欢迎来到学术参考网
当前位置:发表论文>论文发表

功能材料学论文

发布时间:2023-12-11 16:41

功能材料学论文

  稀土掺杂氟化物多波长红外显示材料的研究
  摘 要
  本文简单介绍了稀土发光原理、上转换发光材料的大致发展史、红外上转换发光材料的应用以及当前研究现状。以PbF2为基质材料,ErF3为激活剂,YbF3为敏化剂,采用高温固相反应法制备了PbF2: Er,Yb上转换发光材料。重点讨论了制备过程中,制备工艺中的烧结时间、烧结温度对红外激光显示材料发光效果的影响。研究了Er3+/Yb3+发光系统在1064nm激光激发下的荧光光谱和上转换发光的性质。实验表明,在1064nm激光激发下,材料可以发射出绿色和红色荧光,是一种新型的红外激光显示材料。
  关键字:1064nm 上转换 红外激光显示 Er3+/Yb3+
  Abstract
  This paper simply described the rare earth luminescence mechanism, the development of up-conversion materials and their applications were systematically explained. Present situation of the research on infrared up-conversion luminescence is also presented. PbF2 as matrix, ErY3 as activator and YbF3 as sensitizer were adopted to synthesize PbF2: Er,Yb up-conversion material with high temperature solid-phase reaction. A great emphasize was paid on the factors that effect on the luminescence properties of infrared laser displayed materials such as sinter temperature, time of sinter. The luminescence system of Er3+/Yb3+, their fluorescence spectrum and their character of up-conversion with 1064nm LD as an excitation source were studied. The experimental results that intense green and wed up-conversion emissions were observed under 1064nm LD excitation, which is a new type of infrared laser displayed materials.
  Key Words: 1064nm Up-conversion Infrared laser displayed materials Er3+/Yb3+
  目 录
  摘要
  Abstract
  第一章 绪论 1
  1.1 稀土元素的光谱理论简介 1
  1.1.1 稀土元素简介 1
  1.1.2 稀土离子能级 1
  1.1.3 晶体场理论 2
  1.1.4 基质晶格的影响 2
  1.2 上转换发光材料的发展概况 3
  1.3 上转换发光的基本理论 4
  1.3.1 激发态吸收 4
  1.3.2 光子雪崩上转换 4
  1.3.3 能量传递上转换 5
  1.4 敏化机制与掺杂方式 6
  1.4.1 敏化机制 6
  1.4.2 掺杂方式 7
  1.5 上转换发光材料的应用 8
  1.6 本论文研究目的及内容 8
  第二章 红外激光显示材料的合成与表征 10
  2.1 红外激光显示材料的合成 10
  2.1.1 实验药品 10
  2.1.2 实验仪器 10
  2.1.3 样品的制备 11
  2.2 红外激光显示材料的表征 12
  2.2.1 XRD 12
  2.2.2 荧光光谱 12
  第三章 结果与讨论 14
  3.1 基质材料的确定 14
  3.2 助熔剂的选择 15
  3.3 烧结时间的确定 15
  3.4 烧结温度的确定 16
  3.5 掺杂浓度的确定 17
  结 论 21
  参考文献 22
  致 谢 23第一章 绪论
  1.1 稀土元素的光谱理论简介
  1.1.1 稀土元素简介
  稀土元素是指周期表中IIIB族,原子序数为21的钪(Sc):39的钇(Y)和原子序数57至71的镧系中的镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),共17个元素[1]。
  稀土元素的原子具有未充满的受到外界屏蔽的4f和5d电子组态,因此具有丰富的电子能级和长寿命激发态,能级跃迁通道多达20余万个,可以产生多种多样的辐射吸收和发射。稀土化合物发光是基于它们的4f电子在f-f组态之内或f-d组态之间的跃迁。
  稀土发光材料具有许多优点:
  (1)与一般元素相比,稀土元素4f电子层构型的特点,使其化合物具有多种荧光特性;
  (2)稀土元素由于4f电子处于内存轨道,受外层s和P轨道的有效屏蔽,很难受到外部环境的干扰,4f能级差极小,f-f跃迁呈现尖锐的线状光谱,发光的色纯度高;
  (3)荧光寿命跨越从纳秒到毫秒6个数量级;
  (4)吸收激发能量的能力强,转换效率高;
  (5)物理化学性质稳定,可承受大功率的电子束、高能辐射和强紫外光的作用。
  1.1.2稀土离子能级
  稀土离子具有4f电子壳层,但在原子和自由离子的状态由于宇称禁戒,不能发生f-f电子跃迁[3&7]。在固体中由于奇次晶场项的作用宇称禁戒被解除,可以产生f-f跃迁,4f轨道的主量子数是4,轨道量子数是3,比其他的s,p,d轨道量子数都大,能级较多。除f-f跃迁外,还有4f-5d,4f-6s,4f-6p电子跃迁。由于5d,6s,6p能级处于更高的能级位置,所以跃迁波长较短,除个别离子外,大多数都在真空紫外区域。由于4f壳层受到5s2,5p6壳层的屏蔽作用,对外场作用的反应不敏感,所以在固体中其能级和光谱都具有原子状态特征。因此,f-f跃迁的光谱为锐线,4f壳层到其他组态的跃迁是带状光谱,因为其他组态是外壳层,受环境影响较大。
  稀土离子在化合物中一般出现三价状态,在可见和红外光区观察的光谱大都属于4fN组态内的跃迁,在给定组态后确定光谱项的一般方法是利用角动量耦合和泡利原理选出合理的光谱项,但这种方法在电子数多,量子数大时,相当麻烦且容易出错。所以,对稀土离子不太适合。利用群论方法,采用U7>R7>G2>R3群链的分支规则可以方便地给出4fN组态的全部正确的光谱项,通常用大写的英文字母表示光谱项的总轨道角动量的量子数的数目,如S,P,D,F,G,H,I,K,L,M,N,O,Q……分别表示总轨道角动量的量子数为0,1,2,3,4,5,6,7,8,9,10,11,12,……,25+l表示光谱项的多重性,S是总自旋量子数。在光谱学中,用符号2S+1L表示光谱项。
  1.1.3 晶体场理论
  晶体场理论认为,当稀土离子掺入到晶体中,受到周围晶格离子的影响时,其能级不同自由离子的情况。这个影响主要来自周围离子产生的静电场,通常称为晶体场[2]。晶体场使离子的能级劈裂和跃迁几率发生变化。稀土离子在固体中形成典型的分立发光中心。在分立发光中心中,参与发光跃迁的电子是形成中心离子本身的电子,电子的跃迁发生在离子本身的能级之间。中心的发光性质主要取决于离子本身,而基质晶格的影响是次要的。
  稀土离子的4f电子能量比5s,5p轨道高,但是5s,5p轨道在4f轨道的外面,因而5s,5p轨道上的电子对晶体场起屏蔽作用,使4f电子受到晶体场的影响大大减小。稀土离子4f电子受到晶体场的作用远远小于电子之间的库仑作用,也远远小于4f电子的自旋—轨道作用。考虑到电子之间的库仑作用和自旋—轨道作用,4f电子能级用2J+I LJ表示。晶体场将使具有总角动量量子数J的能级分裂,分裂的形式和大小取决于晶体场的强度和对称性。稀土离子4f能级的这种分裂,对周围环境(配位情况、晶场强度、对称性)非常敏感,可作为探针来研究晶体、非晶态材料、有机分子和生物分子中稀土离子所在局部环境的结构,且2J+I LJ能级重心在不同的晶体中大致相同,稀土离子4f电子发光有特征性,因而很容易根据谱线位置辨认是什么稀土离子在发光。
  1.1.4 基质晶格的影响
  基质晶格对f→d跃迁的光谱位置有着强烈的影响,另外其对f→f跃迁的影响表现在三个方面:
  (1)可改变三价稀土离子在晶体场所处位置的对称性,使不同跃迁的谱强度发生明显的变化;(2)可影响某些能级的分裂;(3)某些基质的阴离子团可吸收激发能量并传递给稀土离子而使其发光,即基质中的阴离子团起敏化中心的作用。特别是阴离子团的中心离子(Me)和介于中间的氧离子O2-以及取代基质中阳离子位置的稀土离子(RE)形成一直线,即Me-O-RE接近180°时,基质阴离子团对稀土离子的能量传递最有效。
  1.2 上转换发光材料的发展概况
  发光是物体内部以某种方式吸收的能量转换为光辐射的过程。发光学的内容包括物体发光的条件、过程和规律,发光材料与器件的设计原理、制备方法和应用,以及光和物质的相互作用等基本物理现象。发光物理及其材料科学在信息、能源、材料、航天航空、生命科学和环境科学技术中的应用必将促进光电子产业的迅猛发展,这对全球的信息高速公路的建设以及国家经济和科技的发展起着举足轻重的推动作用。三价镧系稀土离子具有极丰富的电子能谱,因为稀土元素原子的电子构型中存在4f轨道,为多种能级跃迁创造了条件,在适当波长的激光的激发下可以产生众多的激光谱线,可从红外光谱区扩展到紫外光谱区。因此,稀土离子发光研究一直备受人们的关注。
  60年代末,Auzel在钨酸镱钠玻璃中意外发现,当基质材料中掺入Yb3+离子时,Er3+、Ho3+和Tm3+稀土离子在红外光激发下可发出可见光,并提出了“上转换发光”的观点[5&4]。所谓的上转换材料就是指受到光激发时,可以发射比激发波长短的荧光的材料。其特点是激发光光子能量低于发射光子的能量,这是违反Stokes定律的。因此上转换发光又称为“反Stokes发光”。
  从七十年代开始,上转换的研究转移到单频激光上转换。到了八十年代由于半导体激光器泵浦源的发展及开发可见光激光器的需求,使其得到快速发展。特别是近年来随着激光技术和激光材料的进一步发展,频率上转换在紧凑型可见激光器、光纤放大器等领域的巨大应用潜力更激起广大科学工作者的兴趣,把上转换发光的研究推向高潮,并取得了突破性实用化的进展。随着频率上转换材料研究的深入和激光技术的发展,人们在考虑拓宽其应用领域和将已有的研究成果转换成高科技产品。1996年在CLEO会议上,Downing与Macfarlanc等人合作提出了三色三维显示方法,双频上转换三维立体显示被评为1996年物理学最新成就之一,这种显示方法不仅可以再现各种实物的立体图像,而且可以随心所欲的显示各类经计算机处理的高速动态立体图像,具有全固化、实物化、高分辨、可靠性高、运行速度快等优点[15]。上转换发光材料的另一项很有意义的应用就是荧光防伪或安全识别,这是一个应用前景极其广阔的新兴研究方向。由于在一种红外光激发下,发出多条可见光谱线且各条谱线的相对强度比较灵敏地依赖于上转换材料的基质材料与材料的制作工艺,因而仿造难、保密强、防伪效果非常可靠。
  目前,研究的稀土离子主要集中在Nd3+,Er3+,Ho3+,Tm3+和Pr3+等三价阳离子。Yb3+离子由于其特有的能级特性,是一种最常用的敏化离子。一般来说,要制备高效的上转换材料,首先要寻找合适的基质材料,当前研究的上转换材料多达上百种,有玻璃、陶瓷、多晶粉末和单晶。其化合物可分为:(1)氟化物;(2)氧化物;(3)卤氧化物;(4)硫氧化物;(5)硫化物等。
  迄今为止,上转换发光研究取得了很大的进展,人们已在氟化物玻璃、氟氧化物玻璃及多种晶体中得到了不同掺杂稀土离子的蓝绿上转换荧光。
  1.3 上转换发光的基本理论
  通过多光子机制把长波辐射转换成短波辐射称为上转换,其特点是吸收光子的能量低于发射光子的能量[2&8]。稀土离子上转换发光是基于稀土离子4f电子能级间的跃迁产生的。由于4f外壳层电子对4f电子的屏蔽作用,使得4f电子态间的跃迁受基质的影响很小,每种稀土离子都有其确定的能级位置,不同稀土离子的上转换发光过程不同。目前可以把上转过程归结于三种形式:激发态吸收、光子雪崩和能量传递上转换。
  1.3.1激发态吸收
  激发态吸收(Excited Stated Absorption简写为ESA)是上转换发光中的最基本过程,如图1-1所示。首先,发光中心处于基态能级E0的电子吸收一个ω1的光子,跃迁到中间亚稳态E1上,E1上的电子又吸收一个ω2光子,跃迁到高能级E2上,当处于能级E2上的电子向基态跃迁时,就发射一个高能光子。

  图1-1 上转换的激发态吸收过程
  1.3.2 光子雪崩上转换
  光子雪崩上转换发光于1979年在LaCl3∶Pr3+材料中首次发现。1997年,N. Rakov等报道了在掺Er3+氟化物玻璃中也出现了雪崩上转换。由于它可以作为上转换激光器的激发机制,而引起了人们的广泛的注意。“光子雪崩”过程是激发态吸收和能量传输相结合的过程,如图1-2所示,一个四能级系统,Mo、M1、M2分别为基态和中间亚稳态,E为发射光子的高能级。激发光对应于M1→E的共振吸收。虽然激发光光子能量同基态吸收不共振,但总会有少量的基态电子被激发到E与M2之间,而后弛豫到M2上。M2上的电子和其他离子的基态电子发生能量传输I,产生两个位于M1的电子。一个M1的电子在吸收一个ω1的光子后激发到高能级E。而E能级的电子又与其他离子的基态相互作用,产生能量传输II,则产生三个为位于M1的电子,如此循环,E能级上的电子数量像雪崩一样急剧地增加。当E能级的电子向基态跃迁时,就发出能量为ω的高能光子。此过程就为上转换的“光子雪崩”过程。

  图1-2 光子雪崩上转换
  1.3.3能量传递上转换
  能量转移(Energy Transfer,简写成ET)是两个能量相近的激发态离子通过非辐射过程藕合,一个回到低能态,把能量转移给另一个离子,使之跃迁到更高的能态。图1-3列出了发生能量传递的几种可能途径:(a)是最普通的一种能量传递方式,处于激发态的施主离子把能量传给处于激发态的受主离子,使受主离子跃迁到更高的激发态去;(b)过程称为多步连续能量传递,在这一过程中,只有施主离子可以吸收入射光子的能量,处于激发态的施主离子与处于基态的受主离子间通过第一步能量传递,把受主离子跃迁到中间态,然后再通过第二步能量传递把受主离子激发到更高的激发态;(c)过程可命名为交叉弛豫能量传递(Cross Relaxation Up-conversion,简称CR),这种能量传递通常发生在相同离子间,在这个过程中,两个相同的离子通过能量传递,使一个离子跃迁到更高的激发态,而另一个离子弛豫到较低的激发态或基态上去;(d)过程为合作发光过程的原理图,两个激发态的稀土离子不通过第三个离子的参与而直接发光,他的一个明显的特征是没有与发射光子能量匹配的能级,这是一种奇特的上转换发光现象;(e)过程为合作敏化上转换,两个处于激发态的稀土离子同时跃迁到基态,而使受主离子跃迁到较高的能态。

  (a)普通能量传递 (b)多步连续能量传递

  (c)交叉弛豫能量传递 (d)合作发光能量传递

  (e)合作敏化上转换能量传递
  图1-3 几种能量传递过程的示意图
  稀土离子的上转换发光都是多光子过程,在多光子过程中,激发光的强度与上转换荧光的强度有如下关系:
  Itamin ∝ Iexcitationn
  其中Itamin表示上转换荧光强度,Iexcitation表示激发光强度,在双对数坐标下,上转换荧光的强度与激发光的强度的曲线为一直线,其斜率即为上转换过程所需的光子数n,这个关系是确定上转换过程是几光子过程的有效方法。
  1.4 敏化机制与掺杂方式
  1.4.1 敏化机制
  通过敏化作用提高稀土离子上转换发光效率是常用的一种方法[9]。其实质是敏化离子吸收激发能并把能量传递给激活离子,实现激活离子高能级的粒子数布居,从而提高激活离子的转换效率,这个过程可以表述如下:
  Dexc+A→D+Aexc
  D表示施主离子,A是受主离子,下标“exc”表示该离子处于激发态。Yb3+离子由于特有的能级结构,是最常用的也是最主要的一种敏化离子。
  (1)直接上转换敏化
  对与稀土激活中心(如Er3+,Tm3+,Ho3+)和敏化中心Yb3+共掺的发光材料,由于Yb3+的2F5/2能级在910-1000nm均有较强吸收,吸收波长与高功率红外半导体激光器的波长相匹配。若用激光直接激发敏化中心Yb3+,通过Yb3+离子对激活中心的多步能量传递,可再将稀土激活中心激发至高能级而产生上转换荧光,这类过程会导致上转换荧光明显增强,称之为直接上转换敏化。图1-4以Yb3+/Tm3+共掺杂为例给出了该激发过程的示意图。

  图1-4 直接上转换敏化
  (2)间接上转换敏化
  由于Yb3+离子对910-1000 nm间泵浦激光吸收很大,泵浦激光的穿透深度非常小,因此虽然在表面的直接上转换敏化能极大的提高上转换效率,但它却无法应用到上转换光纤系统中。针对这种情况,国际上与1995-1996年首次提出了“间接上转换敏化”方法[7]。间接上转换敏化的模型首先在Tm3+/Yb3+双掺杂体系中提出的:当激活中心为Tm3+时,如果激发波长与Tm3+的3H6→3H4吸收共振,激活中心Tm3+就被激发至3H4能级,随后处于3H4能级的Tm3+离子与位于2F5/2能级的Yb3+离子发生能量传递,使Yb3+离子的2F5/2能级上有一定的粒子数布居。然后处于激发态2F5/2的Yb3+离子再与Tm3+进行能量传递,实现Tm3+的1G4能级的粒子数布居,这样就通过Tm3+→Yb3+→Tm3+献的能量过程间接地把Tm3+离子激发到了更高能级1G4。从而导致了Tm3+离子的蓝色上转换荧光。图1-5给出了间接上转换敏化的示意图。考虑到稀土离子的敏化作用与前述的上转换机理,在实现上转换发光的掺杂方式通常要考虑如下几点:(1)敏化离子在激发波长处有较大的吸收截面和较高的掺杂浓度;(2)敏化离子与激活离子之间有较大的能量传递几率;(3)激活离子中间能级有较长的寿命。

  图1-5 间接上转换敏化
  1.4.2 掺杂方式
  表1-1给出了当前研究比较多的掺杂体系,表中同时列出了某一掺杂体系对应的激发波长、基质材料、敏化机制等。
  表1-1 常见的掺杂体系
  稀土离子组合 激发波长 基质材料 敏化机制
  单掺杂 Er3+ 980nm ZrO2纳米晶体 —
  Nd3+ 576nm ZnO–SiO2–B2O3 —
  Tm3+ 660nm AlF3/CaF2/BaF2/YF3 —
  双掺杂 Yb3+:Er3+ 980nm Ca3Al2Ge3O12玻璃 直接敏化
  Yb3+:Ho3+ 980nm YVO4 直接敏化
  Yb3+:Tm3+ 800nm 氟氧化物玻璃 间接敏化
  Yb3+:Tb3+ 1064nm 硅sol–gel玻璃 合作敏化
  Yb3+:Eu3+ 973nm 硅sol–gel玻璃 合作敏化
  Yb3+:Pr3+ 1064nm LnF3/ZnF2/SrF2 BaF2/GaF2/NaF 直接敏化
  Nd3+:Pr3+ 796nm ZrF4基玻璃 直接敏化
  三掺杂 Yb3+: Nd3+ :Tm3+ 800nm ZrF4基玻璃 间接敏化
  Yb3+: Nd3+ :Ho3+ 800nm ZrF4基玻璃 间接敏化
  Yb3+: Er3+ :Tm3+ 980nm PbF2:CdF2玻璃 直接敏化
  1.5 上转换发光材料的应用
  稀土掺杂的基质材料在波长较长的红外光激发下,可发出波长较短的红、绿、蓝、紫等可见光。通常情况下,上转换可见光包含多个波带,每个波带有多条光谱线,这些谱线的不同强度组合可合成不同颜色的可见光[7]。掺杂离子、基质材料、样品制备条件的改变,都会引起各荧光带的相对强度变化,不同样品具有独特的谱线强度分布与色比关系(我们定义上转换荧光光谱中各荧光波段中的峰值相对强度比称为色比,通常以某以一波段的峰值强度为标准)。因而上转换发光材料可应用到荧光防伪或安全识别上来。上转换发光材料在荧光防伪或安全识别应用上的一个研究重点是制备上转换效率高,具有特色的防伪材料,实现上转换荧光防伪材料能够以配比控制色比;也就是通过调整稀土离子种类、浓度以及基质材料的种类、结构和配比,达到控制色比关系。
  1.6 本论文研究目的及内容
  Nd:YAG激光器发出1064nm的激光,在激光打孔、激光焊接、激光核聚变等领域具有广泛的应用价值,是最常用的激光波段。然而,由于人眼对1064nm的红外光不可见,因此,需要采用对1064nm激光响应的红外激光显示材料制备的显示卡进行调准和校正。
  本论文采用氟化物作为基质,掺杂稀土离子,通过配方和工艺研究,制备对1064nm响应的红外激光显示材料。研究组分配比、烧结温度、气氛和时间等对粉体性能的影响。并采用XRD和荧光光谱分析等测试手段对粉体进行表征。确定最佳烧结温度、组分配比,最终获得对1064nm具有优异红外转换性能的红外激光显示材料。
  第二章 红外激光显示材料的合成与表征
  经过多年研究,红外响应发光材料取得了很大进展,现已实现了氟化物玻璃、氟氧化物玻璃、及多种晶体中不同稀土离子掺杂的蓝绿上转换荧光。然而上转换荧光的效率距离实际实用还有很大的差距,尤其是蓝光,其效率更低。因此,寻找新的红外激光显示材料仍在研究之中,本文主要研究对1064nm响应的发光材料。
  本章研究了双掺杂Er3+/Yb3+不同基质材料的蓝绿上转换荧光,得到了发光效果较好的稀土掺杂氟化物的红外激光显示材料,得到了一些有意义的研究结果。
  2.1 红外激光显示材料的合成
  2.1.1 实验药品
  (1)合成材料所用的化学试剂主要有:LaF3,BaF2,Na2SiF6,NaF,氢氟酸,浓硝酸等。稀土化合物为Er2O3、Yb2O3,纯度在4N以上。
  (2)ErF3、YbF3的配制
  制备Yb3+/Er3+共掺氟化物的红外激光显示材料使用的ErF3,YbF3是在实验室合成的。
  实验采用稀土氧化物,称取适量的Er2O3,Yb2O3放在烧杯1和烧杯2中,滴加稍微过量的硝酸(浓度约为8mol/L),置于恒温加热磁力搅拌器上搅拌,直至烧杯1中出现粉红色溶液、烧杯2中出现无色溶液停止。其化学反应如下:
  Er2O3+6HNO3→2Er(NO3)3+3H2O
  Yb2O3+6HNO3→2Yb(NO3)3+3H2O
  再往烧杯1和烧杯2中分别都加入氢氟酸,烧杯1中生成粉红色ErF3沉淀,烧杯2中生成白色絮状YbF3沉淀,其化学反应如下:
  Er(NO3)3+3HF→ErF3↓+3HNO3
  Yb(NO3)3+3HF→YbF3↓+3HNO3
  生成的ErF3、YbF3沉淀使用循环水式多用真空泵进行分离,并多次使用蒸馏水进行洗涤,将从溶液中分离得到的沉淀倒入烧杯放入电热恒温干燥箱,在100℃条件下保温12小时,得到了实验所需的ErF3、YbF3,装入广口瓶中备用。
  2.1.2 实验仪器
  SH23-2恒温加热磁力搅拌器(上海梅颖浦仪器仪表制造有限公司)
  PL 203电子分析天平(梅特勒一托多利仪器上海有限公司)
  202-0AB型电热恒温干燥箱(天津市泰斯特仪器有限公司)
  SHB-111型循环水式多用真空泵(郑州长城科工贸有限公司)
  WGY-10型荧光分光光度计(天津市港东科技发展有限公司)
  DXJ-2000型晶体分析仪(丹东方圆仪器有限公司)
  1064nm半导体激光器(长春新产业光电技术有限公司)
  4-13型箱式电阻炉(沈阳市节能电炉厂)
  2.1.3 样品的制备
  (1)实验方法
  本实验样品制备方法是:以稀土化合物YbF3、ErF3,基质氟化物为原料,引入适量的助熔剂,采用高温固相法合成红外激光显示材料。
  高温固相法是将高纯度的发光基质和激活剂、辅助激活剂以及助熔剂一起,经微粉化后机械混合均匀,在较高温下进行固相反应,冷却后粉碎、筛分即得到样品[8]。这种固体原料混合物以固态形式直接参与反应的固相反应法是制备多晶粉末红外激光显示材料最为广泛使用的方法。在室温下固体一般并不相互反应,高温固相反应的过程分为产物成核和生长两部分,晶核的生成一般是比较困难的,因为在成核过程中,原料的晶格结构和原子排列必须作出很大调整,甚至重新排列。显然,这种调整和重排要消耗很多能量。因而,固相反应只能在高温下发生,而且一般情况下反应速度很慢。根据Wagner反应机理可知,影响固体反应速度的三种重要因素有:①反应固体之间的接触面积及其表面积;②产物相的成核速度;③离子通过各物相特别是通过产物相时的扩散速度。而任何固体的表面积均随其颗粒度的减小而急剧增加,因此,在固态反应中,将反应物充分研磨是非常必要的[6]。而同时由于在反应过程中在不同反应物与产物相之间的不同界面处可能形成的物相组成是不同的,因此可能导致产物组成的不均匀,所以固态反应需要进行多次研磨以使产物组成均匀。另外,如果体系存在气相和液相,往往能够帮助物质输运,在固相反应中起到重要作用,因此在固相反应法制备发光材料时往往加入适量助熔剂。在有助熔剂存在的情况下,高温固相反应的传质过程可通过蒸发-凝聚、扩散和粘滞流动等多种机制进行。
  (2)实验步骤
  根据配方中各组分的摩尔百分含量(表3-1,表3-2,表3-3中给出了实验所需主要样品的成分与掺杂稀土离子浓度),准确计算各试剂的质量,使用电子天平精确称量后,把原料置于玛瑙研钵中研磨均匀后装入陶瓷坩埚中(粉体敦实后大概占坩埚体积的1/3),再放入电阻炉中保温一段时间。冷却之后即得到了实验所述的红外激光显示材料样品。图2-1为实验流程图:

  图2-1 实验流程图
  2.2 红外激光显示材料的表征
  2.2.1 XRD
  X射线衍射分析是当今研究晶体精细结构、物相分析、晶粒集合和取向等问题的最有效的方法之一[10&9]。通常采用粉末状晶体或多晶体为试样的X射线衍射分析被称为粉末法X射线衍射分析。1967年,Hugo ld鉴于计算机处理大量数据的能力,在粉末中子衍射结构分析中,提出了全粉末衍射图最小二乘拟合结构修正法。1977年,Malmros等人把这个方法引入X射线粉末衍射分析中,从此Rietveld分析法的研究开始迅速发展起来[16&10]。
  本实验采用丹东方圆仪器有限公司生产的DXJ-2000型晶体分析仪对粉末样品进行数据采集,主要测试参数为:Cu靶Kα线,管压45kV,管流35Ma,狭缝DSlmm、RS0.3mm.、SS1 mm,扫描速度10度/min(普通扫描)、0.02度/min(步进扫描),通过测试明确所制备的材料是否形成特定晶体结构的晶相,也可以简单判断随着掺杂量的增加,是否在基质中有第二相形成或者掺杂的物质同基质一起形成固溶体。

功能材料论文

到万方这类论文数据库找,那里论文多,且质量高。自己懒得去找的话,可以去淘宝的《翰林书店》店铺看看,店主应该能帮你下载到这论文的

急需一份有关功能高分子材料的论文(2000多字)谢谢。。。

仅供参考;

《功能高分子材料》课程是高分子材料、复合材料、材料化学和应用化学专业的核心主干课程,它是建立在高分子化学和高分子物理基础上,并与其它多种学科如物理学、生物学、医学、分离科学等交叉的综合性课程。由于涉及领域非常广泛,如涵盖了吸附分离功能高分子材料、反应型功能高分子材料、电功能高分子材料、光功能高分子材料、高分子功能膜材料、生物医用功能高分子材料、液晶高分子材料、环境敏感高分子材料等,该门课程教学质量的优劣对学生能否深入了解功能性高分子的设计、表征和应用非常重要。考虑到《功能高分子材料》课程一般是在大三的下学期或大四的上学期开设,这时学生面临着考研复习和找工作等问题,很难静下心来进行深入的学习。

因此,采用传统的教学方式难以达到满意的教学效果。针对这些问题,结合我校高分子材料专业教学的实际情况,笔者对《功能高分子材料》课程的教学从教材选定、教学内容和教学方式方面进行了探索。下面,笔者就自己的点滴体会进行论述。

1教材的选定和内容的精讲自高分子学科在我国诞生以来,功能高分子材料的发展非常迅速,目前为止国内所见的教材已有十多种。由于功能高分子材料发展非常迅速,为了获取最新的知识,不能选择那些出版年月较老的教材。另外,还要保证教材编写的质量。经过对不同教材的比较,结合我校实际,最终选用了赵文元和王亦军编著的由化学工业出版社于2008年出版的教材。该教材是在1996年版的基础上,加入了许多新的功能高分子方面的研究内容,并结合实际对一部分内容进行了一定的删改。经过对该教材一段时间的试用,我们发现效果较好。另外,针对课时有限而授课内容多的矛盾,应突出教学重点,选择最热门和重要的部分进行精讲,其它部分略讲或者学生自学。

2多媒体教学与传统教学方式相结合多媒体教学是指运用计算机并借助于预先制作的教学课件来开展教学活动的过程。与传统教学方法相比,它具有课堂容量大、图文并茂、形象生动、易于突出教学重点和难点等优点。近几年来,越来越多的课程开始实行多媒体教学。功能高分子材料方面新概念多,涉及领域广,借助多媒体技术,不仅可向学生直观地展示有关功能高分子设计实例,而且可插入适当的生产生活实例,使抽象枯燥的功能高分子材料课程更加具体生动。同时,要注意的是多媒体教学效果的好坏,在很大程度上取决于教学课件的水平。因此,老师应努力提高教学课件的制作水平。另外,我们也注意到,多媒体教学的上课进度明显要快于传统的板书教学。这样,对于某些特别重要的理论公式的学习和推导,通过多媒体教学难以使学生在较短的时间内完全理解,这时就应该采用传统的板书教学方式。因此,我们应采取多媒体教学与传统教学相结合的教学方式,根据教学内容进行相应的调整,既保证学生对课程感兴趣,又能让学生真正深入的理解功能高分子材料的知识。

3联系生活实际,引出所要讲述的功能高分子材料以生活中的实际例子或新闻报道中的最新科技进展为例子,引出将要介绍的功能高分子材料。这样既能让学生意识到功能高分子材料的重要性,提高学习的积极性,又能让学生了解到最新的研究成果,提高对科学研究的兴趣。如从全球都非常关注的环保问题出发,引出废水和废气处理方面的功能高分子材料,介绍这些功能高分子材料的设计思路和原理,让学生从理论和实际相结合的角度深入理解所学的功能高分子知识。同时,还可以提出一些生活中材料的不足,让学生发挥主观能动性,提出解决这些材料不足之处的方法或设计新的功能高分子材料的想法。这样,学生的学习兴趣会大大的提高,教学效果也会明显得到改善。

4利用网络资源,紧跟最新研究进展,实时补充新的教学内容功能高分子材料是一门发展非常迅速的学科,每隔一段时间都有新的研究成果诞生,我们应根据情况实时的补充那些热门和重要的研究成果到教学内容中,让学生了解到最新的功能高分子知识,提高学生对功能高分子材料的兴趣。互联网上资源丰富,内容更新快,是老师补充教学内容的最佳途径。目前,利用网络资源作为课堂教学的辅助手段,是学生喜闻乐见的形式。老师可以制作一个功能高分子的网页,提供最新研究成果的链接,方便学生浏览。同时,还可以鼓励学生在网上搜索最新的研究成果,再在课堂上以口头报告的形式传达给同学。这样,既能让学生对功能高分子材料进行全面的了解,又能让学生主动的参与教学,达到较好的教学效果。

5互动式教学,学生做“学术报告”课堂教学是教学的关键性环节,如何启发学生积极思考,调动学生的学习积极性,是老师们一直在探索的问题。针对功能高分子材料涵盖领域多,可以从热门的领域中选择几个作为报告题目,然后让学生分成若干个小组,共同完成查找资料和组织讲稿的工作。最后,从各小组中选出一人作为代表上台做“学术报告”,每个小组之间互相提问。

功能材料及其应用的内容简介

《功能材料及其应用》作者在上大学时攻读材料物理,以后又经研究生阶段精修学业。获得博士学位后,曾在中国科学院冶金研究所进行功能材料研究,再转入他的母校上海交通大学的材料学院工作,担任博导,教授“固体物理”及“材料相变”等课程。在教书育人的同时,继续对功能材料的相变课题作深入研究,发表了多篇颇有价值的论文,参与编写研究生教材。图书目录序前言第1章 金属功能材料1.1 高温合金1.1.1 高温合金的定义和发展1.1.2 高温合金的特性和分类1.1.3 高温合金的高温性能要求1.1.4 提高高温合金性能的途径和方法1.1.5 高温合金的未来1.1.6 高温合金的应用1.2 阻尼合金1.2.1 材料阻尼性能1.2.2 阻尼合金的分类1.2.3 阻尼合金的特性1.2.4 阻尼合金的应用1.2.5 阻尼合金的其他类型1.3 弹性合金1.3.1 弹性的基本概念1.3.2 弹性合金的分类和应用1.3.3 一般弹簧钢1.3.4 耐腐蚀弹性合金1.3.5 高温弹性合金1.3.6 高导电弹性合金1.3.7 恒弹性合金1.4 膨胀合金1.4.1 概述1.4.2 膨胀合金的分类和特征1.4.3 Fe—Ni系膨胀合金1.4.4 Fe-Ni—Co系膨胀合金1.4.5 Fe-Ni-Cr系膨胀合金1.4.6 Fe-Cr系膨胀合金1.4.7 其他膨胀合金1.5 贮氢合金1.5.1 贮氢合金概述:1.5.2 二元金属氢化物1.5.3 贮氢合金的基本理论1.5.4 金属贮氢合金类型1.5.5 贮氢合金的应用1.6 非晶合金1.6.1 非晶态材料发展概况1.6.2 非晶材料结构1.6.3 非晶合金的形成1.6.4 非晶合金的性能1.6.5 非晶合金的应用1.7 磁性材料1.7.1 固体的磁性1.7.2 永磁材料1.7.3 软磁材料1.7.4 磁微波铁氧体器件和微波吸收1.7.5 磁记录用的磁性材料及磁泡1.7.6 磁性材料的特殊用途1.8 功能合金1.8.1 材料的电性能1.8.2 电阻材料1.8.3 电热材料1.8.4 导电材料和超导材料1.9 形状记忆合金1.9.1 马氏体相变与形状记忆效应1.9.2 Ni-Tj系形状记忆合金1.9.3 铜一基形状记忆合金1.9.4 铁基形状记忆合金1.9.5 其他形状记忆合金1.9.6 形状记忆陶瓷1.9.7 形状记忆合金的应用参考文献第2章 无机功能材料2.1 半导体材料2.1.1 半导体材料的性质和分类2.1.2 半导体的晶体结构和特性2.1.3 半导体中的杂质缺陷2.1.4 典型半导体材料及应用2.2 高性能结构陶瓷2.2.1 结构陶瓷的种类2.2.2 结构陶瓷的强韧机理2.2.3 结构陶瓷材料的应用2.3 电功能陶瓷2.3.1 绝缘陶瓷2.3.2 介电、铁电陶瓷2.3.3 压电、热释电陶瓷2.3.4 导电陶瓷2.4 敏感陶瓷2.4.1 热敏陶瓷2.4.2 压敏陶瓷2.4.3 气敏陶瓷2.4.4 湿敏陶瓷2.4.5 多功能化和智能化敏感陶瓷2.5 功能玻璃2.5.1 光学玻璃2.5.2 电解质玻璃2.5.3 光电子功能玻璃2.6 微晶玻璃和纤维玻璃2.6.1 微晶玻璃2.6.2 纤维玻璃2.7 光学晶体2.7.1 线性光学晶体2.7.2 非线性光学晶体2.8 激光晶体2.8.1 激光理论基础2.8.2 固体激光器2.8.3 激光晶体类型2.8.4 目前使用的激光晶体及应用2.9 电、磁、力、温度功能晶体2.9.1 电光晶体2.9.2 光折变晶体2.9.3 压电晶体2.9.4 声光晶体2.9.5 磁光晶体2.9.6 热释电晶体参考文献第3章 有机功能材料3.1结构高分子3.1.1高分子材料的定义、组成和合成3.1.2高分子材料的命名、类型和组成3.1.3工程塑料3.1.4合成橡胶与合成纤维3.1.5合成胶粘剂和涂料3.2有机光功能材料3.2.1有机非线性光学晶体3.2.2感光性高分子树脂3.2.3光致变色高分子3.2.4塑料光导纤维3.3电功能高分子3.3.1导电高分子材料3.3.2光导电高分子材料3.3.3高分子压电材料和热电材料3.3.4高分子超导体3.4化学功能高分子3.4.1离子交换树脂3.4.2高吸水性高分子3.4.3高分子絮凝剂3.5高分子液晶3.5.1液晶的物理结构类型3.5.2液晶化合物的化学结构3.5.3主链高分子液晶3.5.4侧链高分子液晶3.5.5液晶高分子材料的应用3.6其他功能高分子3.6.1磁功能高分子3.6.2功能性高分子分离膜3.7形状记忆高分子3.7.1形状记忆高分子原理3.7.2形状记忆聚合物的种类和结构特征3.7.3聚合物形状记忆特征3.7.4形状记忆聚合物的应用3.8医药功能高分子3.8.1医用高分子3.8.2药用高分子参考文献第四章 特殊功能材料4.1电、热、波、光功能复合材料4.1.1功能复合特征与分类4.1.2电功能复合材料4.1.3吸声和吸波功能复合材料4.1.4光学功能复合材料4.1.5热学和力学功能复合材料4.2结构功能复合材料4.2.1聚合物基复合材料4.2.2金属基复合材料的种类和基本性能4.2.3陶瓷基复合材料4.2.4水泥基复合材料4.2.5碳/碳复合材料4.2.6混杂纤维复合材料4.3梯度功能材料4.3.1梯度功能材料的特点4.3.2梯度功能材料的设计和制备4.3.3梯度功能材料的应用4.4纳米功能材料4.4.1纳米材料的特殊效应4.4.2纳米材料的制备4.4.3纳米功能材料的应用4.4.4纳米技术在军事领域中的应用参考文献

上一篇:南京好投的期刊

下一篇:论文盲审抽查率