欢迎来到学术参考网
当前位置:发表论文>论文发表

主成分分析和因子分析应用论文

发布时间:2023-12-08 02:41

主成分分析和因子分析应用论文

主成分分析和因子分析都是信息浓缩的方法,即将多个分析项信息浓缩成几个概括性指标。

因子分析在主成分基础上,多出一项旋转功能,该旋转目的即在于命名,更容易解释因子的含义。如果研究关注于指标与分析项的对应关系上,或是希望将得到的指标进行命名,SPSSAU建议使用因子分析。

主成分分析目的在于信息浓缩(但不太关注主成分与分析项对应关系),权重计算,以及综合得分计算。如希望进行排名比较,计算综合竞争力,可使用主成分分析。

SPSSAU可直接使用这两种方法,支持自动保存因子得分及综合得分,不需要手动计算。

主成分分析和因子分析的异同及应用

第一:两种的函数构成相反,因子分析在于发现潜在的影响因素,是可观测自变量之外潜在的因素,主成分则是自变量的系数聚合;
第二:因子分析给出的重要结果又两个,第一个是因子的命名,也就是潜在的因素,需要命名。第二个是每个因子所占的权重,附加的可以得到每个变量所占的权重。而主成分分析则主要是综合得分和得分的比较。
第三:如果仅从因子综合得分和主成分得分用于综合评价的话,没什么大地区别,计算出各自得分后进行大小排序,比较,就是结果了。

数据挖掘总结之主成分分析与因子分析

数据挖掘总结之主成分分析与因子分析
主成分分析与因子分析
1)概念:
主成分分析概念:主成分分析是把原来多个变量划为少数几个综合指标的一种统计分析方法。主成分分析(PCA)是一种数据降维技巧,它能将大量相关变量转化为一组很少的不相关变量,这些无关变量称为主成分。
PCA的目标是用一组较少的不相关变量代替大量相关变量,同时尽可能保留初始变量的信息,这些推导所得的变量称为主成分,它们是观测变量的线性组合。
因子分析概念:探索性因子分析(EFA)是一系列用来发现一组变量的潜在结构的方法。通过寻找一组更小的、潜在的或隐藏的结构来解释已观测到的、显式的变量间的关系。进行EFA需要大量的样本,一般经验认为如何估计因子的数目为N,则需要有5N到10N的样本数目。
PCA/EFA 分析流程:
(1)数据预处理;PCA和EFA都是根据观测变量间的相关性来推导结果。用户可以输入原始数据矩阵或相关系数矩阵列到principal()和fa()函数中,若输出初始结果,相关系数矩阵将会被自动计算,在计算前请确保数据中没有缺失值;
(2)选择因子分析模型。判断是PCA(数据降维)还是EFA(发现潜在结构)更符合你的分析目标。选择EFA方法时,还需要选择一种估计因子模型的方法(如最大似然估计)。
(3)判断要选择的主成分/因子数目;
(4)选择主成分/因子;
(5)旋转主成分/因子;
(6)解释结果;
(7)计算主成分或因子得分。
2)、因子分析与主成分分析的区别
①原理不同
主成分分析基本原理:利用降维(线性变换)的思想,每个主成分都是原始变量的线性组合,且各个主成分之间互不相关。
因子分析基本原理:利用降维的思想,从数据中提取对变量起解释作用的少数公共因子(因子分析是主成分的推广,相对于主成分分析,更倾向于描述原始变量之间的相关关系)
②侧重点不同
主成分分析侧重“变异量”,主成分分析是原始变量的线性组合,得出来的主成分往往从业务场景的角度难以解释
因子分析更重视相关变量的“共变异量”,因子分析需要构造因子模型:EFA中的原始变量是公共因子的线性组合,因子是影响变量的潜在变量,目的是找到在背后起作用的少量关键因子,因子分析的结果往往更容易用业务知识去加以解释
③ 因子分析的评价结果没有主成分分析准确; 因子分析比主成分分析的计算工作量大
主成分分析:原始变量的线性组合表示新的综合变量,即主成分;
EFA和PCA的区别在于:PCA中的主成分是原始变量的线性组合,而EFA中的原始变量是公共因子的线性组合,因子是影响变量的潜在变量,变量中不能被因子所解释的部分称为误差,因子和误差均不能直接观察到。进行EFA需要大量的样本,一般经验认为如何估计因子的数目为N,则需要有5N到10N的样本数目。

主成分分析法和因子分析法哪个用起来简单?

两个方法基本相同,只是因子分析是在主成分基础上,多出一步旋转步骤,为了让提取的成分更容易命名。两种方法都可以在网页版spssau中使用,配合智能文字建议和帮助手册可以能快理解。

如果说研究目的完全在于信息浓缩,并且找出因子与分析项对应关系,建议用因子分析。主成分分析更多用于权重计算,以及综合得分计算。

因子分析-SPSSAU

主成分分析-SPSSAU

上一篇:了不起的盖茨比论文2500字

下一篇:大学生团队建设论文3000字