基础数学硕士论文
基础数学硕士论文
数学硕士论文开题报告
导语:数学是一门博大高深的学科,要想学好数学必须进行艰苦的研究与知识的积淀。数学硕士撰写论文可以提高学术水平,在写作之前需要提交开题报告。下面和我一起来看数学硕士论文开题报告,希望有所帮助!
一、数学文化的内涵
数学作为一种科学的语言、工具和技术渗透在现代科技的方方面面早已是不争的事实,但是现代数学在人们心中的地位却远远没有达到它应当达到的高度。随着数学专业化程度的提高,它仿佛离人们越来越远了。专业的知识因为艰涩和高深仅仅掌握在少数人手中而无法被大众共享,这直接导致了新的成果无人理解,获得的奖项无人关注,所以数学人是“孤独的”.孤独造成高傲,高傲造成疏远,这其中有误解也有无奈。所以我们强调文化,因为脱离了文化基础的数学只能离人们越来越远。
受目前学校教育情况的影响,很多人认为数学是高高在上的,除了作为升学的工具,毫无用处。这样一来,对于数学这样一门富有深刻文化内涵的学科,就连一些受过良好教育的人也持无视的态度,对数学的无知成了一种很普遍的社会现象,这是一个令人十分担忧的事实。就像美丽的图画并非只是线条和色彩,动人的乐曲并非只是音符和节拍,数学也不是只有数字、符号和运算。了解数学的人都知道,运算只是数学微不足道的方面,数学的精神、思想、方法都蕴藏着无比深刻的内涵,渗透到科学的每个角落。如果将数学比作一棵大树,那么这棵大树的生命力是旺盛的,这种生命力体现在数学起源、发展、完善和应用的每一个过程当中,而数学文化就像土壤一样几百几千年来滋养这棵大树,使它繁衍生息,长盛不衰。因此,扎根于文化土壤的数学教育是十分必要的,也是我们目前十分需要的,这一点将在第五章进行详细论述。
19世纪末到20世纪初的几十年是数学哲学研究领域的黄金时代,关于数学基础的讨论十分活跃,也形成了不同的学派,包括逻辑主义学派、形式主义学派、直觉主义学派、集合论公理化学派等,大家都在筹划为数学建立牢固的哲学基础。虽然几个学派各有优缺点,但都为数学基础的严密性做出了贡献。然而哥德尔的工作击碎了他们的幻想,使数学哲学的研究一度陷入谷底。直到20世纪60年代,西方学者提出了数学文化观,从新的立场为数学哲学研究提出新的观点、新的方法。最早系统地完成这一开创性工作的是美国数学家怀尔德(),他提出了数学作为文化体系的数学哲学观。怀尔德是一名出色的数学家,主要从事拓扑学和数学基础的研究。他的《数学基础引论》和《数学概念演变初探》对数学基础研究有着深远的意义。受到人类学家朋友的影响,他对人类学产生了浓厚的兴趣,并大胆地从人类学的视角考察数学的本质和发展,在数学研究中融入了人类学的研究体会,出版了着作《数学概念的进化》和《作为文化体系的数学》。
他在著作中从文化生成和发展的理论等角度考察数学,率先提出了数学文化的概念并构建了数学文化的理论体系,形成了很长时期以来出现的第一个成熟的数学哲学观,强调了数学的发展动力、发展规律、思维方式等文化内涵,强调了遗传、环境、人类以及人类文化等对数学的作用影响。
二、数学文化研究的意义
区别于其他文化,数学文化具有独特的研究对象、研究视角及价值评判标准,它的出现为数学研究提出了新的思想和方法,使得我们可以从人类文化的任意一个角度切入数学、理解数学、解构数学,最大范围地打开研究思路,拓宽研究范围。
数学文化首先研究的是数学本身,包括从科学体系角度对数学科学进行研究和从哲学角度对数学哲学进行研究。数学科学研究就是一般意义上的数学理论研究,而数学哲学研究则是对数学基础、数学悖论和数学本体论进行探讨,包括数学的对象、性质、特点、地位与作用,数学新分支、新课题提出的哲学意义,着名数学家和数学流派的数学和哲学思想以及数学方法、数学的实在性和真理性等。
数学文化同时研究的是数学学科与其他学科、数学文化与其他文化之间的交互作用,比如数学与文学、数学与经济学之间的渗透影响等。
数学文化研究从文化因素思考数学的演变和发展,为数学史的研究提供新的思考方向。数学文化的历史研究不同于数学史的研究,数学史研究追求的是完善数学知识、数学思想的演化史,数学文化的历史研究是基于全局视角,思考数学与其他文化系统历史的互动关系,关注这些关系对现代数学发展的影响和启示。
如中国的传统文化和实用哲学使中国传统数学重视实用性,制定实际问题的算法成为中国传统数学的本质,也是中国数学存在和发展的基点。古希腊的数学思想产生在城邦航海贸易的氛围中,兼容并追求独立的思辨思想孕育了演绎数学,这是古希腊哲学的深入渗透和文化价值观的体现。从中西文化的差异角度,我们找到了东西方数学体系大相径庭的原因,不是数学本身的要求,而是文化的要求。
数学文化研究强调和突出社会文化心理、价值观念以及人类文化对数学发生的作用,从新的角度诠释了某些理论出现、发展、停滞或覆灭的原因。如古希腊的数学之所以昌盛,是因为希腊人以数学为万学之基,二元论的宇宙观也引导科学家将物质与自身分离而进行科学有效的客观分析。中国的儒家思想将数学放在六艺之末,天人合一的宇宙观使得东方人表现出长于直觉而短于抽象,擅于综合而不擅分析。这也是古代东方数学不能蓬勃发展的原因。
三、数学的文化特征
1.数学的抽象性
在早期的人类文明,数学的创始之初,人类学会了思考数字并进行一定程度的运算。苏联数学家亚历山大洛夫(ndrov)说:“抽象性在简单的计算中就已经表现出来。我们运用抽象的数字,却并不打算每次都把它们同具体的对象联系起来。我们在学校学的是抽象的乘法表--总是数字的.乘法表,而不是男孩的数目乘上苹果的数目,或者苹果的数目乘上苹果的价钱等等。”
数学成为抽象的学科,人们将这一巨大的功劳记在希腊人身上,毕达哥拉斯学派纯凭心智考虑抽象问题,认为数是真实物质的终极组成部分,是宇宙的要素,完全的演绎推理证明也加深了数学的抽象程度。希腊人有意识地承认并强调:数学上的东西如数和图形是思维的抽象,同实际事物或实际形象是完全不同的。物质实体是短暂的、不完善的,而抽象概念却是永恒的、完美的。虽然抽象相对实体更困难,但它的优点也是实体无法企及的,那就是一般性。在抽象的世界里,点没有大小,线没有宽度,面没有厚度,堆积的石子、成捆的树枝都可以表示数量关系。
2.数学的确定性
数学追求一种完全确定、完全可靠的知识。这种结果得益于数学体系的特殊而有效的方法,即从一系列不证自明的公理出发,准确地描述将要讨论的概念和定义,经过严密的逻辑推理演绎得出明确无误的结论,这也是数学得以长足发展的动力因素。几千年来,数学的真理性得到人们的高度认同和尊崇。
然而,十九世纪以后,数学的这种真理性地位却一次次受到巨大的冲击。非欧几何、四元数理论、集合论悖论给数学“真理的化身”形象笼罩上了阴影,使得数学丧失了揭示客观世界的“真理性”,也丧失了自身基础的严密性。克莱因(Morris Kline)在《数学:确定性的丧失》中提到“数学的当前困境是有许多种数学而不是只有一种,而且由于种种原因每一种都无法使对立学派满意。显然,普遍接受的概念、正确无误的推理体系--1800年时的尊贵数学和那时人的自豪--现在都成了痴心妄想。与未来数学相关的不确定性和可疑,取代了过去的确定性和自满。关于”最确定的“科学的基础意见不一致不仅让人吃惊,而且,温和一点说,是让人尴尬。”
3.数学的继承性
科学知识是在长期的历史发展过程中形成的,其过程就说明了知识具有继承性,没有继承,就没有积累。我认为继承性应该从两方面理解。
从个人来讲,我们学习一些知识,无须重新经历科学家们艰苦的实践过程,短时间内就可以掌握到一门学科千百年来积累的成果。这种继承通过教育实现,极大的加速了科学技术的发展,故而现在一个中学生掌握的知识可以超过若干古代著名的科学家。“只有有效地继承人类知识,同时把世界最先进的科学技术知识拿到手,我们再向前迈出半步,就是最先进的水平,第一流的科学家(诺贝尔物理学奖得主温伯格(Steven Weinberg))。”正因如此,知识领域才能发展成今天的面貌。法国的着名科学家庞加莱被誉为“全能数学家”,因为他在数学、天文、物理的几乎每一个领域都做出了杰出的贡献,然而今天,一个人想要掌握全部数学知识的三分之一都是不可能的。
四、提纲
目录
第1章 概述
1.1文化的内涵
1.2文明的内涵
1.3数学文化的内涵
1.4数学文化研究的意义与现状
第2章 数学的文化特征
2.1数学的文化特征
2.1.1数学的抽象性
2.1.2数学的确定性
2.1.3数学的继承性
2.1.4数学的简洁性
2.1.5数学的统一性
2.2数学的功能特征
2.2.1数学的渗透性
2.2.2数学的传播性
2.2.3数学的工具性
2.2.4数学的预见性
2.3数学的艺术特征
2.3.1数学的艺术性
2.3.2数学与音乐
2.3.3数学与美术
2.3.4数学与文学
第3章 数学与人类文明
3.1数学是人类逻辑能力的来源
3.2数学唤醒人类理性精神
3.3数学促进人类思想解放
3.4数学改善人类生活
3.5数学完善人类品格
3.6数学提高人类文化素质
第4章 数学与社会文明
4.1数学促进社会进步
4.2数学推动知识发展
第5章 我国数学文化与数学教育的研究进展
5.1数学文化与数学教育研究综述
5.2数学文化与数学教育活动进展
第6章 对数学教育的若干思考
6.1数学素养是国民文化素质的重要构成.
6.2数学教育现状
6.3数学文化教育亟需解决的问题与建议
结束语
参考文献
致谢
五、亟需解决的问题与建议
1.数学技能的培养与数学素养的培育应当紧密结合为一个有机的整体,一方面提高学生对于数学的学习兴趣,另一方面,也可以使学生在学习数学技能的过程中,不断地加深对于数学的理解,提高逻辑思维能力,养成理性思考的习惯。高等学校数学文化教育普遍存在的一个问题是数学文化与数学技能培养相脱节。目前,数学文化课或者数学教育课都是选修课,在本质上仍属于“弥补型”课程,通常都是在学生入学一到两个学期以后开设的。当数学文化课引发了学生对于数学的兴趣和思考的时候,数学基础课程已经修完或即将修完,于是,对于学生来说,数学文化课有着某种“相见恨晚”的感觉。正像有些学生所反映的那样,如果早一点开设数学文化课,早一点了解数学的文化内涵,他们的高等数学会学得更好。由于一直以来积重难返的应试教育所致,学生在初、高中阶段主要接受的是数学技能方面的知识,而极少接触到数学文化方面的知识,于是,在进入高等学校以后,学生对于数学文化的了解几近空白。这也在客观上造成了数学文化与技能的培养脱节。
2.近年来,由于各个领域对工作者建模能力的需要,数学建模教育逐渐得到了重视。在建模过程中培养学生的创新意识、思维能力,培养学生良好的数学素养是数学建模教育的主要目标。路易斯安那州立大学一项研究表明,与细菌的生存发展方式类似,学生对知识的探求和接受并非只是个体行为,学生与学生之间形成的交流网络会使学生相互影响、相互促进,对教学效果产生质的影响。数学建模教育形式正是突破了时间和空间的限制,改变“师对生”的传统、单一的教学
六、进度安排
20XX年11月01日-11月07日 论文选题。
20XX年11月08日-11月20日 初步收集毕业论文相关材料,填写《任务书》。
20XX年11月26日-11月30日 进一步熟悉毕业论文资料,撰写开题报告。
20XX年12月10日-12月19日 确定并上交开题报告。
20XX年01月04日-02月15日 完成毕业论文初稿,上交指导老师。
20XX年02月16日-02月20日 完成论文修改工作。
20XX年02月21日-03月20日 定稿、打印、装订。
20XX年03月21日-04月10日 论文答辩。
七、参考文献
[1]曹红军,厉树忠,刘亚楠.《易经》卦象符号的拓扑群结构[J].周易研究.
[2](美)塞缪尔·亨廷顿.文明的冲突与世界秩序的重建[M].北京:新华出版社,2005.
[3]范森林.中国政治思想的起源[M/OL].
[4]黄秦安.论数学文化的本质、功能及其在人类文化变革中的角色[J].陕西师范大学学报,1993(2):54-61.
[5]郑毓信.数学哲学的内容和意义[J/OL].
[6]普通高中数学课程标准(实验)[M].北京:人民教育出版社,2003.
[7]顾沛.数学文化[M],北京:高等教育出版社,2008.
[8]南开大学数学文化课程简介.
[9]吉林大学本科生数学文化课程教学大纲--数学文化.
[10](美)莫里斯·克莱因.古今数学思想(第一册)[M].上海:上海科学技术出版社,2002.
[11]郑毓信.数学方法论[M].南宁:广西教育出版社,2001.
[12]张维忠.数学:丧失了确定性吗?[J]自然辩证法研究,1998,14(11).
[13]郭光华,常春艳,王小燕.试论数学的文化特性[J].par数学教育学报,2005,14(3):25-27.
[14]蒋岚.论数学美[J].温州职业技术学院学报,2003,3(2):38-42.
[15]杨毅.论体育数学与体育科学[J].衡阳师范学院学报,2002,23(3):95-96.
[16]数学地质四川省高校重点实验室.
[17]林履端.《易经》与模糊数学[J].闽江学院学报,2002,22(2):116-118.
数学专业大学论文1000字范文
数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。下文是我为大家搜集整理的关于数学论文的内容,欢迎大家阅读参考!
浅谈提高课堂的有效性思维的策略
有效的课堂教学是通过课堂教学活动,让学生在认知和情感上均有所发展。从事小学数学教学的过程中,对于其有效性有以下几点思考:
一、重视情境创设充分调动学生有效的学习情感
构建良好的师生关系,调动有效的学习情感,对于维持学生的学习兴趣和注意力至关重要。调动有效的学习情感,既能培养学生的学习信心,调动其学习的主动性,又能切实提高课堂教学的有效性。
在情境创设中,应注意以下几点:
1、情境创设应目的明确
每一节课都有一定的教学任务。情境的创设,要有利于学生数学学习,有利于促进学生认知技能、数学思考、情感态度、价值观等方面的发展。所以,教学中既要紧紧围绕教学目标创设情境,又要充分发挥情境的作用,及时引导学生从情境中运用数学语言提炼出数学问题。如果是问题情境,
提出的问题则要具体、明确,有新意和启发性,不能笼统地提出诸如“你发现了什么”等问题。?
2.教学情境应具有一定的时代气息
作为教师,应该用动态的、发展的眼光来看待学生。在当今的信息社会里,学生可以通过多种 渠道 获得大量信息,教师创设的情境也应具有一种时代气息,让他们学会关心社会,关心国家发展。如教学《百分数的应用》,
创设了中国北京申奥成功的情境:出示第二轮得票统计图(北京56票,多伦多22票,巴黎18票,伊斯坦布尔9票)请学生根据统计图用学的百分数知识来提出问题,解决问题。?
3.情境的内容和形式应根据学生的生活 经验 与年龄特征进行设计?
教学情境的形式有很多,如问题情境、 故事 情境、活动情境、实验情境、竞争情境等。情境的创设要遵循不同年龄 儿童 的心理特征和认知规律,要根据学生的实际生活经验而设计。对低、中高年级的儿童,可以通过讲故事、做游戏、直观演示等形式创设情境,而对于高年级的学生,则要创设有助于学生自主学习、合作交流的问题情境,用数本身的魅力去吸引学生。?
二、深钻教材,确保知识的有效性。
知识的有效性是保证课堂教学有效的一个十分重要的条件。对学生而言,教学知识的有效是指新观点、新材料,他们不知不懂的,学后奏效的内容。教学内容是否有效和知识的属性以及学生的状态有关。第一,学生的知识增长取决于有效知识量。教学中学生知识的增长是教学成败的关键。第二,学生的智慧发展取决于有效知识量。发展是教学的主要任务,知识不是智慧,知识的迁移才是智慧。在个体的知识总量中并不是所有的知识都具有同样的迁移性,而是其中内化的、熟练的知识才是可以随时提取,灵活运用,这一部分知识称为个体知识总量中的有效知识,是智慧的象征。第三,学生的思想提高取决于有效知识量。这种知识是指教学中学生获得的、融会贯通深思熟虑的、实在有益的内容,即有效知识。第四,教学的心理效应取决于有效知识量。通过对知识的获取产生愉悦的心理效应,才能成为活动的原动力和催化剂。
三、探究有效的学习过程。
课堂教学的核心是调动全体学生主动参与学习全过程,使学生自主地学习、和谐地发展。学习过程是否有效,是课堂教学是否有效的关键。学生是学习的主体,但我们也不得不承认,处于成长发展中的小学生,是不成熟的学习主体。由于受年龄、经验、知识、能力的限制,他们提出问题、分析问题的能力毕竟是有限的。因此,只有发挥教师作为组织者、引导者、点拔者的作用,才能发挥学生的主体性、主动性,让学生学会学习。尤其在学生疑难处、意见分歧处,或在知识、 方法 归纳概括时,更要及时加以点拔指导。
有效的学习过程还可以通过游戏实施。小学生注意的特点是无意占优势,尤其是低年级往往表现出学前儿童所具有的那种对游戏的兴趣和足劲要求,他们能一连几小时地玩,却不能长时间地一动不动地坐在一个地方。新课程要求“面向每一个学生,特别是有差异的学生”。因此针对差异性,可以实施分层教学策略,最大限度地利用学生的潜能实施教学过程分层,放手让学生独立思考,展示学生个性,从而使每一个学生都得到发展。使数学课堂教学真实有效。
四、联系生活实际,创设有效的生活情境
创设有效的生活情境是提高课堂教学有效性的重要条件。《数学课程标准》指出:“力求从学生熟悉的生活情景与童话世界出发,选择学生身边的、感兴趣的数学问题,以激发学生学习的兴趣与动机,使学生初步感受数学与日常生活的密切联系。”数学教学中,教师要不失时机创设与学生生活环境、知识背景密切相关的,又是学生感兴趣的学习情景,使学生从中感悟到数学的乐趣,产生学习的需要,激发探索新知识的积极性,主动有效地参与学习。
在创设生活教学情境时,一要选取现实的生活情境。教师可直接选取教材中提供的学生熟悉的日常生活情境进行加工或自己创设学生感兴趣的现实生活素材作为课堂情境。二要构建开放的生活情境。教师要对课内知识进行延伸与拓展,将抽象知识学习过程转变为实践性、开放性的学习过程,引导学生发现问题,大胆提出猜想,不断形成、积累、拓展新的数学生活经验。要创设多元的生活情境。
可以通过对学生生活及兴趣的了解,对教学内容进行二次加工和整合,再次创设生活情境。真正实现课的导入“生活化”——教学的导入仿佛是优美乐章的“序曲”;例题教学“生活化”——例题教学是优美乐章的主旋律;知识运用“生活化”——综合运用知识的能力仿佛是动听的“交响乐”。
生产和生活实际是数学的渊源和归宿,其间大量的素材可以成为数学课堂中学生应用的材料。
要做有心人,不断为学生提供生活素材,让生活走进课堂。真正让文本的“静态”数学变成生活的“动态”数学。要让学生觉得数学不是白学的,学了即可用得上,是实实在在的。这样的课堂教学才是有效的。
五、注重教学 反思 ,促进课堂教学质量
记得有人说过“教无定法,教学是一门遗憾的艺术”。因为我们的教师不是圣人,一堂课不会十全十美。所以我们自己每上一节课,都要进行深入的剖析、反思,对每一个教学环节预设与实际吻合、学生学习状况、
调控状况、课堂生成状况等方面认真进行 总结 ,找出有规律的东西,在不断“反思”中学习。我们反思的主要内容有:思考过程、解题思路、分析过程、运算过程、语言的表述、教学的思想方法进行反思等。以促进课堂教学质量,教学效果也一定会更好。
教学作为一种有明确目的性的认知活动,其有效性是广大教师所共同追求的。无论课程改革到哪一步,“有效的课堂”是我们
永恒的追求。我们要在新课程理念指导下,在发挥学生主体作用的前提下,改革课堂教学模式,提高课堂教学实效。
试谈高中数学学习能力型问题和创新能力型问题
随着数学课程教材和考试评价改革的深入开展,提高学生能力的问题越来越引起人们的重视,被提到了重要的地位。为了进一步提高数学学习的质量,有必要对能力问题开展进一步的研究。在数学 教育 领域内,一般能力通常包括学习新的数学知识的能力、探究数学问题的能力、应用数学知识解决实际问题的能力和数学创新能力,提高这些能力将大大推动学生素质的提高。为此我们结合数学教学和考试命题的实践,有必要对数学教育中如何提高一般能力进行初步的探索,因此,我对高中数学学习能力型问题与创新能力型问题的差异进行了分析,给高中学生以予参考。
一、如何理解学习能力型问题
1.学习能力型习题的特点
(1)内容新。
学习能力型习题中常常出现过去没有学习过的新的概念、定理、公式或方法,要求学生通过自己学习以后,理解这些概念、定理、公式或方法,并且能运用它们解决有关的问题。
(2)抽象性。
这里新的概念、定理、公式或方法的叙述通常比较简略,比较抽象,没有解释性和说明性的语言,需要学生自己去仔细揣摩、领会和理解。与平时在课堂里教师指导下学习新知识有很大的区别,没有教师的讲解、举例和解说,没有许多感性的内容,比较抽象和概括,对学生的独立学习能力和 抽象思维 能力要求较高。因此学生解这类问题往往感到很困难。
(3)学了就用。
这里学习新知识的时间很短,要求通过阅读很快就能理解新的概念、定理、公式和方法,并能立即运用它们解决有关的问题,不举例题,没有模仿的过程。因此对学生思维的敏捷性和独创性要求较高。
2. 解学习能力型习题的步骤
(1)阅读理解
首先通过阅读理解题意,理解题目所包含的新的概念、定理、公式或方法的本质:这里分为两步:1、字面理解:要求读懂其中每一个 句子 的含义。2、深层理解:要求深入理解新的概念的本质属性,分清新的定理和条件和结论,理解新的方法的关键等。
(2)运用
在理解新的概念、定理、公式或方法的基础上,运用它们解决有关的问题。
3.如何提高解学习能力型问题的能力
(1)平时学习时要注意培养独立学习的能力
同于学习能力型问题包含新的概念、定理、公式或方法,在解题时要求通过自己独立学习,理解这些新的概念、定理、公式或方法,在此基础上,运用它们解决有关的总是因此要能顺利地解决这类问题必须有较强的独立学习能力。在平时学习时要培养自己预习的习惯,在上新课之前,自己先预习,尽量通过自己独立学习掌握新的知识,而不依赖教师的讲解。
(2)重视提高阅读理解能力
这里非常重要的就是阅读理解能力。例如学习一个新的概念,题目中只给出名称和抽象的定义,要求通过阅读概念的定义,理解概念的本质,这就对阅读理解能力提出较高的要求。首先要求学生具备一定的语文和数学的基础知识,对定义中的词和句子能有正确的理解,再进一步能根据概念的定义辨别正例和反例,并能具体运用概念。
论小学数学教学中培养学生学习兴趣的途径
数学领域是一片五彩缤纷、任人驰骋的天地,要想学好数学,需要好奇心、学习兴趣、思维能力和创造意识。而"学习的最好刺激乃是对所学学科的兴趣"(美国心理学家布鲁纳)。教师要设法使学生对数学学习产生浓厚的兴趣,只有让学生在学习的过程中体会到愉悦和快乐,才能够激发他们的学习欲望,才能够很好的进行学习。
一、精心设计课堂导入环节
课堂教学的导入虽仅占几分钟或几句话,但它是教学过程的重要环节,负有酝酿情绪、集中学生注意力、渗透主题和带入情境的任务,新课的导入要像磁石一样,牢牢地吸引学生的注意力,使学生强烈的求知欲望和高涨的学习热情,为课堂教学营造良好的学习氛围。因此一节课导入的好坏直接关系到学生的学习效果。导入的方法很多,可以讲故事、猜 谜语 ,也可以做游戏、听音乐,甚至简单的一个设问,都可以导入新课。如在教学能被2、3、5整除数的特征时,教师先写几个较大的数,让学生判断这些数能否被2、3、5整除,所有学生都无法完成这个任务,然后反过来,教师让学生报数,教师来进行判断,无论数多大均能很快并很正确地判断出来。
学生被老师这种"未卜先知"、"料事如神"的本领吸引住了,这时教师引导:"你们写的数那么大,老师根本没有除,为什么能很快判断出它们能不能被2、3、5整除呢?因为这里有一个诀窍,如果你们也掌握了这个知识的诀窍,那么你们也可以像老师一样,不用具体去除,就能迅速判断,你们想学不想学?"短时间内的几句话就把学生的兴趣和求知欲激发起来了,这样就为上好这节课提供了良好的心理品质,变学生"要我学"为"我要学",充分调动了学生学习数学的积极性和主动性。整个教学过程学生学得积极、主动。
二、利用直观教具的演示
教师利用多媒体教学能使学生直观认识新知识,更容易接受新知识。因为小学生好奇心特别强,而且抓住小学生对动画片痴迷这一特点,把他们兴趣引到课堂中往往得到满意的效果。如在教学《长方形周长计算》时,教师利用多媒体设计了龟兔赛跑的动画,把这个小故事制成几张幻灯片,其中设置了小乌龟跑的路线的动画效果,学生聚精会神,对小乌龟的一举一动都产生了一丝不苟地观察,并产生了无可估量的兴趣,因此在兴趣中轻松地解决了教学的重点和难点。
教师还可以利用 简笔画 、画图示例等直观教学吸引学生。简笔画教学是教师的教学基本功之一,如果能充分发挥教师这一特长,也能调动学生的学习兴趣,因为每个小孩生来就有着爱画画的本性,在教学过程中,学生对一笔代过的简笔画非常感兴趣,把这一兴趣潜移默化到教学实例中,同样能使学生在愉快氛围中获取知识。如教学《10以内的加减法》时,教师把小鸡和母鸡简笔画描到黑板上,让学生数出小鸡和母鸡的只数,再提出所要完成的问题,学生联系实例在兴趣盎然中会给得到惊喜的答案。
教学中,教师合理地运用教学模型,采用视想结合,不仅能开拓学生思维,更重要的是引导学生迅速进入教学情景,诱发学生学习兴趣。除了利用电化设备,在教学中还可以运用模型,灵活、广泛的进行直观教学。如教学《图形的认识》时,运用一些模型教具,让学生亲手摸一摸、看一看,调动学生的兴趣,而且能把抽象的几何内容转化为实物,使学生学起来简单易理解,并且提高学习兴趣。
三、培养学生的动手能力
在教学活动中让学生亲自动手操作,既能满足他们好动的要求,又能在愉悦中获取知识。学生理解和掌握知识总是以感性认识为基础,感性认识丰富,表象清晰,理解就深刻。因此,教学中让学生动手操作,独立探索,会极大地激发学生的求知欲和学习兴趣。小学生的思维以具体形象为主,在知识的构建过程中,教师应根据小学生的认知特点和数学知识本身的特点,有意识地设置学生动手操作的情境,使课堂处于一种积极探索的有序状态。例如在《圆的认识》教学中,课前教师给学生准备好硬纸、尺子、剪刀、圆规等学习用具,在授课时教师给学生亲自动手画圆,剪圆,量圆的半径和直径,并且在不同的圆里找出的异同点,通过学生动手,教师的点拨,把圆的特点知识在兴趣中获取。再如,在教学《平均分》时,教师是这样做的:(1)出示问题:"把6个桃子分成2份,可以怎样分?"(2)学生通过自己动手操作得出了三种答案:"5和1","4和2","3和3"。(3)让学生再观察,哪种分法最公平?学生稍加思考便知道"3和3"两份一样多,老师顺势引入"平均分"这一课题。学生通过参加分苹果的实际操作过程,极大地提高了对该教学内容的学习兴趣。
在课堂上,通过学生的动手操作,不折不扣地让学生去摆一摆、折一折、分一分、称一称、量一量、摸一摸、数一数、涂一涂、拼一拼,有利于突破教学的重点、难点,有利于减轻学生负担,有利于激发学生的兴趣,使学生主动积极地参与学习,发展了学生的能力,提高了教学效果。
四、灵活多变的课堂形式
通过创设多变的教学情境,充分调动学生积极参与的情感,既给学生带来了成功的喜悦,又使学生在轻松、愉快的数学活动中提高了计算能力和应用能力。如教师在《多位数乘一位数复习课》中设计了一个到智慧岛游玩的环节自始至终贯穿于整个复习课。一开始是到了智慧岛需要买门票,只要你算对了老师出的题目以后,就可以得到一张门票(下一个环节里用到的题卡),这样,可以激发学生进一步学习的欲望。当学生拿到题卡以后,进行计算的练习。当学生全部计算正确以后,就会得到一颗智慧星,这样设计,提高了学生学习的兴趣。然后老师出了几棵小树,上面是错误的计算题,让学生给生病的小树治病,治好病以后会进入下一个环节,利用两组灯笼间数的规律,通过计算,把剩余的灯笼"点亮",再一次进行了计算练习,同时结束智慧岛之游,使整节课的设计前后连贯,有始有终。
在教学中,根据教学内容,设计各种各样的游戏活动进行教学,使学生在喜悦中理解和掌握知识。如教学"8个和第8个",让小朋友手里拿着红花,先让他们从小到大排列,再从大到小排列。让8个小朋友向前走一步,再比第8个小朋友向后退一步,从而使学生区分8个和第8个的含义。请前面的7个小朋友坐下,再让第7个小朋友举起红花。又如教学"小明有9元,买笔用去4元,买本子用去2元。小明还剩多少钱?"设计了这样的一个游戏,讲台上面摆放着笔和本子,并标上价钱,请一个学生扮演售货员,一个学生扮演小明,并且手里有9元,游戏开始了,请同学们读题目。第一次买笔售货员找回5元给小明,这时,老师就问小明还要买什么东西,同学们异口同声地说:"买本子。"第二次售货员找回3元。通过这样教学,学生很快列出正确的算式。让学生身临其境,培养学生分析应用题数量关系的能力,又正确掌握解题思路。
兴趣是最好的老师,只有在教学中激发了学生的学习兴趣,才能更好地发挥学生的主体性,促进学生自主地学习。只有充分培养学生学习数学的热情,才能激发学生学习数学的兴趣,提高课堂学习效率。
谁能告诉我数学研究生毕业论文都是写啥,给他好评
1.学术性论文。这个要求高,需要学霸型。都是公式推理,解题之类的,要求写满10页。
2.教育类论文。一般都是某类数学知识的应用。比如xxx在中学数学中的应用/价值
求数学教育专业毕业论文范文
提高本科毕业生数学教育论文质量,首先在激发学生数学教育科研动机的基础上,发展数学教育的科研意识。论文的选题要有创新性、实践性、可行性,在论文写作的过程中培养学生的数学教育科研能力。本科生数学教育论文的标准应是再创性、整体性和规范性。 [关键词]数学教育本科生毕业论文科研意识 [作者简介]李静(1966-),男,河北张北人,廊坊师范学院数信学院数学系讲师,硕士,主要从事数学教育研究。(河北廊坊065000) [中图分类号]G642.477[文献标识码]A[文章编号]1004-3985(2008)06-0174-02 本科生毕业论文是培养大学生的创新能力、实践能力和创业精神的重要环节。师范院校数学系本科生适应就业需要,选择数学教育专业毕业论文较多。毕业论文指导要以学生就业需要为动机,以提高学生的数学教育专业能力和创新意识为目标,以“模仿—反思—初步创新”模式为科研训练过程,合理安排毕业论文的各个环节。 一、明确毕业论文工作目的 1.间接性目的。随着数学教师专业化,数学教育理论已成为数学教师专业知识结构的主要成分之一。无论是师范毕业生的就业面试,还是在职的中学数学教师的培训提高,数学教育理论的掌握越来越重要。论文指导教师发挥就业需要这一外在的、间接的动力作用,促使学生认真学习有关系统的数学教育理论知识,为做好毕业论文打好扎实的基础。 2.直接性目的。因为在校本科生缺乏中学数学教学的经历和经验,对于数学教育理论的学习只能了解记忆,很难进入思考阶段,以这样的知识储备状态,毕业论文的创新性水平不会太高。学生掌握了一定的数学教育理论知识后,教师要指导学生走进中学数学课堂,熟悉教学的各个方面,并对照自己中学受教育的经历,思考现行的中学数学教学,哪怕是微小的触动,教师帮助其分析理论依据,诱导其深入思考教学实践,激发其对数学教育的真正兴趣,促进其较高水平地完成论文。 选择数学教育毕业论文的学生,在内外动机的作用下,通过理论知识的学习和中学数学实践的感悟,有针对性地对某个课题整理、总结,探讨解决数学教育中的一些问题,有助于学生高质量地对研究心得总结、反思、加工和表达。 二、培养数学教育的科研意识 本科生的数学教育科研意识是指对数学教育问题的感知和参与研究的自觉要求。良好的科研意识是研究型人才不断成长的基本要求,鼓励本科生不能只满足于将来当教书匠,应成为研究型的专业教师。培养本科生的数学教育科研意识不妨从以下几方面着手:通过数学教育理论重要性的教育,逐步培养学生用数学教育的观点观察、发现和分析问题的自觉要求;督促学生走进中学数学教学实践,培养学生善于思考、提炼和分析当前数学教育的有关问题,形成自觉的心理倾向;在论文准备期间,理论学习和实践感悟后,在指导教师的启发引导下,培养学生善于总结数学教学的经验,能够有意识地运用有关数学、哲学、教育学、心理学的观点分析这些感悟经验,努力把经验上升为理论知识①。 本科生要学习和容纳不同流派的学术观点,虚心向数学教育第一线的实际工作者请教,调查、分析数学教学实践问题。本科生的科研意识的发展,绝不是靠一时一事可以实现的,应该贯穿于整个本科教育过程。作为毕业论文的应急之需,可以在毕业论文开始时以任务书形式提出课题要求;也可以在论文准备过程中,专题性地介绍相关领域进展,评价相关专家的研究特点;指导教师带领自己的学生参加教育见习和教育实习等,让学生在教学实践中学会发现问题、分析问题、解决问题,从而自觉地形成数学教育的科研意识;也可以通过论文评述、中期筛选等机制促进本科生的相互学习。 三、选定毕业论文课题 1.打好学科基础,开阔选题视野。师范院校数学系全日制的本科生有关数学教育的课程有数学基础、教育学和心理学基础、数学教学论基础。在选题前,指导教师应要求学生认真复习数学教育自身专业课程并且适当地布置一些复习思考题,帮助学生充分地理解有关数学教育的理论知识,为他们发现课题开拓宽阔空间,教师也要注意帮助学生领会新课程的理念,促进未来的中学教师更好地全面实施新课程。 2.参加中学数学教学实践,获得选题灵感。实践是产生科研课题的土壤。让学生有机会到中学数学教育第一线去进行实践,在实践中了解中学教育现状,发现有关问题,取得选题灵感。经过本科阶段的学习后,学生的数学知识和修养达到了中学数学教师专业要求,但将理论形态知识转化成实践形态知识还需在教师的导引下逐渐地对中学数学教学活动感悟、理解和把握。学生参与中学数学教学活动的兴趣是浓厚的,都想体验当真正老师的感受。要想让学生体验到真正的实践形态的数学教育知识,指导教师无论在见习、试讲或实习中,一定要帮助学生在观察活动中发现问题,在理论讲解中分析问题,在感悟思考中解决问题。作为指导老师,保护、引导这种闪光的火花很重要,它是优秀课题的雏形。这种数学教育的科研训练,对学生今后的发展意义重大。 3.提出选题原则,掌握选题分寸。本科生论文的选题原则主要是:创新性、实践性、可行性。创新是科学研究的灵魂,创新的标尺应该适度。对待数学教育论文选题,教师帮助学生在充分理解数学教育理论形态和实践形态知识后,发现或提出值得注意的新问题、新观点、新途径、新方法。要求学生所选的课题尽量来自中学数学教与学的实际有关问题,这些问题对学生有一定的吸引力,这些问题的研究也有助于学生的就业面试和工作。现在本科生的数学教育论文存在的问题主要有:课题空泛求全,论述不够全面深入;堆砌空洞的理论,没有自己的思考见解;观点落后,有悖于当代教育新理念;主题不明确,缺乏论证材料;难以调动评价者的兴趣等。为了提高本科生的论文选题质量,从历届学生的选题中选出有代表性的课题,包括教师平时的选题,作为学习选题的鲜活材料,通过点评,逐步纠正错误的认识,从而正确掌握学习原则。 4.做好开题的准备工作。在引导学生学习选题的基础上,学生尝试根据个人实际情况选题。为了选好课题,学生需从模仿别人文章选题,逐步地过渡到自己的独立思考,要相互切磋,纵横向交流。当学生征求教师有关选题的意见时,教师不必急于表态,可以提出一些问题发散他们的思维,个人是否具备解决该问题的条件,对于该问题你估计能有多大把握,教师帮助学生提出问题,并促使其不断反思其选题的意义等。学生的个人经历、兴趣和爱好存在较大的差异,他们应该根据个人的兴趣特长选题,我们要尊重学生的个人选择,以便充分发挥他们的优势。当然,教师也要提醒他们思考各种不同选题的利弊,在选题方面,教师的意见只起参考作用。为了帮助学生全面思考他们的课题研究工作,我们请有代表性的上届毕业生为每一届的本科生介绍自己的选题体会,对应届毕业生具有一定的示范作用。对于所有本专业的本科生认真地召开开题报告会,指导教师们对每一个学生的开题报告提出宝贵意见。 四、提升论文写作中的科研能力 1.对论文的不同类型的认识。数学教育论文的种类是多样的,按照不同的标准可以划分为不同的类型。指导教师找出不同类型的范文,通过讲解让学生明确:按照创新程度划分,可分为创新性论文和移植性论文;按成果产生的方式,可分为实验研究论文和调查研究论文;按照撰写论文的思维方式,可分为思辨性论文和实证性论文;按照对已有成果的整理方式,可分为综合性论文和评论性论文②。但是各类论文之间,有时没有严格的界限,学会移植别人成果,移植中可能还有自己的再创新;实验研究性论文往往又与调查研究性论文相结合;思辨性的论文有时又带有实证;方法的多样性、相容性正是数学教育研究的特点之一。学生在不断地学习各种类型范文的写作要领时,渐渐地形成自己的写作风格。 ||| [摘要]提高本科毕业生数学教育论文质量,首先在激发学生数学教育科研动机的基础上,发展数学教育的科研意识。论文的选题要有创新性、实践性、可行性,在论文写作的过程中培养学生的数学教育科研能力。本科生数学教育论文的标准应是再创性、整体性和规范性。 [关键词]数学教育本科生毕业论文科研意识 [作者简介]李静(1966-),男,河北张北人,廊坊师范学院数信学院数学系讲师,硕士,主要从事数学教育研究。(河北廊坊065000) [中图分类号]G642.477[文献标识码]A[文章编号]1004-3985(2008)06-0174-02 本科生毕业论文是培养大学生的创新能力、实践能力和创业精神的重要环节。师范院校数学系本科生适应就业需要,选择数学教育专业毕业论文较多。毕业论文指导要以学生就业需要为动机,以提高学生的数学教育专业能力和创新意识为目标,以“模仿—反思—初步创新”模式为科研训练过程,合理安排毕业论文的各个环节。 一、明确毕业论文工作目的 1.间接性目的。随着数学教师专业化,数学教育理论已成为数学教师专业知识结构的主要成分之一。无论是师范毕业生的就业面试,还是在职的中学数学教师的培训提高,数学教育理论的掌握越来越重要。论文指导教师发挥就业需要这一外在的、间接的动力作用,促使学生认真学习有关系统的数学教育理论知识,为做好毕业论文打好扎实的基础。 2.直接性目的。因为在校本科生缺乏中学数学教学的经历和经验,对于数学教育理论的学习只能了解记忆,很难进入思考阶段,以这样的知识储备状态,毕业论文的创新性水平不会太高。学生掌握了一定的数学教育理论知识后,教师要指导学生走进中学数学课堂,熟悉教学的各个方面,并对照自己中学受教育的经历,思考现行的中学数学教学,哪怕是微小的触动,教师帮助其分析理论依据,诱导其深入思考教学实践,激发其对数学教育的真正兴趣,促进其较高水平地完成论文。 选择数学教育毕业论文的学生,在内外动机的作用下,通过理论知识的学习和中学数学实践的感悟,有针对性地对某个课题整理、总结,探讨解决数学教育中的一些问题,有助于学生高质量地对研究心得总结、反思、加工和表达。 二、培养数学教育的科研意识 本科生的数学教育科研意识是指对数学教育问题的感知和参与研究的自觉要求。良好的科研意识是研究型人才不断成长的基本要求,鼓励本科生不能只满足于将来当教书匠,应成为研究型的专业教师。培养本科生的数学教育科研意识不妨从以下几方面着手:通过数学教育理论重要性的教育,逐步培养学生用数学教育的观点观察、发现和分析问题的自觉要求;督促学生走进中学数学教学实践,培养学生善于思考、提炼和分析当前数学教育的有关问题,形成自觉的心理倾向;在论文准备期间,理论学习和实践感悟后,在指导教师的启发引导下,培养学生善于总结数学教学的经验,能够有意识地运用有关数学、哲学、教育学、心理学的观点分析这些感悟经验,努力把经验上升为理论知识①。 本科生要学习和容纳不同流派的学术观点,虚心向数学教育第一线的实际工作者请教,调查、分析数学教学实践问题。本科生的科研意识的发展,绝不是靠一时一事可以实现的,应该贯穿于整个本科教育过程。作为毕业论文的应急之需,可以在毕业论文开始时以任务书形式提出课题要求;也可以在论文准备过程中,专题性地介绍相关领域进展,评价相关专家的研究特点;指导教师带领自己的学生参加教育见习和教育实习等,让学生在教学实践中学会发现问题、分析问题、解决问题,从而自觉地形成数学教育的科研意识;也可以通过论文评述、中期筛选等机制促进本科生的相互学习。 三、选定毕业论文课题 1.打好学科基础,开阔选题视野。师范院校数学系全日制的本科生有关数学教育的课程有数学基础、教育学和心理学基础、数学教学论基础。在选题前,指导教师应要求学生认真复习数学教育自身专业课程并且适当地布置一些复习思考题,帮助学生充分地理解有关数学教育的理论知识,为他们发现课题开拓宽阔空间,教师也要注意帮助学生领会新课程的理念,促进未来的中学教师更好地全面实施新课程。 2.参加中学数学教学实践,获得选题灵感。实践是产生科研课题的土壤。让学生有机会到中学数学教育第一线去进行实践,在实践中了解中学教育现状,发现有关问题,取得选题灵感。经过本科阶段的学习后,学生的数学知识和修养达到了中学数学教师专业要求,但将理论形态知识转化成实践形态知识还需在教师的导引下逐渐地对中学数学教学活动感悟、理解和把握。学生参与中学数学教学活动的兴趣是浓厚的,都想体验当真正老师的感受。要想让学生体验到真正的实践形态的数学教育知识,指导教师无论在见习、试讲或实习中,一定要帮助学生在观察活动中发现问题,在理论讲解中分析问题,在感悟思考中解决问题。作为指导老师,保护、引导这种闪光的火花很重要,它是优秀课题的雏形。这种数学教育的科研训练,对学生今后的发展意义重大。 3.提出选题原则,掌握选题分寸。本科生论文的选题原则主要是:创新性、实践性、可行性。创新是科学研究的灵魂,创新的标尺应该适度。对待数学教育论文选题,教师帮助学生在充分理解数学教育理论形态和实践形态知识后,发现或提出值得注意的新问题、新观点、新途径、新方法。要求学生所选的课题尽量来自中学数学教与学的实际有关问题,这些问题对学生有一定的吸引力,这些问题的研究也有助于学生的就业面试和工作。现在本科生的数学教育论文存在的问题主要有:课题空泛求全,论述不够全面深入;堆砌空洞的理论,没有自己的思考见解;观点落后,有悖于当代教育新理念;主题不明确,缺乏论证材料;难以调动评价者的兴趣等。为了提高本科生的论文选题质量,从历届学生的选题中选出有代表性的课题,包括教师平时的选题,作为学习选题的鲜活材料,通过点评,逐步纠正错误的认识,从而正确掌握学习原则。 4.做好开题的准备工作。在引导学生学习选题的基础上,学生尝试根据个人实际情况选题。为了选好课题,学生需从模仿别人文章选题,逐步地过渡到自己的独立思考,要相互切磋,纵横向交流。当学生征求教师有关选题的意见时,教师不必急于表态,可以提出一些问题发散他们的思维,个人是否具备解决该问题的条件,对于该问题你估计能有多大把握,教师帮助学生提出问题,并促使其不断反思其选题的意义等。学生的个人经历、兴趣和爱好存在较大的差异,他们应该根据个人的兴趣特长选题,我们要尊重学生的个人选择,以便充分发挥他们的优势。当然,教师也要提醒他们思考各种不同选题的利弊,在选题方面,教师的意见只起参考作用。为了帮助学生全面思考他们的课题研究工作,我们请有代表性的上届毕业生为每一届的本科生介绍自己的选题体会,对应届毕业生具有一定的示范作用。对于所有本专业的本科生认真地召开开题报告会,指导教师们对每一个学生的开题报告提出宝贵意见。 四、提升论文写作中的科研能力 1.对论文的不同类型的认识。数学教育论文的种类是多样的,按照不同的标准可以划分为不同的类型。指导教师找出不同类型的范文,通过讲解让学生明确:按照创新程度划分,可分为创新性论文和移植性论文;按成果产生的方式,可分为实验研究论文和调查研究论文;按照撰写论文的思维方式,可分为思辨性论文和实证性论文;按照对已有成果的整理方式,可分为综合性论文和评论性论文②。但是各类论文之间,有时没有严格的界限,学会移植别人成果,移植中可能还有自己的再创新;实验研究性论文往往又与调查研究性论文相结合;思辨性的论文有时又带有实证;方法的多样性、相容性正是数学教育研究的特点之一。学生在不断地学习各种类型范文的写作要领时,渐渐地形成自己的写作风格。 ||| 2.发挥师生的整体力量。指导教师的个人力量毕竟有限,指导工作难免考虑不周,往往存在某些局限性。每次学生的开题报告,教研室的全体教师都应参加,将开题报告的辩论过程变成相互学习与交流的过程,鼓励所有参加的学生发表自己的看法,开发学生的潜在能力。在撰写论文的过程中,学生要广泛地征求本教研室老师们的意见,这样有利于综合各方面的优势,也有利于对毕业论文进行更全面的评价认识。 3.提高中学数学教学活动的感悟力。我们安排本专业学生利用做论文的1/3的时间到中学参加教学实践,边教边学,了解中学情况,感悟数学教学的内在规律,学会寻找研究课题,做到教学、学习、科研和就业同步进行。例如,让学生了解中学数学教学常规要求的理论依据,了解中学教师利用非认知因素转化后进生的根据等,触动学生从理论到实践的深入思考。我们认为学生在数学教学实践活动中学习最有效。通过一系列的教学实践活动,他们走进了数学教育的前列,找到了科研的感觉,逐步掌握了科研的基本要领,培养了自己的数学教育初步科研能力,从而为学位论文的研究和写作打下了坚实的基础。 五、把握数学教育论文的评价 1.再创性标准。不同对象在不同情景中可能得到不同的创新水平:原创水平、再创新水平、部分再创性水平、少许新意水平。由于师范本科生的水平所限,还没有发现原创水平和再创新水平的论文,只有很少的学生达到部分再创新水平的标准(即对再创新成果进行移植、修改、补充、推广和评价),部分学生能达到少许新意水平的标准(即论文的内容、构思等局部方面有少许新见解、新体会、新加工)。多数学生的论文创新性水平不高,只在模仿的基础上,略有思考。对于创新要求应该适度,如果要求文章的整体内容立意新颖,或者要求文章的全部或主体部分是创新的成果,这个标准对于在校本科生来说是不现实的。我们以为把部分再创新水平作为共同努力的方向,而少许新意水平应作为学士生论文的一般要求,能够模仿别人、理解理论和有所感悟的水平应该作为学士生论文的最低要求。鼓励学生的论文尽量涉及数学教育的热点问题和重点问题。 2.整体性标准。首先,论文要紧扣主题展开,各个部分都应该为主题服务,形成一个和谐的整体结构,一些学生离开主题发表议论,论文不能达到学士学位的要求。其次,从整体上把握论文各部分的地位,主次分明,重点部分和关键部分必须予以较深阐述,次要部分就不必唆。最后,各部分之间过渡自然,应该相互配合得当,形成一个有机整体,如果部分间对立或矛盾,就犯了“自打嘴巴”的毛病。 3.规范性标准。教师指导学生修改完论文后,将论文成果表示成学术形态。摘要、关键词、参考文献等要符合学术论文的要求。语言要简洁、说理清楚、层次分明、符合逻辑。所展示的各类图表及数据要清晰、翔实、规范,能够正确运用统计方法说明某些结论。 本科生的数学教育毕业论文在创新水平和独立工作的程度上,在说明理论依据和阐述问题的深度上,有一定不可回避的局限性。从数学教育专家知识结构可以看出,数学教育研究除了具有精深的数学基础,要有扎实的数学教育理论形态知识,更需要丰富的数学教育实践形态知识,经过各种知识间的相互作用于研究课题,久而久之,形成了较强的本领域的科研本领③。本科生既缺乏系统的数学教育理论形态知识,又缺乏数学教育实践活动体验,提升学生这方面的科研能力,首先需要从方法上考虑学生的数学教育理论的系统学习,相应地在时间上保证学生有机会参与中学数学教学实践活动,做到两种学习活动相互促进。 (摘抄)
硕士论文一定要有数学模型分析方法吗
不一定啊!看你的专业和方向了。你如果学语言的压根跟这个就不沾边,如果你是学理工的基本上都会有数学分析作为理论依据的
上一篇:美女杂志哪些好看
下一篇:数学解题研究杂志