欢迎来到学术参考网
当前位置:发表论文>论文发表

数学科普小文章

发布时间:2023-12-08 02:41

数学科普小文章

思路:根据题目数学科普小论文展开,并结合实际情况加以说明。

今天,我在做题时被一道应用题给难住了。这道题的题目是:小华今年3岁,今年爸爸26岁,几年后爸爸的年龄是小华的3倍,我百思不得其解。

后来妈妈回来了,我就请教妈妈。妈妈帮我分析:根据这个题目的条件可知,今年爸爸和小华的“年龄差”是26-4=24(岁)。再根据“爸爸的年龄是小华的3倍”这一关系,画张图试试。我们俩就开始画了起来。

画了图之后,我马上明白过来了:他们俩过了几年后,“年龄差”还是24岁。再根据差倍问题的解法求出几年后小华的年龄,用几年后小华的年龄减去2岁,就可以求出中间经过了几年了。

解是:26-2=24(岁)

24÷(3—1)=12(岁)

12-2=10(年)

答:10年后爸爸的年龄是小华的3倍。

妈妈又让我验算一下,10年后爸爸的年龄是不是小华的3倍。

(26+10)÷(2+10)=36÷12=3

耶!我答对了。看来做题先得画图,画了图就能就一目了然了。

生活中的数学知识500字科普文

一元一次函数在我们的日常生活中应用十分广泛。当人们在社会生活中从事买卖特别是消费活动时,若其中涉及到变量的线性依存关系,则可利用一元一次函数解决问题。
例如,当我们购物、租用车辆、入住旅馆时,经营者为达到宣传、促销或其他目的,往往会为我们提供两种或多种付款方案或优惠办法。这时我们应三思而后行,深入发掘自己头脑中的数学知识,做出明智的选择。俗话说:“从南京到北京,买的没有卖的精。”我们切不可盲从,以免上了商家设下的小圈套,吃了眼前亏。
下面,我就为大家讲述我亲身经历的一件事。
随着优惠形式的多样化,“可选择性优惠”逐渐被越来越多的经营者采用。一次,我去“物美”超市购物,一块醒目的牌子吸引了我,上面说购买茶壶、茶杯可以优惠,这似乎很少见。更奇怪的是,居然有两种优惠方法:(1)卖一送一(即买一只茶壶送一只茶杯);(2)打九折(即按购买总价的90% 付款)。其下还有前提条件是:购买茶壶3只以上(茶壶20元/个,茶杯5元/个)。由此,我不禁想到:这两种优惠办法有区别吗?到底哪种更便宜呢?我便很自然的联想到了函数关系式,决心应用所学的函数知识,运用解析法将此问题解决。
我在纸上写道:
设某顾客买茶杯x只,付款y元,(x>3且x∈N),则
用第一种方法付款y1=4×20+(x-4)×5=5x+60;
用第二种方法付款y2=(20×4+5x)×90%=4.5x+72.
接着比较y1y2的相对大小.
设d=y1-y2=5x+60-(4.5x+72)=0.5x-12.
然后便要进行讨论:
当d>0时,0.5x-12>0,即x>24;
当d=0时,x=24;
当d<0时,x<24.
综上所述,当所购茶杯多于24只时,法(2)省钱;恰好购买24只时,两种方法价格相等;购买只数在4—23之间时,法(1)便宜.
可见,利用一元一次函数来指导购物,即锻炼了数学头脑、发散了思维,又节省了钱财、杜绝了浪费,真是一举两得啊!
二、一元二次函数的应用
在企业进行诸如建筑、饲养、造林绿化、产品制造及其他大规模生产时,
其利润随投资的变化关系一般可用二次函数表示。企业经营者经常依据这方面的知识预计企业发展和项目开发的前景。他们可通过投资和利润间的二次函数关系预测企业未来的效益,从而判断企业经济效益是否得到提高、企业是否有被兼并的危险、项目有无开发前景等问题。常用方法有:求函数最值、某单调区间上最值及某自变量对应的函数值。

三、三角函数的应用
三角函数的应用极其广泛,这里仅讲最简的也是最常见的一类——锐角三角函数的应用:“山林绿化”问题。
在山林绿化中, 须在山坡上等距离植树,且山坡上两树之间的距离投影到平地上须同平地树木间距保持一致。(如左图)因此,林业人员在植树前,要计算出山坡上两树之间的距离。这便要用到锐角三角函数的知识。
如右图,令C=90 ,B=α ,平地距为d,山坡距为r,则secα=secB =AB/CB=r/d. ∴r=secα×d这个问题至此便迎刃而解了。
第二部分 不等式的应用
日常生活中常用的不等式有:一元一次不等式、一元二次不等式和平均值不等式。前两类不等式的应用与其对应函数及方程的应用如出一辙,而平均值不等式在生产生活中起到了不容忽视的作用。下面,我主要谈一下均值不等式和均值定理的应用。
在生产和建设中,许多与最优化设计相关的实际问题通常可应用平均值不等式来解决。平均值不等式知识在日常生活中的应用,笔者虽未亲身经历,但从电视、报纸等新闻媒体及我们所做的应用题中不难发现,均值不等 式和极值定理通常可有如下几方面的极

有趣的数学科普小知识有哪些?

有趣的数学科普小知识如下:

一、阿拉伯数字

阿拉伯数字是古代印度人发明的,后来传到阿拉伯,又从阿拉伯传到欧洲,欧洲人误以为是阿拉伯人发明的,就把它们叫做“阿拉伯数字”。因为流传了许多年,人们叫得顺口,所以至今人们仍然将错就错,把这些古代印度人发明的数字符号叫做阿拉伯数字。

二、九九歌

九九歌就是我们现在使用的乘法口诀。远在公元前的春秋战国时代,九九歌就已经被人们广泛使用。在当时的许多著作中,都有关于九九歌的记载。最初的九九歌是从“九九八十一”起到“二二如四”止,共36句。因为是从“九九八十一”开始,所以取名九九歌。

大约在公元五至十世纪间,九九歌才扩充到“一一如一”。大约在公元十三、十四世纪,九九歌的顺序才变成和现在所用的一样,从“一一如一”起到“九九八十一”止。现在我国使用的乘法口诀有两种,一种是45句的,通常称为“小九九”;还有一种是81句的,通常称为“大九九”。

三、莫比乌斯环

莫比乌斯环是一种拓扑学结构,它只有一个面和一个边界。可以用一根纸条扭转成180度后,两头再粘接起来,就形成了莫比乌斯环。

莫比乌斯环沿着中线剪开,第一次,可以得到一个更大的环;第二次及以后,每次都会得到两个互相嵌套的环。中间永远不会断开,这也是莫比乌斯环的神奇之处。

四、克莱因瓶

在1882年,著名数学家菲利克斯·克莱因发现了后来以他的名字命名的著名“瓶子”:克莱因瓶。克莱因瓶就像是一个瓶子,但是它没有瓶底,它的瓶颈被拉长,然后似乎是穿过了瓶壁,最后瓶颈和瓶底圈连在了一起。有趣的是,如果把克莱因瓶沿着它的对称线切下去,竟会得到两个莫比乌斯环。

五、黄金分割

黄金分割提出者是毕达哥拉斯。

有一次,毕达哥拉斯路过铁匠作坊,被叮叮当当的打铁声迷住了。为了揭开这些声音的秘密,他测量了铁锤和铁砧的尺寸,发现它们存在着十分和谐的比例关系。回家后,他取出一根线,分为两段,反复比较,最后认定1:0.618的比例最为优美。这个比例被公认为是最能引起美感的比例,因此被称为黄金分割。

求20篇数学小故事。

数学王子的速算法
十八世纪,德国诞生了一名伟大的科学家高斯(Gauss, Carl Friedrich, 1777-1855),他是当代最杰出的天文学家和数学家。有「数学王子」之称的高斯是近代数学的奠基者之一,可以与 阿基米德丶牛顿丶尤拉并列。
高斯年幼时已表现出超卓的数学才华。当他还在念小学时,某天老师要求学生们计算以下的算式:      1 + 2 + 3 + … + 100
对於小学生来说,这是一条不简单的加法运算。然而高斯却能轻易地把正确答案5050写出。
究竟高斯用了甚麽方法,可以如此快速地计算出结果呢?原来他发现,先把1与100相加,得到101;2与99相加,也得出101;再一直加下去,共有50个101,因此这个算式的结果是101 50 = 5050。
高斯就是这样巧妙地利用运算的规律迅速地解决了问题。你明白个中的奥妙之处吗?
事实上,我们可用公式来计算首n个正整数的和,即1 + 2 + 3 + … + n。同时,这个公式亦是三角形数通项的公式。

巧量金字塔 ── 泰勒斯
泰勒斯(Thales,约公元前625 - 公元前574),生於小亚细亚西南海岸米利都,是古希腊的数学家丶天文学家和哲学家。泰勒斯是一个很精明的商人,由於他预见橄榄油果会丰收,藉着租借及出售制造橄榄油的设备,而赚了不少钱,使他有足够的金钱作科学研究及旅行之用。
泰勒斯喜欢四处旅行,相传他在埃及游历时,法老王命令祭师们量度金字塔(法老王的坟墓)的高度,祭师们为此而大伤脑筋。为了帮助祭师们解决困难,於是泰勒斯利用一个巧妙的方法量度金字塔的高度。
泰勒斯在金字塔的旁边竖立一条木柱,当木柱的影子的长度和木柱的长度相等时,只要量度金字塔的影子的长度,便可得出金字塔的高。由此可见泰勒斯的数学及科学才能。

毕达哥拉斯和三角形数
谈到毕达哥拉斯 (Pythagoras, 约公元前551-公元前479),我们最熟悉的是「毕氏定理」。然而,毕达哥拉斯最热衷的,原来并不是几何学。
毕达哥拉斯是古希腊数学家,他认为每个数字都具有独特的个性,有善有恶。他更认为 10 是一个完美的数字丶神妙莫测。这是因为 10 是首四个正整数 1丶2丶3 和 4 之和,是一个三角形数。在音乐上,若拉紧一条长度为 1 单位的弦可发出一个音调 do,把弦的长度改为这四个正整数的比:丶和,所发出的便分别是fa丶so和高一均的do等主要音调。
毕达哥拉斯创立了一个学派,名为毕达哥拉斯学派。这个学派的组织十分严密,并且带有浓厚的宗教色彩。他们认为数是万物的根源。他们研究数,不是为了实际的应用,而是为了透过对数的认识,揭露宇宙的永恒真理。可惜的是,由於学派严守保密的原则,所以很多研究成果都已失传了。

叙拉古的数学家──阿基米德
阿基米德 (Archimedes, 约公元前287 - 公元前212),生於希腊的叙拉古,父亲是位天文学家。阿基米德从小就受到良好的教育,年青时曾赴亚历山大学习数学。
皇冠的体积
有一次,叙拉古的亥厄洛国王叫金匠制造一顶纯金的皇冠,却怀疑金匠隐匿了其中一些金子。金匠矢口否认,而且证实皇冠的重量与国王所给金子重量相等。国王一时束手无策,便请阿基米德帮忙。
阿基米德日思夜想着解决的方法。他知道即使不同质料的重量相同,其体积是不一样的,所以可从皇冠的体积,来鉴定皇冠是否由纯金所制成,但却苦无求得皇冠体积的方法。
一次,阿基米德在浴盆洗澡时,看到水从盘中徐徐流出,因而悟到可以用排水法来求出皇冠的体积。若把皇冠放入盛满水的盘中,所排出的水的体积,便是皇冠的体积了。就这样,阿基米德为国王解决了这个疑难,证明金匠的确在皇冠中掺入了白银。
不要弄坏我的图
「不要弄坏我的图」──这是阿基米德最後的一句话。
公元 212 年,罗马人攻入叙拉古。相传当时阿基米德正在研究数学,一名罗马兵闯进了阿基米德的家中,并踩在几何图形上。阿基米德并没有注意对方是谁,便喊叫说:「不要弄坏我的图」,结果被那名士兵杀死了。

测量大师──海伦
海伦 (Heron of Alexandria,约1世纪) 生於埃及,是古希腊数学家丶力学家丶机械学家和测量家,曾在罗马帝国的着名学术研究城市亚历山大教授数学丶物理学等。海伦十分着重数学的实际应用,这可以从他的着作《测地术》丶《几何》丶《体积求法》中略知一二。《测地术》更被古代的人们采用了数百年之久。除此之外,他曾替欧几里得 (Euclid,约公元前330─公元前275)的《几何原本》作注释及补充。
海伦以解决几何测量问题而闻名。他给出了很多平面图形的面积公式和立体的体积计算公式,例如:正三边形至正十二边形的面积计算方法。在《测地术》中,他更给出着名的三角形的面积公式-海伦公式。
此外,海伦还把他的理论应用於机械设计,并着有《机械学》丶《投石炮》丶《枪炮设计》等着作,同时他亦是水钟丶测量仪丶起重机等的设计者。可见他是一位把数学应用於生活的天才。

公鸡5元3只母鸡5元2只,合一起卖10元5只,赔了?
前些日子,巴依“老爷”的小聪明非但没有得手,还白白损失了七个银环,心疼得要死。一贯坑害别人的他,这口气怎能咽得下去呢?这不他又神气活现的出现在了集市上,不知谁今天又要倒霉了?
  “卖鸡喽,公鸡5元3只,母鸡5元2只,快来买呀!”顺着叫卖声,巴依“老爷”来到了鸡滩前,只见他贼眼珠一转,计上心来。“嘿,老头儿,你这有多少只公鸡?多少只母鸡呀?”“各有30只。”卖鸡的老大爷颤颤微微的回答。

她们的年龄是多大?
"你在忙什么呢,比尔,"教授留意地说。这时他的这位朋友正一口气喝完剩下的咖啡, 站起来要走."准备带三个女孩乘车游览!"比尔答道。
教授笑了:"原来如此!敢问三位佳丽芳龄几许?"比尔思考片刻说:"把她们年龄乘在一起得到2450,可她们年龄和恰是您年龄的两倍"。
教授摇了摇头说:"非常灵巧,但对她们的年龄仍然有疑问。"比尔还在那里,他补充道:"是的,我忘了提起,我的年龄至少要比那个岁数最大的小一岁。"而这使得一切都变得清楚了!

哥德巴赫猜想
哥德巴赫是德国数学家。
1729年~1764年,哥德巴赫与欧拉保持了长达三十五年的书信往来。
在1742年6月7日给欧拉的信中,哥德巴赫提出了一个命题。他写道:
"我的问题是这样的:
随便取某一个奇数,比如77,可以把它写成三个素数之和:
77=53+17+7;
再任取一个奇数,比如461,
461=449+7+5,
也是三个素数之和,461还可以写成257+199+5,仍然是三个素数之和。这样,我发现:任何大于7的奇数都是三个素数之和

最古老的数学趣题
在七间房子里,每间都养着七只猫;在这七只猫中,不论哪只,都能捕到七只老鼠;而这七只老鼠,每只都要吃掉七个麦穗;如果每个麦穗都能剥下七合①麦粒,请问:房子、猫、老鼠、麦穗、麦粒,都加在一起总共该有多少数?
答案:
总数是19607
房子有7间,猫有7X7=49只,鼠有7X7X7=343只,麦穗有7X7X7X7=2401个,麦粒有7X7X7X7X7=16807合。全部加起来是

阿基米德的墓碑
与那些英雄们的纪念碑或墓碑相比,大概只有数学家的墓志铭最为言简意赅.他们的墓碑上往往只是刻着一个图形或写着一个数,这些形和数,展现着他们一生的执著追求和闪光的业绩.
古希腊数学家阿基米德(Archimedes,公元前287----公元前212)的墓碑就是这样.在他的墓碑上刻着一个圆柱,圆柱里内切着一个球.这个球的直径恰与圆柱的高相等.
这个称为“等边圆柱”的图形,表达了阿基米德的如下发现:“球的体积和表面积都等于它的外接圆柱体积和表面积的三分之二”.它的证明并不困难,同学们不妨试一试.

蜂窝猜想
加拿大科学记者德富林在《环球邮报》上撰文称,经过1600年努力,数学家终于证明蜜蜂是世界上工作效率最高的建筑者。
  四世纪古希腊数学家佩波斯提出,蜂窝的优美形状,是自然界最有效劳动的代表。他猜想,人们所见到的、截面呈六边形的蜂窝,是蜜蜂采用最少量的蜂蜡建造成的。他的这一猜想称为“蜂窝猜想”,但这一猜想一直没有人能证明。
  美密执安大学数学家黑尔宣称,他已破解这一猜想。蜂窝是一座十分精密的建筑工程。蜜蜂建巢时,青壮年工蜂负责分泌片状新鲜蜂蜡,每片只有针头大校而另一些工蜂则负责将这些蜂蜡仔细摆放到一定的位置,以形成竖直六面柱体。每一面蜂蜡隔墙厚度及误差都非常小。6面隔墙宽度完全相同,墙之间的角度正好120度,形成一个完美的几何图形。人们一直疑问,蜜蜂为什么不让其巢室呈三角形、正方形或其他形状呢?隔墙为什么呈平面,而不是呈曲面呢?虽然蜂窝是一个三维体建筑,但每一个蜂巢都是六面柱体,而蜂蜡墙的总面积仅与蜂巢的截面有关。由此引出一个数学问题,即寻找面积最大、周长最小的平面图形

数学比喻
许多名人都喜欢用数学来比喻事理,往往出于幽默,诙谐,给人的印象非常深刻。
平行线
时间会刺破青春的华丽情致,会把平行线刻在美人的额头,会吃掉希世珍宝,天生丽质,什么都逃不过它横扫的镰刀 ——莎士比亚

趣味数学小故事
大约1500年前,欧洲的数学家们是不知道用“0”的。他们使用罗马数字。罗马数字是用几个表示数的符号,按照一定规则,把它们组合起来表示不同的数目。在这种数字的运用里,不需要“0”这个数字。
而在当时,罗马帝国有一位学者从印度记数法里发现了“0”这个符号。他发现,有了“0”,进行数学运算方便极了,他非常高兴,还把印度人使用“0”的方法向大家做了介绍。过了一段时间,这件事被当时的罗马教皇知道了。当时是欧洲的中世纪,教会的势力非常大,罗马教皇的权利更是远远超过皇帝。教皇非常恼怒,他斥责说,神圣的数是上帝创造的,在上帝创造的数里没有“0”这个怪物,如今谁要把它给引进来,谁就是亵渎上帝!于是,教皇就下令,把这位学者抓了起来,并对他施加了酷刑,用夹子把他的十个手指头紧紧夹注,使他两手残废,让他再也不能握笔写字。就这样,“0”被那个愚昧、残忍的罗马教皇明令禁止了。
但是,虽然“0”被禁止使用,然而罗马的数学家们还是不管禁令,在数学的研究中仍然秘密地使用“0”,仍然用“0”做出了很多数学上的贡献。后来“0”终于在欧洲被广泛使用,而罗马数字却逐渐被淘汰了

小熊买鱼
小熊的妈妈生病了,为了能挣钱替妈妈治病,小熊每天天不亮就起床下河捕鱼,赶早市到菜场卖鱼。
一天,小熊刚摆好鱼摊,狐狸、黑狗和老狼就来了。小熊见有顾客光临,急忙招呼:“买鱼吗,我这鱼刚捕来的,新鲜着呢!”狐狸边翻弄着鱼边问:“这么新鲜的鱼,多少钱一千克?”小熊满脸堆笑:“便宜了,四元一千克。”老狼摇摇头:“我老了,牙齿不行了,我只想买点鱼身。”小熊面露难色:“我把鱼身卖给你,鱼头、鱼尾卖给谁呢? ”狐狸甩甩尾巴道:“是呀,这剩下的谁也不愿意买,不过,狼大叔牙不好,也只能吃点鱼肉。这样吧,我和黑狗牙好,咱俩一个买鱼头,一个买鱼尾,不就既帮了狼大叔,又帮了你熊老弟了吗?” 小熊一听直拍手,但仍有点迟疑:"好倒好,可价钱怎么定?”狐狸眼珠一转,答道:“鱼身2元1千克,鱼头、鱼尾各1元1千克,不正好是4元1千克吗?”小熊在地上用小棍儿画了画,然后一拍大腿:“好,就这么办!”四人一齐动手,不一会儿就把鱼头、鱼尾、鱼身分好了,小熊一过秤,鱼身35千克70元;鱼头15千克15元,鱼尾10千克10元。老狼、狐狸和黑狗提着鱼,飞快地跑到林子里,把鱼头鱼身鱼尾配好,重新平分了,……
小熊在回家的路上,边走边想:我60千克鱼按4元1千克应卖240元,可怎么现在只卖了95元……小熊怎么也理不出头绪来。你知道这是怎么一回事吗?

有趣的数学小故事
瘸腿狐狸卖西瓜赔了本,没钱买吃的,饿得肚子咕咕叫,走路直打晃。
  老牛走过来,问:“狐狸,你这是怎么啦?”
  狐狸看了老牛一眼说:“饿的,两三天没正经吃东西啦!”
  老牛一本正经地说:“要想有饭吃,就要参加劳动!”说完,老牛干活去了。
  “哼,劳动?劳动多累呀!”狐狸眼珠一转说,“嗯,我有个好主意。”
  狐狸一瘸一拐地跑到野猪家。野猪家有个大筐,里面装着许多玉米,筐子上面盖着厚布。狐狸说:“野猪老兄,听说这筐里有许多玉米,能告诉我一共有多少吗?”
  “保密!”野猪没好气地答了一声。
  “哈哈,在我聪明的狐狸面前,不可能有任何秘密!”狐狸很有把握地说,“我出道题,你算算,我不但能说出你筐里有多少玉米棒,连你有多大岁数都能知道。”
  “真的?”野猪觉得不可思议。
  狐狸咳嗽了两声,说:“把你筐子里的玉米棒数乘以2,加上5,把所得的数再乘上50,加上你的年龄,再减去250,把得数告诉我。”
  野猪趴在地上算了半天,最后说:“得1506。”
  狐狸立刻说:“你筐里有15个玉米棒,你今年6岁。”
  野猪一摸前脑门想,对,筐里的玉米棒是15个。野猪一摸后脑勺想,今年自己正是6岁。
  “神啦!”野猪从心里佩服狐狸。他问狐狸:“你怎么知道的?”
  “算的呀!你算的结果是1506。最左边的两位数15,就是玉米棒数;最右边的一位数6,就是你的年龄。”
  “你太伟大啦!”野猪抱着狐狸亲了一下。
  “伟大不伟大并不重要,重要的是给我弄顿饭吃,要有酒有肉啊!”狐狸显得十分得意。
  不一会儿,野猪给狐狸端上来红烧兔子肉、清蒸鸡、煮老玉米,外加两瓶好酒。狐狸猛吃猛喝,临走还拿走4个玉米棒。
  野猪到处宣传,说瘸腿狐狸神机妙算。小猴灵灵告诉野猪说:“你上了狐狸的当啦!”野猪不信。
  小猴说:“你看算式(2×15+5)×50+6-250=15×100+250+6-250=1500+6=1506。玉米棒数15是你自己写上去的,乘以100后变成了千位和百位上的数,而年龄6也是你自己写上去的,它变成了个位数。这样一做,把两个数分离开了,一眼就可以看清楚。”
  “好个瘸腿狐狸!”野猪快速冲了出去,追上瘸腿狐狸,夺过玉米棒,用每根玉米棒在狐狸头上都狠敲了一下。这下可好,瘸腿狐狸头上添了4个大包!

数学小故事
陈俊交 推荐
今天,整数王国热闹非凡,因为零国王今天生日,今天又是元旦。双喜临门,文武百官都来庆祝。
只见零国王高居宝座之上,下面排列着两行队伍。一行是以-1总理开头的队伍,-1后面跟着-2、-3、-4……它们的个子一个比一个矮。另一行是以1司令开头的,1后面跟着2、3、4、5……个子一个比一个高,一眼望不到尽头。
三声炮响,庆典开始了,突然从国王的宝座下,钻出一个圆溜溜的小东西。1司令拔出宝剑,上走几步,喝道:“来者何人?”小东西慢条斯理的说:“怎么,连我都不认识了,告诉你,我就是大名远扬的小数点。”“有何贵干?”1司令讲话总是这么刹劲。“我是来参加零国王的庆典,请你帮我安排到队伍里去吧!”零国王没等1司令反应,就说:“不行,你看宫外长长的队伍,文官从-1总理开始,武官从1司令开始,没有你容身的地方。”小数点哀求说:“你看我个子这么小,随便给我个座位吧!”“不行呀,你还是赶快离开吧。”“哼!敬酒不吃吃罚酒。”小数点脸色徒变,厉声说:“我要你们来个次序大变样!“
零国王怒气冲天,喝道“快把这个小东西抓住,来个大数。“只听,咚咚咚从宫外走来一个大高个,它就是97000000,9700万大吼一声:”小数点,哪里逃1“小数点毫不畏惧,它跳到宝座上,揪起零国王,向9700万面前推去,自己就站在零国王的面前。“轰”的一声,比山还高一截的9700万,变成了比椅子还矮的0.097了。
零国王大惊失色,就高喊:“谁能抓住小数点我就封它为王爷。”只见从宫外走来一个不倒翁的数,8说:“对付小数点不能力擒,只能智取。”“嗯”小数点在一旁嘿嘿直乐:“我倒要看看你怎么个智取法。8说:“小数点,我刚才目睹了你的本领,的确身手不凡。但是你只会吧一个数变小。不知阁下还有什么本领?”
小数点微微一笑:“来个负数,只见-47应声进来,小数点一转眼就钻到4和7的中间-47立即长高了一大截,变成了-4.7了。“根据负数绝对值越小,数值就越大。我不是把一个负数变大了”“嗯”
接着,8说:“依我看,只有一个人不怕小数点。”零国王探上身去,“此人是谁?”“就是你”“我?我为什么不怕。”“因为你不是正数也不是负数, 0.0仍然是0呀!小数点的法术对你是起不了作用的。”小数点一听零国王能降服自己,十分害怕,没等8话说完,就吱溜一声逃跑了。

失之毫厘,谬以千里
1967年8月23日,苏联的联盟一号宇宙飞船在返回大气层时,突然发生了恶性事故——减速降落伞无法打开。苏联中央领导研究后决定:向全国实况转播这次事故。当电视台的播音员用沉重的语调宣布,宇宙飞船在两小时后将坠毁,观众将目睹宇航员弗拉迪米·科马洛夫殉难的消息后,举国上下顿时被震撼了,人们都沉浸在巨大的悲痛之中。
在电视上,观众们看到了宇航员科马洛夫镇定自若的形象。他面带微笑地对母亲说:“妈妈,您的图像我在这里看得清清楚楚,包括您头上的每根白发,您能看清我吗?” “能,能看清楚。儿啊,妈妈一切都很好,你放心吧!” 这时,科马洛夫的女儿也出现在电视屏幕上,她只有12岁。科马洛夫说:“女儿,你不要哭。”“我不哭……”女儿已泣不成声,但她强忍悲痛说:“爸爸,你是苏联英雄,我想告诉你,英雄的女儿会像英雄那样生活的!” 科马洛夫叮嘱女儿说:“你学习时,要认真对待每一个小数点。联盟一号今天发生的一切,就是因为地面检查时忽略了一个小数点……”
时间一分一秒地过去了,距离宇宙飞船坠毁的时间只有7分钟了。科马洛夫向全国的电视观众挥挥手说:“同胞们,请允许我在这茫茫的太空中与你们告别。”
即使是一个小数点的错误,也会导致永远无法弥补的悲壮告别。
古罗马的恺撒大帝有句名言:“在战争中,重大事件常常就是小事所造成的后果。” 换成我们中国的警句大概就是“失之毫厘,谬以千里”吧。

小数点的代价 作者:佚名 文章来源:中基网
1967年8月23日,前苏联的联盟一号宇宙飞船在返回大气层时,突然发生了恶性事故--减速速降落伞无法打开。前苏联中央领导研究后决定:向全国实况转播这次事故。当电视台的播音员用沉重的语调宣布,宇宙飞船两个小时后将坠毁,观众将目睹宇航员弗拉迪米·科马洛夫殉难的消息后,举国上下顿时被震撼了,人们沉浸在巨大的悲痛之中。
  在电视台上,观众看到了宇航员科马洛夫镇定自若的形象,他面带微笑地对母亲说:"妈妈,您的图像我在这里看得清清楚楚,包括您的头上的每根白发,您能看清我吗?""能,能看清楚。儿啊,妈妈一切都很好,你放心吧!"这时,科马洛夫的女儿也出现在电视屏幕上,她只有12岁。科马少夫说:"女儿,你不要哭。""我不哭……"女儿已泣不成声,但她强忍悲痛说:"爸爸,您是苏联英雄,我想告诉您,英雄的女儿会像英雄那样生活的!"科马洛夫叮嘱女儿说:"学习时,要认真对待每一个小数点。联盟一号今天发生的一切,就是因为地面检查时忽略了一个小数点……"
  时间一分一秒地过去,距离宇宙飞船坠毁只有7分钟了,科马洛夫向全国的电视观众挥挥手说:"同胞们,请允许我在这茫茫的太空中与你们告别。"
  这是一次惊心动魄的告别仪式。科马洛夫永远地走了,他留下了对亲人对祖国永恒的爱。但更震撼人心的是他对女儿说的那番话。它警示着人们:对待人生不能有丝毫的马虎,否则,即使是一个细枝末节,也会让你付出深重的甚至是永远无法弥补的代价。

祖冲之给我们的启示
作者:首都师范… 文章来源:数学网整理 ~c,CngeL0
在浩瀚的夜空里有一颗小行星,在遥远的月亮背面上有一座环形山,它们都是以我国古代一位科学家的名字来命名的.他就是祖冲之(429—500),我国南北朝时代杰出的数学家、天文学家和机械制造专家.
祖冲之出生在一个世代对天文历法都有所研究的家庭,受环境熏陶他自幼就对数学和天文学有着非常浓厚的兴趣.《宋书·律历志》中,祖冲之有这样的自述:“臣少锐愚,尚专攻数术,搜练古今,博采沈奥.后将夏典,莫不摸量,周正汉朔,咸加该验……此臣以俯信偏识,不虚推古人者也……”.由此可见,祖冲之从小时起便搜集、阅读了前人的大量数学文献,并对这些资料进行了深入系统的研究,坚持对每步计算都做亲身的考核验证,不被前人的成就所束缚,纠正其错误同时加之自己的理解与创造,使得他在以下三方面对我国古代数学有着巨大的推动;
  一是圆周率的计算.他算得 3.1415926<<3.1415927且取为密率。的取值范围及密率的计算都领先国外千余年.
二是球体积的计算.祖冲之与他的儿子祖恒一起找到了球体积的计算公式.这其中所用到的“祖恒原理”,“幂势既同则积不容异”,即等高处横 9?X8H1
截面积都相等的两个几何体的体积必相等.直到一千一百年后,意大利数学家卡瓦利里(eri)才提出与之有相仿意义的公理.
三是注解《九章算术》,并著《级术》.《缀术》在唐代做为数学教育的课本,以“学官莫能究其深奥”而著称,可惜这部珍贵的典籍早已失传.
祖冲之在数学上的这些成就,使得这个时期在数学的某些方面“中国人不仅赶上了希腊人”,甚至领先他们一千年.从祖冲之逝世至今已有一千五百周年了,祖冲之的科学成就对我们中学生又有什么样的启示呢?

数字困惑我们的生活
作者:佚名 文章来源:世界科技报道
当电脑的价格比上年下降了2000 元,而肉价涨了3 元,你全家的生活支出是减少了还是增加了?当你把钱存到银行时,银行利息能否抵得上物价上涨的因素?这些问题统计学都可以给你解答。
秦朝末年,陈胜、吴广就喊出了“ 王侯将相,宁有种乎” 的口号,有幅名联也说“ 自古英雄多磨难,纨绔子弟少伟男”,可是统计学却给了我们不一样的答案。上千年的科举考试的结果统计显示,出身农村的进士比例只占50% 强,其余都是出身仕宦贵族,而当时中国人口90% 以上都身居农村,这还包括了中小地主家庭,这样一比较的话,真正出身农民家庭的进士的比例就更少了。就连今天在号称民主的美国,你也能看见这种现象,总统老布什的儿子小布什也是总统,而肯尼迪家族事实上已经是个政治上的贵族家庭,虽然民主表面上可以做到人人都有平等竞争的机会,但统计数字告诉我们,实际上生于官宦家庭的人进入上流社会的机会更多。
这说明,统计能经常修正我们对社会现象的固有直觉。

密铺的学问
作者:佚名 文章来源:转载
地砖的形状往往是正方形的,也有长方形的,我们还见过正六边形的地砖。无论是正方形、长方形、还是正六边形的地砖,都可以将一块地面的中间不留空隙、也不重叠地铺满,也就是密铺。还有什么形状的图形可以密铺地面呢?同学们在思考这一问题时总是借助于画出的图形去实验,通过实际观察而得出结论。

上一篇:人物编辑部地址

下一篇:科技类ei期刊