基因编辑农业未来
基因编辑农业未来
依据PhillipsMcDougall统计分析的数据信息表明,2018年全世界种子市场提高了1.3%,做到416.7亿美金。在其中,具备耐灭草剂抗虫和多种多样特性的种籽转基因种子销售市场与上年差不多,为219.70亿美金。
全世界六种关键粮食作物的占地面积比2017年降低了0.5%,在其中油菜子、黄豆和稻谷的栽种总面积稳步增长,而棉絮、麦子和苞米的总面积略微降低。转基因水稻商品商业化的22年之后,转基因作物已变成全世界种子市场的关键构成部分,其市场份额仍在提高。四大转基因作物(黄豆、苞米、棉絮、油菜子)占全世界转基因作物总面积的99%。
种籽领域构造发生了重特大转变,中国化工完成了对先正达的430亿美金回收,陶氏与美国杜邦以1,300亿美金的合拼进行,此外因为孟山都的回收,德国拜耳作物科学财产被脱离给了德国巴斯夫。有悠久的历史的“六大佬”转变成了德国拜耳、科迪华、先正达和德国巴斯夫新的“四巨头”。据调查,该领域的领跑公司复合型增长率为5.2%。
中化集团和我国化工集团公布将分别集团旗下的生物肥料财产给予融合,创立“先正达集团股权有限责任公司”,即“先正达集团”,“先正达集团”业务流程包含生物肥料版块化肥、有机肥、种籽、数字农业四大行业的产业链。牧业业务流程板图上,将有先正达牧业、中种集团公司(已经融合,将要添加)、荃银高科划入,经营规模整体实力稳居全球前端。
数字农业已变成战略。某种意义上,先正达集团在这里一版块所担负的“义务”意味着着将来中国数字农业行业超重量级游戏玩家“中国国家队”的合理布局方位。合拼后的先正达集团数字农业业务流程版块关键由来源于中化集团集团旗下的中化农业MAP服务平台、先正达企业以及回收自东欧其他国家的Cropio集团公司构成。荃银高科是我国极少数具有种类自主研发工作能力的种籽公司,培育并根据核准稻谷、苞米、棉絮、油菜子、西甜瓜品种200好几个,90%之上为独立培育种类,年平均研发支出约占销售额的5%。
基因编辑技术技术性的发展趋势:
种籽产业链在历经这一轮企业兼并资产重组后必定会更为强悍提高,新的市场竞争布局将紧紧围绕基因编辑技术、数字农业和微生物菌种组学、计算机科学等自主创新技术性进行,在未来两年造成极大危害。
基因编辑技术,又被称为基因工程项目,是遗传工程的一种,就是指在活物基因中开展DNA插进、删掉、改动或更换的一项技术性。其与初期的遗传工程技术性的不同点取决于,初期的遗传工程技术性是在寄主的遗传基因、基因中开展任意插进遗传基因化学物质,而基因编辑技术是在特殊部位插进基因片段。现阶段常见于基因敲除或敲入的编辑工具关键有:锌指核酸酶、基因表达激话因素样效用物核酸酶。
自2013年CRISPR/Cas9被Science列入本年度十大科学研究提升之一后,持续保持快速发展趋势,在药业医治、农业和生态环境保护等层面均具备极大的运用发展潜力,是当今生物科技的科学研究网络热点与将来的发展前景。据预测,到2025年全世界基因编辑技术销售市场将做到81亿美金。
未来的农业只有基因工程这一条路可走了吗?
基因在农业生产上的应用已经非常广泛,但其中的道理未必广为人知。那么所谓基因到底是什么呢?它是控制生物性状的基本单位,记录着生物生殖繁衍的遗传信息。并且通过修改基因能改变一个有机体的部分或全部特征。它的作用主要是以转基因技术和基因克隆技为核心。通过它们改良动植物的品种,从而大大提高经济效益。那么下面我们就谈谈它们是怎样为人类服务的呢?
一、转基因技术
转基因技术就是按照人们预先设计的生物蓝图,把所需要的基因从一种生物的细胞提取出来,在体外进行“外科手术”,然后把所需要的基因导入另一种生物的细胞中,从而有目的地改造生物的遗传特性,创造出符合人类需要的新品种。转基因技术能培养出多种快速生长的转基因鱼、转基因羊、产奶量高的转基因牛等,还能培育出抗旱、抗涝、抗盐碱、抗枯萎病和抗除草剂的转基因作物,还培育出抗虫作物,科学家将杀虫基因转入植物体内后,植物体内就能合成霉素蛋白,产生这种霉素蛋白基因的作物有烟草、马铃薯、番茄、棉花和水稻等,其中效益最大的是抗虫棉。
二、应用基因技术的优点
从前面可以看出,基因技术的突破,是科学家得以用传统育种专家难以想象的方式改良动植物品种,其优点是显而易见的。第一,可降低生产成本。一个品种的基因加入另一种基因,会使该品种特性发生变化,具备原品种所不具备的因子,从而增强了抗病、抗杂草或抗虫害能力。由此可减少植物农药和除草剂的用量,降低种植成本。并且动物死亡率明显降低,从而提高养殖业的经济效益。
第二,可提高动植物产量。一种动植物的基因改良后,更容易适应环境,能更有效抵御各种灾害的袭击,并使产量更高。
第三,转基因技术可以使开发动植物的时间大为缩短。利用传统的育种方法,需要七、八年时间才能培育出一个新的品种,而基因工程技术培育出一种全新的动植物品种,时间可缩短一半。因此,有专家认为,不出多少年,转基因技术将改变世界。第四,转基因技术还可根据人们的需要,赋予农作物新的特性。例如可以使农作物自己释放出杀虫剂,可以使农作物在旱地或盐碱地上生长,或者生产出营养更为丰富的食品。科学家还利用转基因技术,开发能够生产防病的疫苗和食品的农作物。
总之,基因技术虽然说是有利,也有弊,但是毕竟利大于弊,因此被广泛应用。并且科学家们还在继续深入研究它,努力更好地、更多地、更快地为人民服务。未来农业在基因方面还有很大的空间。未来可走的路还有很多。
基因编辑在农业上的应用有哪些
它主要在一些基因工程上应用,所以在这方面的话,一定要注意在在一些转基因的食品当中和作用当中。
阐述基因工程在农业,畜牧业,医学等领域的发展现状极其对未来的展望
基因工程是一种按人们的构思和设计,在试管内操作遗传物质,并最终实现改造生物的新技术。基因工程对生物的改造,可以使生物像工厂似的为人类生产特殊产品,也可以使现有的动植物更符合人类的要求。
基因工程在医药业中的应用。利用基因工程生产蛋白类药物,可提高产量,降低成本。如干扰素是一种蛋白质,能抑制癌细胞增殖,增强身体的防御功能。前田进[日]博士采用基因工程技术,使蚕生产人干扰素获得成功。他发现,附在蚕体内的NPV(核多角体病毒)增殖效果好,在蚕的一个细胞核中可以增至100万个。他把带有干扰素基因的重组体NPV接种到蚕体内,蚕便在体液中分泌出干扰素。
基因疗法是基因工程的又一重大应用。遗传病是长期困扰人类的一类不治之症,迄今已发现的有3000多种。其根源于遗传基因存在缺陷,主要特征是可随生育而传代。基因疗法就是通过向人体细胞的基因组置换"坏了的"基因,或引入外源的正常基因治疗疾病的方法。如血友病的病根在于血液中缺乏凝血因子VIII 。它是一种化学结构不很稳定的蛋白质。如今,可用人工的方法将产生凝血因子VIII 的基因提取出来,然后将其转移到患者的细胞基因组中,弥补遗传缺损,从而能够产生正常的凝血因子VIII ,使体内血液循环正常。
基因工程在农业上的应用。1991年初,美国DNA植物技术公司的科研人员同时栽种了三批烟草植株。数月之后,其中一批由于遭受土壤中真菌的感染而严重损害;另一批由于使用了市售的化学杀菌剂而生长良好。而在第三批烟草植株上,它们没有使用任何杀真菌剂,却生长得特别旺盛,收获产量比前两批的都高。这是因为这批烟草并非普通烟草,而是基因重组的产物。
真菌的细胞壁中有一种重要成分叫几丁质,几丁质如果受到破坏,真菌就无法肆虐。自然界有一细菌天然含有能产生几丁质酶的基因,产生的几丁质酶是破坏几丁质的最有效催化剂。美国DNA植物技术公司的科研人员从一种细菌中发现了这种基因,并且运用基因工程技术把它插进了烟草植株中,于是诞生了具有抗真菌能力的新型烟草。
除了应用基因工程使作物获得抗真菌、细菌和线虫的能力外,目前还正在试图利用基因工程手段提高作物的抗逆性和营养价值。
科学家们预言,若能用基因工程将固氮基因插入各种非豆科植物染色体组内,则可将空气中的氮直接转化为植物生长所需的氮,那将是农业生产的一次大的飞跃。
基因工程在工业方面的应用。有一种超级细菌,能快速分解石油,可用于清除被石油污染的海域。这种超级菌是美国科学家用基因工程方法,把降解不同石油化合物的基因移植到一个菌株内而产生的。
氢气在燃烧过程中,除释放能量外,产生的废物只有水,不会造成环境污染,被称为理想、清洁的燃料。一些水中生长的微生物在光照下,会不断地将水分解,放出氢气,然后可用容器将氢气收集起来。日本一研究所以提高光合作用微生物生产氢的效率为目标,正在利用基因重组技术,改良微生物,以大幅度地提高生产氢气的能力,为利用微生物生产氢气尽早投入实际生产和应用创造条件。
总之,基因工程的发展将会给人类社会带来巨大的变化。
一口气告诉你,基因编辑技术的“前世今生”
DNA是绝大部分生物的遗传信息的储存介质,由腺嘌呤(A)、胸腺嘧啶(T)、鸟嘌呤(G)、胞嘧啶(C)四种核苷酸组成,并且严格遵守A-T,C-G的碱基互补配对原则,DNA链上这四种核苷酸的排列信息就是生物体的主要遗传信息。基因是控制生物性状的基本遗传单位,即一段携带特定遗传信息的DNA序列,主要通过翻译出对应的效用蛋白发挥功能。
图1. DNA的结构示意图(图片来自网络)
基因异常往往导致各种疾病的发生:如在超过50%的人类肿瘤中都能检测到编码p53蛋白的基因的突变(丧失活性);Rag1等基因的突变会导致重症联合免疫缺,患儿终生不能接触外界空气,只能终生生活在隔绝容器内(图2)。
图2. 终生生活在隔离容器内的美国男孩大卫·维特
什么是基因编辑技术?
基因编辑技术是指特异性改变目标基因序列的技术。目前主要的基因编辑技术都是基于如下原理发展而来的:在细胞内利用外源切割复合体特异性识别并切割目的基因序列,在目的基因序列上制造断裂端,这种断裂端随即会被细胞内部的DNA损伤修复系统修复,重新连接起来。在此修复过程中,当有修复模板存在时,细胞会以修复模板为标准进行修复,从而实现对基因序列的特异性改变,即基因编辑(图3)。
图3 基因编辑技术的基本原理示意图
要实现基因编辑,外源切割复合体必须满足两个条件:
① 切割复合体必须可以特异性地识别和结合至目的基因DNA序列上,这是各种基因编辑技术的主要差异所在,也是发展基因编辑技术的最大困难所在;
② 切割复合体必须具有切割DNA,制造断裂端的功能;
基因编辑技术的简要发展历史
自1953年沃森和克里克两位科学家提出DNA的双螺旋结构以来,人们一直都在积极探索着高效便利的基因编辑技术:
上世纪80年代,科学家在小鼠胚胎干细胞中通过基因打靶技术实现了基因编辑(2007年诺贝尔生理医学奖),但此技术在其余细胞内效率极低,应用受到了极大的限制;
上世纪90年代,基于细胞内不同锌指蛋白可特异性识别DNA上3联碱基的特征以及核酸酶FokI二聚化后可以切割DNA的特点,人们通过锌指蛋白偶联Fokl的策略逐渐发展出了一种新的基因编辑技术--锌指蛋白核酸酶技术(Zinc Finger Nucleases, ZFNs)。但此技术专利被公司垄断,且锌指蛋白数量有限,可以识别的DNA序列数量有限,其应用也受到了很大的限制。
随后,基于改造后的植物病原菌中黄单胞菌属的TAL蛋白可以特异性识别DNA中一个碱基的特性,人们又发展出了新的基因组编辑技术--转录激活样因子核酸酶技术(Transcription activator-like effector nucleases, TALENs)。此技术理论上可以实现对任意基因序列的编辑,但其操作过程较为繁琐,一定程度上限制了其应用。
近年来,基于细菌规律成簇的间隔短回文重复序列(Clustered Regularly Interspaced Short Palindromic Repeats,CRISPR)系统发展而来的新一代基因组编辑技术--CRISPR/Cas9技术,使得基因编辑变得更为简易、高效。值得提出的是,华裔科学家张锋教授对于CRISPR/Cas9技术的发展与应用作出了重要贡献,是目前这一领域的领军人物之一。
基因编辑技术的最新发展
由于目前最为广泛应用的CRISPR/Cas9技术仍然存在着无法对所有基因序列实现编辑、可能错误编辑其余基因、切割复合体中RNA容易降解导致复合体不稳定等一些不足之处,人们主要从以下几个方面优化发展新的基因编辑技术:
1) 优化CRISPR的蛋白序列,使得其可以识别更多的序列,并且能够更为有效地编辑基因序列;
2) 寻找新的具有特异性识别和切割目的基因序列的蛋白。如张锋教授在去年报道的Cpf1,已被证实为一类新的基因编辑工具;而目前引起广泛争议和关注的我国河北科技大学韩春雨教授在今年初报道的NgAgo,如果其真的可以实现细胞内的基因编辑,也是一类新的基因编辑工具,是目前各种基因编辑工具的有效补充;近期,我国南京大学学者又开发了一类新的基因编辑工具—SGN,也引起了学界的广泛关注。
基因编辑技术的应用
随着CRISPR/Cas9等新型基因编辑技术的迅猛发展,基因编辑技术在诸多方面都有着极为广阔而光明的应用前景:
1) 畜牧业和农业方面,现在已经在包括鸡、牛、羊等重要家畜和玉米、水稻、棉花等重要经济作物中实现了基因改造,有效地提高了这些家畜和经济作物的产量和质量;
2) 医疗健康方面,一方面,对于先天性基因突变致病患者,利用基因编辑技术改正突变的基因,可以为这些疾病的彻底根治提供希望。如在2013年,我国科学家上海生化细胞所的李劲松教授就利用CRISPR/Cas9技术治愈了小鼠的白内障遗传疾病。另一方面,基因编辑技术还有望为彻底治愈一些重大疾病的提供希望,如利用基因编辑技术改造艾滋病病毒HIV-1携带者免疫细胞中的CCR5基因,可以使得细胞不再受HIV-1病毒感染,有望成为彻底战胜艾滋病的有力武器。
结语:
迅猛发展的基因编辑技术正在给我们的生活带来巨大的变化,在享受先进科学技术带来的种种福利的同时,我们也必须进一步加强对于基因编辑技术的基础研究以及应用管理,以确保这一先进技术得到正确而有效地应用。
编辑:何郑燕 鲁凡英
(专家:吴剑锋,厦门大学生命科学学院博士,科普中国微平台原创首发)
上一篇:植物学报是ei吗
下一篇:医学生怎么投稿啊