等额本息和等额本金数学模型论文
等额本息和等额本金数学模型论文
先把这两种还贷方式的计算公式推导出来,再可以举些例子说明两种还贷法的优劣,可以用数据列表来表示,再可以变化条件,比如变化贷款期限、提前还贷等,说明各种情况下贷款者的有利与不利的地方 。。。。。等等,可以是一篇不错的小论文了
我要提问急求数学建模优秀论文
建模论文建模论文写作指导
(一)、建模论文的标准组成部分
建模论文作为一种研究性学习有意义的尝试,可以锻炼学生发现问题、解决问题的能力.一般来说,建模论文的标准组成部分由论文的标题、摘要、正文、结论、参考文献等部分组成.现就每个部分做个简要的说明.
1. 题目
题目是给评委的第一印象,所以论文的题目一定要避免指代不清,表达不明的现象.建议将论文所涉及的模型或所用的计算方式写入题目.如“用概率方法计算商场打折与返券的实惠效应”.
2. 摘要
摘要是论文中重要的组成部分.摘要应该使用简练的语言叙述论文的核心观点和主要思想.如果你有一些创新的地方,一定要在摘要中说明.进一步,必须把一些数值的结果放在摘要里面,例如:“我们的最终计算得出,对于消费者来说,打折比返券的实惠率提高了23%.”摘要应该最后书写.在论文的其他部分还没有完成之前,你不应该书写摘要.因为摘要是论文的主旨和核心内容的集中体现,只有将论文全部完成且把论文的体系罗列清楚后,才可写摘要.
摘要一般分三个部分.用三句话表述整篇论文的中心.
第一句,用什么模型,解决什么问题.
第二句,通过怎样的思路来解决问题.
第三句,最后结果怎么样.
当然,对于低年级的同学,也可以不写摘要.
3. 正文
正文是论文的核心,也是最重要的组成部分.在论文的写作中,正文应该是从“提出问题—分析问题—选择模型—建立模型—得出结论”的方式来逐渐进行的.其中,提出问题、分析问题应该是清晰简短.而选择模型和建立模型应该是目标明确、数据详实、公式合理、计算精确.在正文写作中,应尽量不要用单纯的文字表述,尽量多地结合图表和数据,尽量多地使用科学语言,这会使得论文的层次上升.
4. 结论
论文的结论集中表现了这篇论文的成果,可以说,只有论文的结论经得起推敲,论文才可以获得比较高的评价.结论的书写应该注意用词准确,与正文所描述或论证的现象或数据保持绝对的统一.并且一定要对结论进行自我点评,最好是能将结论推广到社会实践中去检验.
5. 参考资料
在论文中,如果使用了其他人的资料.必须在论文后标明引用文章的作者、应用来源等信息.
以下是我找的两篇获奖论文
房贷应该怎么还才合理
摘要及关键词:
本论文主要讨论了怎样还房贷才合理。
关键词: 房贷 本金 利率 等额本金 等额本息
一.问题的提出
随着经济的发展,金融正越来越多的进入普通人的生活;贷款,保险,养老金和信用卡;个人住房抵押贷款是其中重要的一项。
当今社会中,热度最高的话题当属“买房子”。而北京目前房价都在3、4万一平米左右,使人们不得不选择进行贷款。而去银行贷款其实也是一门学问,究竟应该怎样还房贷才合适呢?
下面数据为最近公布的银行贷款利率
短期贷款:
中长期贷款:
六个月以内(含六个月):5.60
一至三年(含三年)6.10
六个月至一年(含一年)6.06
三年至五年(含五年)6.45
五年以上6.60
二.模型的假设
1.银行在贷款期利率不变
2.在这段期间内不考虑经济波动的影响
3.客户在还款期内还款能力不变,而且不提前还款
三.模型建立
符号规定
A : 客户向银行贷款的本金
B : 客户平均每期应还的本金
C : 客户应向银行还款的总额
D : 客户的利息负担总和
α: 客户向银行贷款的月利率
β: 客户向银行贷款的年利率
m : 贷款期
n : 客户总的还款期数
根据我们的日常生活常识,我们可以得到下面的关系:
(1) (2) (3)
两种比较常见的还款方式
(1)等额本息还款
把按揭贷款的本金总额与利息总额相加,然后平均分摊到还款期限的每个月中。作为还款人,每个月还给银行固定金额。
(2)等额本金还款
又称利随本清、等本不等息还款法。贷款人将本金分摊到每个月内,同时付清上一交易日至本次还款日之间的利息。
等额本息还款模型
(1)贷款期在1年以上:
先假设银行贷给客户的本金是在某个月的1号一次到位的. 客户的合同里规定说,在本金到位后的下个月1号开始还钱,且设在还款期内年利率不变.
因为一年的年利率是β,那么,平均到一个月就是(β/12),也就是月利率α,
即有关系式:
设每月均还款总额是x(元)
(i=1…n)是客户在第i期1号还款前还欠银行的金额
(i=1…n) 是客户在第i期1号还钱后欠银行的金额.
根据上面的分析,有
第1期还款前欠银行的金额:
第1期还款后欠银行的金额:
……
第i期还款前欠银行的金额:
第i期还款后欠银行的金额:
……
第n期还款前欠银行的金额:
第n期还款后欠银行的金额:
因为第n期还款后,客户欠银行的金额就还清. 也就是说:
,
即:
解方程得:
这就是月均还款总额的公式.
因此,客户总的还款总额就等于:
利息负担总和等于:
等额本金还款模型
假设贷款期在1年以上.
设客户第i期应付的金额为 (i=1…n) (单位:元)
因此,客户第一期应付的金额为 :
第二期应付的金额为 :
那么,客户第n期应付的金额为 :
累计应付的还款总额为 :
利息负担总和为 :
四.模型求解
某一个人从银行贷款100万元,贷款期限为五年,即分60次还款,贷款利率为6.45,每次还款金额见下表:
等额本息还款 元 等额本金还款
第一次 19542.7 21952.41
第二次 19542.7 21862.83
第三次 19542.7 21773.24
第四次 19542.7 21683.66
第五次 19542.7 21594.07
第十次 19542.7 21146.15
第二十次 19542.7 20250.30
第三十次 19542.7 19354.45
第四十次 19542.7 18458.6
第五十次 19542.7 17562.7
第六十次 19542.7 16666.89
总还款金额 117 116万
贷款二十年
等额本息还款 等额本金还款
第一次 7514.72 9643.75
第二次 7514.72 9620.84
第三次 7514.72 9597.92
第四次 7514.72 9575
第五次 7514.72 9552.09
第十次 7514.72 9543.5
第20次 7514.72 9208.34
第50次 7514.72 8520.84
第80次 7514.72 7833.34
第100次 7514.72 7375
第150次 7514.72 6229.17
第180次 7514.72 5541.67
第200次 7514.72 5083.33
第210次 7514.72 4854.17
第220次 7514.72 4625
第230次 7514.72 4395.83
第240次 7514.72 4166.67
总还款 180万 166万
贷款三十年
等额本息还款 等额本金还款
第一次 6386.59 8262.5
第二次 6386.59 8247.22
第三次 6386.59 8231.95
第四次 6386.59 8216.67
第五次 6386.59 8201.39
第十次 6386.59 8125
第二十次 6386.59 7972.22
第五十次 6386.59 7513.89
第一百次 6386.59 6750
第一百五十次 6386.59 5986.11
第二百次 6386.59 5222.22
第二百五十次 6386.59 4458.33
第三百次 6386.59 3694.44
第三百一十次 6386.59 3541.67
第三百二十次 6386.59 3388.89
第三百三十次 6386.59 3236.11
第三百四十次 6386.59 3083.33
第三百五十次 6386.59 2939.55
第三百六十次 6386.59 2777.78
总还款 229万 199万
五.模型分析
等额本金还款:适合目前收入较高的人群。借款人在开始还贷时,每月负担比等额本息要重。随着时间推移,还款负担便会逐渐减轻。这种还款方式相对同样期限的等额本息法,总的利息支出较低。
等额本息还款法的特点是每个月归还一样的本息和,容易作出预算。还款初期利息占每月供款的大部分,随本金逐渐返还供款中本金比重增加。等额本息还款法更适用于现期收入少,预期收入将稳定或增加的借款人,或预算清晰的人士和收入稳定的人士。
六.模型应用
该模型可在实践中应用,每一个贷款买房者可应用这个模型,并根据自己的条件和承受能力,对各种贷款方案进行优选。
ETC收费与停车收费成本比较
现在面对严重的高速公路堵车问题,我们真的手足无措吗?几年前,速通公司推出了ETC不停车收费系统,这本应该能很大程度上缓解高速公路收费站拥堵的情况,但实际效果却并不理想。我们觉得 主要原因是ETC成本太高,一台机器要450元钱,于是很多人宁可花时间在路上等。
其实,如果我们仔细算一下成本,便会对这个问题有更新的认识。
我们的几个平均参数:车重m=1.4t,轮胎与地面摩擦系数u=0.17,
汽油热值q= J/kg,93汽油价格7.85元/升(10.68元/千克),发动机空转功率p= 17 kw ,热效率为23%。
一般汽车在出高速时,车道一般有几辆车在排队,我们平均为5辆。每辆车交费时间平均为10s。这样每辆车在收费时启动制动5次,等待50秒。每次启动速度由0到10mph,启动距离为5米。
由此我们推算;
1启动时耗油,设为 ,由能量守恒得到等式 ,代入数据后得到 =7.7g。
2 等待10秒时油耗, = = 16.1g
所以每次汽车出高速要消耗 =119g 汽油,约合1.3元。如果按每周走一次高速算,一年52次就是67.6元,6年下来花在高速收费站毫无意义的油钱就是473.2元,而这钱已经够买一台ETM机了。除去油钱,每次交费时断断续续的启动和刹车,也会对发动机和刹车片造成不小的损耗,增加额外的维修费用。还有很重要的一点是浪费的时间,每次平均要50秒,如果遇上高峰期,几公里长的车队几米几米的向前动,耽误的时间就更别提了。所以综合以上因素考虑,如果汽车在六年内经常走高速的话,使用ETC的成本是要低于停车收费的。
从车主的角度考虑,汽车配备了ETC机,可以在不太高的车速下完成交费。既省下了频繁启动和等待浪费的油钱,也减少了对发动机刹车片的磨损,还省下了很多时间。
从路政部门的角度考虑,如果停车收费,需要在收费站投入大量的纸张、油墨和计算机处理系统并安排相应的工作人员,收上的钱还需要汇总转移一次才能存入银行,既耗材又麻烦。如果使用ETC系统,就可以无纸化收费,无需工作人员进行处理,车主交的钱可以直接与账户挂钩,省下了很多步骤。所以从这些方面考虑,ETC系统可以降低路政部门在收费站投入的成本。
从环境的角度考虑,汽车在刹车和等待时会排放大量的尾气,达正常行驶时的几倍,尤其是在高峰期收费站拥堵时,几百两几千两汽车堵在几公里路上,尾气的排量和密度是大的惊人的。使用ETC系统可以很有效地缓解收费站拥堵的情况,从而减轻汽车尾气对收费站周围环境的影响。
综合以上因素,无论从车主成本、路政部门还是环境角度考虑,使用ETC系统都会起到很大的积极作用。我们在ETC系统的购买上还有两个建议,就是路政部门是不是也可以帮车主分担些费用,因为这对双方都有利;或许政府还可以出台相关政策,在汽车出厂时就配备ETC机,把这笔钱算在购车成本里,并给予相应补贴之类的。
总之越多的车辆配备了ETC机,高速收费站就会越畅通
望楼主采纳。。。。。。。。。。。。。。。。。。。。。很辛苦的。。
有没有等额本息贷款买房最优提前还贷的计算公式或数学模型
1.问题的提出
某人购房,需要贷款,有等额本息还款法和等额本金还款法两种还款方式。贷款40年,还款期10年,分别求:
(1)月供金额。
(2)总的支付利息。
比较两种还款法,给出自己的方案。
2.问题的分析
目前有两种还款方式。等额本息还款法:每月以相等的额度平均偿还贷款本息,直至期满还清,容易作出预算。还款初期利息占每月供款的大部分,随本金逐渐返,还供款中本金比重增加。等额本息还款法更适用于现期收入少,预期收入将稳定或增加的借款人,或预算清晰的人士和收入稳定的人士。而等额本金还款法:每期还给银行相等的本金,但客户每月的利息负担就会不同. 利息负担应该是随本金逐期递减。借款人在开始还贷时,每月负担比等额本息要重。但随着时间推移,还款负担便会减轻。所以我们可知等额本金还款法适合目前收入较高的人群。
假设小李夫妇能够支付这两种不同的还款方式,我们需要帮助他建立等额本息和等额本金还款法的数学模型,以选择最佳还款方式。
根据问题一和问题二,需分别建立两种还款方式的模型,并分别求出其月供金额和总的支付利息。
3.问题的假设
为了使问题更加明了清晰,便于计算,同时便于扩展因此特作如下假设:
1.假设该人每月能够按时支付房屋贷款所需的还款金额。
2.假设贷款年利率确定,无论还款期为多少年,在还款期间均为6%保持不变。
3.假设银行贷给该人的本金是在某个月的1号一次到位的,在本金到位后的下个月1号开始还钱。
4.问题的参数
问题参数约定如下:
A :客户向银行贷款的本金
B :客户平均每期应还的本金
C :客户应向银行还款的总额
D :客户的利息负担总和
α: 客户向银行贷款的月利率
β: 客户向银行贷款的年利率
m :贷款期
n :客户总的还款期数
根据我们的日常生活常识,我们可以得到下面的关系:
(1)(2)(3)
5.模型的建立与求解
5.1等额本息还款模型的求解:
(1)贷款期在1年以上:
先假设银行贷给客户的本金是在某个月的1号一次到位的. 在本金到位后的下个月1号开始还钱,且设在还款期内年利率不变.
因为一年的年利率是β,那么,平均到一个月就是(β/12),也就是月利率α,
即有关系式:
设月均还款总额是x(元)
(i=1…n)是客户在第i期1号还款前还欠银行的金额
(i=1…n)是客户在第i期1 号还钱后欠银行的金额.
根据上面的分析,有
第1期还款前欠银行的金额:
第1期还款后欠银行的金额:
第2期还款前欠银行的金额:
第2期还款后欠银行的金额:
……
第i期还款前欠银行的金额:
第i期还款后欠银行的金额:
……
第n期还款前欠银行的金额:
第n期还款后欠银行的金额:
因为第n期还款后,客户欠银行的金额就还清. 也就是说:
,
即:
解方程得:
这就是月均还款总额的公式.
因此,客户总的还款总额就等于:
利息负担总和等于:
(2) 1年期的贷款,银行一般都是要求客户实行到期一次还本付息,利随本清. 因此,1年期的还款总额为:
而利息负担总和为:
5.2等额本金还款模型的求解
银行除了向客户介绍上面的等额本息还款法外,还介绍另一种还款方法:等额本金还款法(递减法):每期还给银行相等的本金,但客户每月的利息负担就会不同. 利息负担应该是随本金逐期递减. 因此,客户每月除付给银行每期应付的本金外,还要付给银行没还的本金的利息.
(1)假设贷款期在1年以上.
等额本金还款法:每期还给银行相等的本金,但客户每月的利息负担不同。利息负担随本金的偿还逐期递减。所以客户每期应付金额中包含固定本金和一定利息。
设客户第i期应付的金额为( i = 1,2 …,n ) (单位:元)
因此,客户第一期应付的金额为:
第二期应付的金额为:
计算一下,如果选择等额本金还款法,那么,在第53期,应该还银行4450.00元,在第53期,应该还银行4433.33元,与等额本息每月4440.82元相当. 而在第120期(若年利率不变),应该还银行3333.33元,即最后一次只还本金。可以看出,等额本金还款法的还款金额是逐级递减的。而且对于每月4440元的收入,等额本息还款法还款会更合适.
……
那么,客户第n期应付的金额为 :
累计应付的还款总额为 :
利息负担总和为 :
(2)1年期的贷款,银行都要求客户实行到期一次还本付息,利随本清. 因此,1年期的还款总额为:
而利息负担总和为:
6.结果分析与检验
6.1举例说明
以向银行贷款40万买房子,10年还款期为例. 比较等额本息和等额本金两种还款方法:
(1)等额本息:
利用上文模型求解得的公式可知
总的还款期数 n=12m=12×10=120
客户向银行贷款的月利率α=β/12=0.5%
月供金额(月均还款总额)
(单位:元)
客户总的还款总额就等于:
利息负担总和等于:
(2)等额本金:
月供金额(客户第n期应付的金额)
客户每期应还的本金
所以月供金额如下:
=5316.66
=5300.00
=5283.33
……
=4450.00
=4433.33
……
=3333.33
累计应付的还款总额为 :
=519000.00
利息负担总和为 :
=119000.00
计算贷款40万的两种还款方式所得各项数据对比如下表:
(年利率为6% 来计算(单位:元))
贷款期限(年)
年利率(%)
还款总额
利息负担总和
月均还款总额
10(等额本息)
6
532898.41
132898.41
4440.82
10(等额本金)
6
519000.00
119000.00
5313.66(第1期)
比较(相差)
------
13898.41
13898.41
------
虽然等额本金还款法比等额本息还款法要还更少的钱,但开头的几期或几十期的负担相对的会很重. 而等额本息还款法是每月还银行相等的金额,客户的负担没那么大,所以,银行一般都推荐等额本息还款法.
考虑到当前的利率情况,如提前还贷,应选择等额本金还款法。
6.2其他还款方式
银行推出不同的房贷方式,只是为了满足收入情况不同的各种借款人的需要。虽然理论上总还款额比较少的比较核算,实际生活中要看是否适合自己的经济状况。选择还款方式的关键是要与自己的收入趋势相匹配,尽量使收入曲线和供款相一致。在有还贷能力情况下尽量选择总还款额比较少。
等额本金还款:适合目前收入较高的人群。借款人在开始还贷时,每月负担比等额本息要重。随着时间推移,还款负担便会逐渐减轻。这种还款方式相对同样期限的等额本息法,总的利息支出较低。
等额本息还款法的特点是每个月归还一样的本息和,容易作出预算。还款初期利息占每月供款的大部分,随本金逐渐返还供款中本金比重增加。等额本息还款法更适用于现期收入少,预期收入将稳定或增加的借款人,或预算清晰的人士和收入稳定的人士,
固定利率:进入加息周期较合算目前国内借款人与银行已签订的房贷合同都是浮动利率的,央行每一次加息,借款人的月供就要有相应地增加。在贷款合同签订时,即设定好固定的利率,不论贷款期内利率如何变动,借款人都按照固定的利率支付利息,但风险较大。
按期付息还本:适合房产投资客,借款人通过和银行协商,为贷款本金和利息归还制订不同还款时间单位。即自主决定按月、季度或年等时间间隔还款。实际上,就是借款人按照不同财务状况,把每个月要还的钱凑成几个月一起还。
还可以有递增法,气球贷等等,核心都是根据贷款人经济实力制定不同时期的本金和利息的还款额,理论上占用时间越少越省钱。
上一篇:硕士论文答辩ppt内容怎么写
下一篇:本科毕业论文参考文献格式模板