是什么概念

下一篇:大学物理论文3000字静电场学