植物生理学报缩写
植物生理学报缩写
CRISPR技术是一种简单而强大的基因组编辑工具。它使研究人员能够很容易地改变DNA序列和修改基因功能。它的许多潜在应用包括纠正遗传缺陷、治疗和防止疾病传播以及改良作物。然而,它的承诺也引起了伦理问题。
在流行用法中,“CRISPR”(发音为“crisper”)是“CRISPR-Cas9”的缩写。CRISPRs是DNA的特殊延伸。蛋白质Cas9(或“CRISPR相关”)是一种类似于一对分子剪刀的酶,能够切割DNA链。
CRISPR技术是根据细菌和古细菌(单细胞微生物领域)的自然防御机制改编而成的。这些生物体利用CRISPR衍生的RNA和各种Cas蛋白(包括Cas9)来抵御病毒和其他异物的攻击。他们这样做主要是通过切割和破坏外国侵略者的DNA。当这些成分被转移到其他更复杂的有机体中时,它允许对基因进行操作或“编辑”。
直到2017年,没有人真正知道这个过程是什么样子的。在2017年11月10日发表在《自然通讯》杂志上的一篇论文中,由金泽大学的Shibata Mikihiro和东京大学的Hiroshi Nishimasu领导的一个研究小组展示了CRISPR第一次运行时的样子。[一个惊人的新GIF显示CRISPR咀嚼DNA]
CRISPRs:“CRISPR”代表“有规律间隔的短回文重复序列簇”。它是DNA的一个特殊区域,具有两个明显的特征:核苷酸重复序列和间隔序列的存在。核苷酸的重复序列——DNA的组成部分——分布在CRISPR区域。间隔序列是散布在这些重复序列中的DNA片段。
对于细菌来说,间隔序列是从先前攻击有机体的病毒中提取的。它们作为一个记忆库,使细菌能够识别病毒并抵御未来的攻击。
这是由食品配料公司Danisco的Rodolphe Barrangou和一组研究人员首次通过实验证明的。在2007年发表在《科学》杂志上的一篇论文中,研究人员以酸奶和其他乳制品培养物中常见的嗜热链球菌为模型。他们观察到,病毒攻击后,新的间隔蛋白被整合到CRISPR区域。此外,这些间隔区的DNA序列与病毒基因组的部分序列相同。他们还通过取出或放入新的病毒DNA序列来操纵间隔区。通过这种方式,他们能够改变细菌对特定病毒攻击的抵抗力。因此,研究人员证实了CRISPR在调节细菌免疫中的作用。
CRISPR RNA(crRNA):一旦一个间隔基被结合并且病毒再次攻击,CRISPR的一部分被转录并加工成crisprrna或“crRNA”。CRISPR的核苷酸序列作为模板产生互补的单链RNA序列。根据Jennifer Doudna和Emmanuelle Charpentier在2014年发表在《科学》杂志上的一篇评论,每个crRNA由一个核苷酸重复序列和一个间隔部分组成。
Cas9:Cas9蛋白是一种切割外来DNA的酶。
该蛋白通常与两个RNA分子结合:crRNA和另一个称为tracrRNA(或“反式激活crRNA”)。两人随后将Cas9引导至目标地点,在那里进行切割。这片DNA是对crRNA的20个核苷酸延伸的补充。
使用两个独立的区域,或其结构上的“域”,Cas9切割DNA双螺旋的两条链,使所谓的“双链断裂”,根据2014年的科学文章。
有一个内置的安全机制,它确保Cas9不会在基因组中的任何地方被切断。已知短DNA序列s-PAMs(“邻近原间隔基序”)作为标记,与目标DNA序列相邻。如果Cas9复合物的目标DNA序列旁边没有PAM,它就不会被切割。根据《自然生物技术》(Nature Biotechnology)2014年发表的一篇评论,这可能是Cas9从未攻击细菌CRISPR区的一个原因。
不同生物体的基因组在其DNA序列中编码一系列信息和指令。基因组编辑包括改变这些序列,从而改变信息。这可以通过在DNA中插入一个切口或一个断裂,并诱骗细胞的自然DNA修复机制来引入人们想要的改变来实现。CRISPR-Cas9提供了一种方法。
在2012年,两篇关键的研究论文发表在《科学》和《国家科学院学报》上,这两篇论文帮助细菌CRISPR-Cas9转化为一个简单的、可编程的基因组编辑工具。
这项研究由不同的小组进行,结论:Cas9可以直接切割DNA的任何区域。这可以通过简单地改变crRNA的核苷酸序列来实现,crRNA与互补的DNA靶点结合。在2012年的《科学》文章中,Martin Jinek和他的同事们进一步简化了这个系统,将crRNA和tracrRNA融合在一起形成一个单一的“导向RNA”。因此,基因组编辑只需要两个组成部分:导向RNA和Cas9蛋白。
,哈佛医学院遗传学教授乔治·丘奇说:“你设计了一段20个核苷酸碱基对,它们与你想要编辑的基因相匹配。”。构建了与这20对碱基互补的RNA分子。丘奇强调了确保核苷酸序列只在目标基因中发现,而在基因组中没有其他发现的重要性。”然后,RNA加上蛋白质[Cas9]会像剪刀一样在那个位置切割DNA,理想情况下是在别的地方,“他解释道,”一旦DNA被切割,细胞的自然修复机制就会启动,并将突变或其他变化引入基因组。这有两种可能发生的方式。根据斯坦福大学的亨廷顿外展项目,一种修复方法是将两个切口粘在一起。这种被称为“非同源末端连接”的方法容易引入错误。核苷酸意外插入或删除,导致突变,从而破坏基因。在第二种方法中,通过用核苷酸序列填充间隙来固定断裂。为了做到这一点,细胞使用短链DNA作为模板。科学家可以提供他们选择的DNA模板,从而写入他们想要的任何基因,或纠正突变。
CRISPR-Cas9近年来变得流行起来。Church指出,这项技术易于使用,其效率大约是之前最好的基因组编辑工具(称为TALENS)的四倍,美国麻省理工学院和哈佛大学博德研究所的丘奇和张峰实验室的研究人员首次发表了在实验环境中使用CRISPR-Cas9编辑人体细胞的报告。利用人类疾病的体外(实验室)和动物模型进行的研究表明,该技术可以有效地纠正遗传缺陷。根据《自然生物技术》杂志2016年发表的一篇评论文章,此类疾病的例子包括囊性纤维化、白内障和范科尼贫血。这些研究为人类的治疗应用铺平了道路。
“我认为公众对CRISPR的认识非常集中于临床上使用基因编辑治疗疾病的想法,”纽约基因组中心的内维尔·桑贾纳和纽约大学生物、神经科学和生理学助理教授说这无疑是一个令人兴奋的可能性,但这只是一小部分。
CRISPR技术也被应用于食品和农业工业,以设计益生菌培养物和疫苗食用工业培养物(例如酸奶)以防病毒。它还被用于提高作物的产量、耐旱性和营养特性。
另一个潜在的应用是创造基因驱动。这些是遗传系统,它增加了一个特殊的性状从父母传给后代的机会。最终,根据Wyss研究所的研究,这种特性会在几代人中传播到整个群体。根据2016年《自然生物技术》的文章,基因驱动可以通过增强疾病载体(雌性冈比亚按蚊)的不育性来帮助控制疟疾等疾病的传播。此外,根据Kenh Oye及其同事在2014年发表在《科学》杂志上的一篇文章,基因驱动也可用于根除入侵物种,逆转对杀虫剂和除草剂的抗性,Church告诉Live Science:“CRISPR-Cas9并非没有缺点,
“我认为CRISPR最大的局限是它没有百分之百的效率。”。此外,基因组编辑效率可能会有所不同。根据Doudna和Charpentier在2014年发表的一篇科学文章,在一项在水稻上进行的研究中,接受Cas9 RNA复合物的细胞中,近50%发生了基因编辑。然而,其他的分析表明,根据目标,编辑效率可以达到80%或更高。
也有“目标外效应”的现象,即DNA在目标以外的位置被切割。这可能导致意外突变的引入。此外,丘奇还指出,即使系统按目标进行了削减,也有可能得不到精确的编辑。他称之为“基因组破坏”。
CRISPR技术的许多潜在应用提出了关于篡改基因组的伦理价值和后果的问题。
在2014年的科学文章中,Oye和同事们指出了使用基因驱动器的潜在生态影响。一个引进的性状可以通过杂交从目标群体传播到其他有机体。基因驱动也会降低目标群体的遗传多样性。
对人类胚胎和生殖细胞(如 *** 和卵子)进行基因修饰被称为生殖系编辑。由于这些细胞的变化可以遗传给下一代,使用CRISPR技术进行生殖系编辑已经引起了许多伦理问题。
的可变功效、偏离目标的效果和不精确的编辑都会带来安全风险。此外,还有许多科学界尚不清楚的问题。在2015年发表在《科学》杂志上的一篇文章中,大卫巴尔的摩和一组科学家、伦理学家和法律专家指出,生殖系编辑增加了对后代产生意外后果的可能性,“因为我们对人类遗传学、基因与环境相互作用的知识有限,以及疾病的途径(包括一种疾病与同一病人的其他情况或疾病之间的相互作用)。
其他伦理问题更为微妙。我们是否应该在未经后代同意的情况下,做出可能从根本上影响后代的改变?如果使用生殖系编辑从一种治疗工具转变为一种增强工具,以适应各种人类特征,会怎么样?
为了解决这些问题,国家科学、工程和医学院编写了一份全面的报告,其中包括基因组编辑的指导方针和建议。
尽管国家科学院敦促谨慎从事生殖系编辑,他们强调“谨慎并不意味着禁止”,他们建议只在导致严重疾病的基因上进行生殖系编辑,并且只有在没有其他合理的治疗方法的情况下才进行。在其他标准中,他们强调需要有关于健康风险和益处的数据,以及在临床试验期间需要持续监督。他们也推荐
最近有许多基于CRISPR的研究项目生物化学家和CRISPR专家萨姆·斯特恩伯格(Sam Sternberg)说:“由于CRISPR,基础研究发现的速度已经爆炸了。”他是加利福尼亚州伯克利市Caribou Biosciences Inc.的技术开发小组负责人,该公司正在开发基于CRISPR的医药、农业解决方案,以及生物研究。
这里是一些最新的发现:
“Live Science contributor Alina Bradford的附加报告”
附加资源
ASP和APX是同一种酶吗
是同一种酶,抗坏血酸过氧化物酶(ascorbate peroxidase,ASP)[1-3]或者(ascorbate peroxidase,APX)[4] [1] 沈文飚,徐朗莱,叶茂炳等.抗坏血酸过氧化酶活性测定的探讨.植物生理学通讯,1996,32(3:203~205) [2]谢小群,高山林 .黄芩过氧化物酶同工酶电泳和抗坏血酸过氧化物酶活性分析.植物资源与环境学报,2002,11(1:)5-8 [3] 徐仰仓,王静,刘华等.外源精胺对小麦幼苗抗氧化酶活性的促进作用.植物生理学报,2001,27(4):349-352 [4]孙云.茶叶抗坏血酸过氧化酶(APX)的生理学与分子生物学研究.2009,福建农林大学博士学位论文
日本果树期刊有哪些?
日本有关果树园艺方面的期刊主要有①《园艺学会杂志》日本园艺学会主办,1923年创刊,季刊。主要刊登果树、蔬菜、花卉方面的研究论文,包括日文或英文两种文字,每期刊登论文约15~20篇。②《农业及园艺》1926年创刊,月刊。每期有数篇果树研究论文。③《农耕与园艺》1946年创刊,月刊。主要刊登果树、蔬菜及花卉方面的文章,市场情况及广告等,图文并茂,属于普及性刊物。④《果实日本》,日本园艺农业协同组合联合会出版,1946年创刊,月刊。主要刊登果树方面的文章。此外,刊载果树园艺方面文章的期刊还有《育种学杂志》、《农业技术研究》、《日本农艺化学会志》和《植物防疫》等。一些地方刊物,如冈山县出版的《果树》等,多为普及性刊物。日本设有果树专业的高等农业院校的学报也经常发表果树论文;果树研究机构的年报则发表专题研究论文,如《日本农林水产省果树总场报告》等。
日本农林水产省果树试验总场
日本果树科研机构,1901年6月创建于静岗县,当时名农事试验场园艺部。1921年4月改名为园艺试验场,1977年12月总场迁入科学城——筑波(茨城县筑波郡谷田部町),1978年7月改为现名。总场下设4个支场,即盛冈支场(苹果为主)、兴津支场(柑橘)、安艺津支场(柑橘、葡萄)和口之津支场(柑橘)。总场设计划联络室、业务科及三个研究部(包括13个研究室)。1984年有职工228人,其中研究人员119人。总场有试验地27公顷。
3个研究部为育种部、栽培部和植物保护部。育种部设5个研究室:第一研究室从事果树育种新技术、抗病鉴定方法以及组织培养、细胞工程和由裸细胞分析植株的研究;第二研究室开展梨和板栗的育种及提高育种效率的研究,搜集与保存梨、板栗等品种;第三研究室进行桃、梅、李等核果类育种研究,1945年后以培育罐桃品种为主,育成了许多优良品种;第四研究室从事果树种质资源的搜集、引进、保存、繁殖等工作;第五研究室为加工适性研究室,进行果实加工适性及品质保持的研究。栽培部设4个研究室:第一研究室负责营养生理的研究;第二研究室研究落叶果树栽培技术;第三、四研究室分别为土壤研究室和气象研究室。植物保护部设4个研究室:病理第一研究室研究果树病原菌的变异、抗药菌出现的机制及鉴定方法,病毒的感染、增殖及侵染等;病理第二研究室研究落叶果树病害;还有虫害研究室和天敌微生物研究室。
果树试验总场针对日本果树生产发展的需要,深入进行各项研究。在育种方面,该场培育的富士苹果已占全国苹果总面积的43%,加上津轻、王林、新乔纳金等新品种,已基本上取代了旭、红玉、金冠、国光等老品种。该场培育的新水、幸水与丰水梨以及丹泽、筑波等板栗新品种已成为生产上主栽品种。在抗病育种技术方面,鉴定出3种高接病毒,提出高接病在亲子代中的遗传规律和不抗病类型的基因组成,还提出了苹果杂种实生苗对粗皮病抗性的简便而快速的早期鉴定方法。在果树种质资源研究方面,至1985年终已收集、保存各种果树种质资源5200份,应用计算机技术研究资源性状,根据化学成分鉴别梨的种和品种,并利用液态氮保存花粉和茎尖组织。在栽培技术方面,如矮化密植、营养诊断、生理病害、控制结果、优质高产技术研究等方面,以及病虫害防治方面也都取得了显著成绩。该场编辑出版《农林水产省果树试验总场报告》。
日灼
强烈日光直射果树所引起的组织灼伤。夏秋高温干旱季节,日光直射裸露的果树枝干和果实,使表面温度达40℃以上时,即可引起灼伤。受日灼伤害的树皮,严重时脱落,或干枯开裂。果实表皮受日灼,先变白,继而褐变。在天气极度干旱,持续高温,空气相对湿度在50%以下,地下供水不足,蒸腾作用减弱时,直射的强光,也能引起苹果、梨等果树的叶片灼伤。冬季幼树枝干的日灼,与树皮温度剧变、冻融交替有关,因此都发生在向阳面的枝、干上。
防止日灼,可预先喷2%石灰乳,也可在喷波尔多液时,增加石灰量,或涂白(见白涂剂);修剪时向阳面多留辅养枝,适当多留内膛果,少留梢头果,以避免枝干、果实裸露在直射的阳光下;干旱季节,应适时灌水,保证叶片正常进行蒸腾作用。
容器育苗
在盛装培养基质的容器内,按常规培育苗木的方法。也叫营养钵育苗。多用来培养在生长季节栽植的带叶幼苗,也可培养在休眠期栽植的1年生苗木。容器苗可带土团或连同容器栽植,不伤根系,缓苗期短,成活率高;多数在保护设施内进行培育,条件易于控制,培养基质又经过消毒,养分充足;透水、通气性好,有利苗木生长,繁殖率高,并避免了真菌病害和线虫的感染。但育苗费用较大,仅在集约化育苗、组织培养生根苗入土前的过渡培养、葡萄的快速育苗及稀有珍贵苗木的扦插繁殖中应用。
常用容器
①纸袋。用牛皮纸、焦油纸或废报纸叠制而成。纸袋成本低,制作方便,但育苗期不能过长。为增加其强度和耐久性,可涂刷松香酒精溶液等。②塑料薄膜袋。用聚乙烯薄膜制成,基部打有漏水孔,或用薄膜筒按要求的规格剪切成段,折叠底部即成。制作方便,成本较低,广为应用。但因其透水、透气性较差,要防止浇水过多而引起烂根。③塑料钵。用硬质塑料制成,底部有孔可以排水,商品规格齐全,便于选用。近年来美国推广可以在土壤中被微生物分解的塑料,商品名为卡普纶聚酯(聚乙内酰胺内酯),缩写为PCL(polycaprolactone),用这种塑料吹塑成钵,定植时不必回收。④瓦盆。为一般盆栽花卉用的泥塑花盆,盆壁具良好的透水、透气性能,幼苗管理比较容易,但本身重量大,运输不方便,移栽后回收费工。⑤泥炭盆。用水藓泥炭填加30%纸浆压制而成,保水透气性较强,在湿润的情况下,根可以穿透盆壁生长,移栽、定植不必脱盆。⑥蜂窝式纸杯。用牛皮纸袋粘着或硬塑料压膜制成,平时折叠成片,使用时打开,成为上下开口六棱形无底杯组。移栽时,从一侧将杯带拆开即可。
容器规格因育苗种类,成品苗的大小而定,播种和移栽组织培养苗所用的规格较小,直径5~6厘米,高8~10厘米;扦插育苗所用规格较大,直径6~10厘米,高15~20厘米。
基质选择
要考虑材料本身理化性状和育苗种类的要求,同时要求材料来源充足,价格低廉。常用基质的物理性状和营养元素含量如表1、2,供选择参考。
(吴志行提供)
表1
表2一般要求基质为中性或微酸性材料,容重在0.7左右,总孔隙度大于50%,空气容积大于20%,有利于对水分、养分和气体的调节。各种基质材料可以单一使用,也可混合使用。播种用的基质宜用园土、粪肥、河沙等的混合材料;扦插繁殖和组培苗的过渡培养,多单用蛭石、珍珠岩、炭化砻糠、河沙、煤渣等通气性好的材料,不混用有机质和肥料。泥炭含有大量有机质,质地轻,吸水和透水性均好,是理想的培养基质,取材方便的地方可与其他材料混合使用。尿醛泡沫塑料有良好的理化性状,又含有一定的营养元素,且埋入土壤后可逐渐降解成肥料,是容器育苗的新型基质材料。
园土或含有机肥料的基质,因带有病菌,使用前必须消毒。常用药剂有①喷洒260倍福尔马林溶液,每米3基质用药液20~40千克,与基质充分拌匀,用塑料薄膜盖严,密闭24小时,然后打开,经过2个星期的通风干燥,待药味完全散发后,装盆使用;②每米3基质喷洒5%硫酸亚铁水溶液20千克,充分混合后即可使用;③用0.1%多菌灵水剂均匀喷湿基质,装盆使用。
表3培育与管理
容器装好基质后,将繁殖的材料播种、扦插、移栽其中,于保护设施内培育,成活前仅补充清水保持湿度;幼苗期浇营养液或追施化肥。混有园土的基质,可只浇施大量元素营养液,而蛭石、珍珠岩、炭化砻糠、河沙等基质含营养元素少,应浇施添加微量元素的营养液(表3)。营养液的施用要少量多次,每次用量以浸湿基质为度。除根部施肥外,也可每7~10天叶面喷施一次0.2%尿素液。
容器苗的根系生长在有限的基质中,容易发生水分不平衡现象,应根据苗龄、空气湿度和幼苗生长状态细致浇水。幼苗期水分消耗较少,但抗旱能力弱,要勤浇少浇。苗木迅速生长期,浇透水,次数相对减少。阴雨天空气湿度大,或苗茎色泽发黄,生长缓慢,应不浇水或少浇水。晴天空气湿度小,或苗木色泽正常,叶子卷缩,要浇透水。但避免中午浇水。
生长期幼苗易发生猝倒病和根腐病,可每隔1星期喷0.5%波尔多液或0.5~1%硫酸亚铁液进行预防。出现蚜虫、粉虱危害,喷洒3000~5000倍溴氰菊酯液防治。
上一篇:艺乐杂志在哪里买
下一篇:植物保护学报杂志