欢迎来到学术参考网
当前位置:发表论文>论文发表

生信分析论文怎么写

发布时间:2023-12-10 20:33

生信分析论文怎么写

最好先阅读几篇相应文章和相今似的论文,比如你的课题是油菜,你可以搜有关其他物种如小麦的。根据论文写作步骤制定实验计划。要练习使用一些常用软件,如NCBI,GenBank,在用时最好先下载安装有道词典,因为是英文网站,不容易懂,专业名词也太多!不要怕,万事开头难!好好准备,入了门就好了!

如何做生物信息,学发 SCI 文章

就有人问,生信的文章能发到多少分?如果你是像华科薛宇教授一样的大牛,弄一套算法,编一个生信分析工具,十几分妥妥的,引用量杠杠的。但是,那是大牛,一般来说,按「常规套路」出牌的这种生信分析文章分值在 0-2 分之间。但也有些不做实验的生信分析文章能发到个 4-5 分,那么生信分析的文章怎么样能达到一个比较高的层次呢?
这里,我们给大家分享两篇文章来说一说一些进阶的文章思路,一篇是发表在我们的老朋友「Oncotarget」上的,另一篇是发表在「Journal of Proteome Research」(IF = 4.1)上的。
先看 Oncotarget 这篇「Genomic expression differences between cutaneous cells from red hair color individuals and black hair color individuals based on bioinformatic analysis」,文章是做的黑色素瘤的两种不同表型的个体的差异基因的生信分析。
Abstract 里说到 MC1R 这个基因的突变会导致高患癌率的 RHC 表型两种不同的表型,其中 RHC 表型会增加皮肤癌的发生率,那么 MC1R 的突变究竟影响了哪些基因?文章通过 PPI 网络分析,分别对比分析两个不同表型(RHC 和 BHC)的正常皮肤细胞和癌细胞中的差异基因。结果表明,在癌细胞的对比中没有差异,而在正常皮肤细胞中筛选出 23 个 hub 基因,并且其中 8 个基因异常表达,这一结果提示这 8 个基因的异常表达可能是 RHC 表型患癌风险提高的重要原因。

这篇文章利用了 3 个数据包进行综合分析,从而得到了一个 novel 的结论,文章利用 GSE44805 中的差异基因构建 PPI 网络筛选 hub 基因,再利用别的数据包中的测序结果验证这些基因确实存在异常表达,多方验证说明自己生信分析结果是可靠的。虽然作者一点实验也没有做,但是从数据量还有可靠性上来说,可能比自己辛辛苦苦地做小样本量测序还要靠谱。

文章中的分析方法(差异基因以及 PPI 分析)都是我们非常熟悉的。筛选出差异基因,将上调和下调的基因分别构建 PPI 网络,得到文中的 4 张图(不管怎么说,这图的颜值比上一期套路中分析的文章要高得多)。

这张图的构建方法这里不再赘述
小结
这篇文章的方法完全是可以借鉴和复制的,难点在于找到足够多的具有相似性和可比性的数据结果,以及找到一个合适的切入点得到一个相对 novel 的结论。
下面看 Journal of Proteome Research 上的这篇文章「Weighted Protein Interaction Network Analysis of Frontotemporal Dementia」。
一看这流程图就觉得这文章是生信专业的人做的文章。(本宫上学的时候,就觉得我们生命学院的学生都是码农,生物信息专业、生物医疗工程、生物科学这些专业的人天天都在编代码,完全感受不出生物专业的气息。)

这文章讲得啥咧,就是先选出 13 个种子基因,然后根据 PPI 数据库中蛋白质互作关系构建这 13 个种子基因的第一层网络结构。

再以第一层网络为种子构建第二层网络结构(然后电脑就死机了)。

然后分析第二层网络的拓扑学结构,从中筛选出 hub 基因(图中绿点表示最初的 13 个种子基因,蓝点表示第一层的基因)。在构建过程中,随着基因数量的不断增加,最先选出的 13 个种子基因未必就是后来的 hub 基因。文中还设置了对照组,并详细讲述了这 13 个种子基因的筛选方法。因为整个分析过程都是建立在生信分析的基础上,属于完全架空的,所以整个研究过程十分讲究逻辑上的严谨性。
小结
之所向大家介绍这篇文章,是觉得这种思路在生信分析的文章中可以借鉴,种子基因的选择可以通过临床上疾病中基因突变的概率来进行筛选,然后构建两层 PPI 网络,进行 GO,KEGG 分析,从而预测新的未知的疾病相关基因,如果后续能从别的数据包中得到表达量的验证或者是自己在临床样本中进行验证,那么整个文章的内容将会更加丰富。
局限性:PPI 数据库中其实很多蛋白质互作结果是没有意义的,因为在实际生物体中很多蛋白质互作情况是不可能发生的,只有在实验人为干预情况下才会发生。

求一篇2000字左右的论文:生物信息在生物学研究中的作用?

1,序列比对(Sequence Alignment)
序列比对的基本问题是比较两个或两个以上符号序列的相似性或不相似性.从生物学的初衷来看,这一问题包含了以下几个意义:从相互重叠的序列片断中重构DNA的完整序列.在各种试验条件下从探测数据(probe data)中决定物理和基因图存贮,遍历和比较数据库中的DNA序列比较两个或多个序列的相似性在数据库中搜索相关序列和子序列寻找核苷酸(nucleotides)的连续产生模式找出蛋白质和DNA序列中的信息成分序列比对考虑了DNA序列的生物学特性,如序列局部发生的插入,删除(前两种简称为indel)和替代,序列的目标函数获得序列之间突变集最小距离加权和或最大相似性和,对齐的方法包括全局对齐,局部对齐,代沟惩罚等.两个序列比对常采用动态规划算法,这种算法在序列长度较小时适用,然而对于海量基因序列(如人的DNA序列高达109bp),这一方法就不太适用,甚至采用算法复杂性为线性的也难以奏效.因此,启发式方法的引入势在必然,著名的BALST和FASTA算法及相应的改进方法均是从此前提出发的.
2, 蛋白质结构比对和预测
基本问题是比较两个或两个以上蛋白质分子空间结构的相似性或不相似性.蛋白质的结构与功能是密切相关的,一般认为,具有相似功能的蛋白质结构一般相似.蛋白质是由氨基酸组成的长链,长度从50到1000~3000AA(Amino Acids),蛋白质具有多种功能,如酶,物质的存贮和运输,信号传递,抗体等等.氨基酸的序列内在的决定了蛋白质的3维结构.一般认为,蛋白质有四级不同的结构.研究蛋白质结构和预测的理由是:医药上可以理解生物的功能,寻找dockingdrugs的目标,农业上获得更好的农作物的基因工程,工业上有利用酶的合成.直接对蛋白质结构进行比对的原因是由于蛋白质的3维结构比其一级结构在进化中更稳定的保留,同时也包含了较AA序列更多的信息.蛋白质3维结构研究的前提假设是内在的氨基酸序列与3维结构一一对应(不一定全真),物理上可用最小能量来解释.从观察和总结已知结构的蛋白质结构规律出发来预测未知蛋白质的结构.同源建模(homology modeling)和指认(Threading)方法属于这一范畴.同源建模用于寻找具有高度相似性的蛋白质结构(超过30%氨基酸相同),后者则用于比较进化族中不同的蛋白质结构.然而,蛋白结构预测研究现状还远远不能满足实际需要.
3, 基因识别,非编码区分析研究.
基因识别的基本问题是给定基因组序列后,正确识别基因的范围和在基因组序列中的精确位置.非编码区由内含子组成(introns),一般在形成蛋白质后被丢弃,但从实验中,如果去除非编码区,又不能完成基因的复制.显然,DNA序列作为一种遗传语言,既包含在编码区,又隐含在非编码序列中.分析非编码区DNA序列目前没有一般性的指导方法.在人类基因组中,并非所有的序列均被编码,即是某种蛋白质的模板,已完成编码部分仅占人类基因总序列的3~5%,显然,手工的搜索如此大的基因序列是难以想象的.侦测密码区的方法包括测量密码区密码子(codon)的频率,一阶和二阶马尔可夫链,ORF(Open Reading Frames),启动子(promoter)识别,HMM(Hidden Markov Model)和GENSCAN,Splice Alignment等等.
4, 分子进化和比较基因组学
分子进化是利用不同物种中同一基因序列的异同来研究生物的进化,构建进化树.既可以用DNA序列也可以用其编码的氨基酸序列来做,甚至于可通过相关蛋白质的结构比对来研究分子进化,其前提假定是相似种族在基因上具有相似性.通过比较可以在基因组层面上发现哪些是不同种族中共同的,哪些是不同的.早期研究方法常采用外在的因素,如大小,肤色,肢体的数量等等作为进化的依据.近年来较多模式生物基因组测序任务的完成,人们可从整个基因组的角度来研究分子进化.在匹配不同种族的基因时,一般须处理三种情况:Orthologous: 不同种族,相同功能的基因;Paralogous: 相同种族,不同功能的基因;Xenologs: 有机体间采用其他方式传递的基因,如被病毒注入的基因.这一领域常采用的方法是构造进化树,通过基于特征(即DNA序列或蛋白质中的氨基酸的碱基的特定位置)和基于距离(对齐的分数)的方法和一些传统的聚类方法(如UPGMA)来实现.
5, 序列重叠群(Contigs)装配
根据现行的测序技术,每次反应只能测出500 或更多一些碱基对的序列,如人类基因的测量就采用了短枪(shortgun)方法,这就要求把大量的较短的序列全体构成了重叠群(Contigs).逐步把它们拼接起来形成序列更长的重叠群,直至得到完整序列的过程称为重叠群装配.从算法层次来看,序列的重叠群是一个NP-完全问题.
6, 遗传密码的起源
通常对遗传密码的研究认为,密码子与氨基酸之间的关系是生物进化历史上一次偶然的事件而造成的,并被固定在现代生物的共同祖先里,一直延续至今.不同于这种"冻结"理论,有人曾分别提出过选择优化,化学和历史等三种学说来解释遗传密码.随着各种生物基因组测序任务的完成,为研究遗传密码的起源和检验上述理论的真伪提供了新的素材.
7, 基于结构的药物设计
人类基因工程的目的之一是要了解人体内约10万种蛋白质的结构,功能,相互作用以及与各种人类疾病之间的关系,寻求各种治疗和预防方法,包括药物治疗.基于生物大分子结构及小分子结构的药物设计是生物信息学中的极为重要的研究领域.为了抑制某些酶或蛋白质的活性,在已知其蛋白质3级结构的基础上,可以利用分子对齐算法,在计算机上设计抑制剂分子,作为候选药物.这一领域目的是发现新的基因药物,有着巨大的经济效益.
8.生物系统的建模和仿真
随着大规模实验技术的发展和数据累积,从全局和系统水平研究和分析生物学系统,揭示其发展规律已经成为后基因组时代的另外一个研究 热点-系统生物学。目前来看,其研究内容包括生物系统的模拟(Curr Opin Rheumatol,2007,463-70),系统稳定性分析(Nonlinear Dynamics Psychol Life Sci,2007,413-33),系统鲁棒性分析(Ernst Schering Res Found Workshop, 2007,69-88)等方面。以SBML(Bioinformatics,2007,1297-8)为代表的建模语言在迅速发展之中,以布尔网络 (PLoS Comput Biol,2007,e163)、微分方程(Mol Biol Cell,2004,3841-62)、随机过程(Neural Comput,2007,3262-92)、离散动态事件系统等(Bioinformatics,2007,336-43)方法在系统分析中已经得到应 用。很多模型的建立借鉴了电路和其它物理系统建模的方法,很多研究试图从信息流、熵和能量流等宏观分析思想来解决系统的复杂性问题(Anal Quant Cytol Histol,2007,296-308)。当然,建立生物系统的理论模型还需要很长时间的努力,现在实验观测数据虽然在海量增加,但是生物系统的模型辨 识所需要的数据远远超过了目前数据的产出能力。例如,对于时间序列的芯片数据,采样点的数量还不足以使用传统的时间序列建模方法,巨大的实验代价是目前系 统建模主要困难。系统描述和建模方法也需要开创性的发展。
9.生物信息学技术方法的研究
生物信息学不仅仅是生物学知识的简单整理和、数学、物理学、信息科学等学科知识的简单应用。海量数据和复杂的背景导致机器学习、统 计数据分析和系统描述等方法需要在生物信息学所面临的背景之中迅速发展。巨大的计算量、复杂的噪声模式、海量的时变数据给传统的统计分析带来了巨大的困难, 需要像非参数统计(BMC Bioinformatics,2007,339)、聚类分析(Qual Life Res,2007,1655-63)等更加灵活的数据分析技术。高维数据的分析需要偏最小二乘(partial least squares,PLS)等特征空间的压缩技术。在计算机算法的开发中,需要充分考虑算法的时间和空间复杂度,使用并行计算、网格计算等技术来拓展算法的 可实现性。
10, 生物图像
没有血缘关系的人,为什么长得那么像呢?
外貌是像点组成的,像点愈重合两人长得愈像,那两个没有血缘关系的人像点为什么重合?
有什么生物学基础?基因是不是相似?我不知道,希望专家解答。
11, 其他
如基因表达谱分析,代谢网络分析;基因芯片设计和蛋白质组学数据分析等,逐渐成为生物信息学中新兴的重要研究领域;在学科方面,由生物信息学衍生的学科包括结构基因组学,功能基因组学,比较基因组学,蛋白质学,药物基因组学,中药基因组学,肿瘤基因组学,分子流行病学和环境基因组学,成为系统生物学的重要研究方法.从现在的发展不难看出,基因工程已经进入了后基因组时代.我们也有应对与生物信息学密切相关的如机器学习,和数学中可能存在的误导有一个清楚的认识.

第一次做生物信息学,求助

你这个问题好大,生物信息学包含的内容太多,主要看你需要做哪些分析,是想学习分析,还是只是需要发表论文,如果学习,那是一个系统的学习,推荐学习两门语言,R语言和PERL语言,学习两个数据库,GEO和TCGA,这两个数据库是现在的主流,需要掌握的。学习资源可以取生信自学wang和丁香园,都可以学到不少东西。如果是写论文,可以直接找生信分析的人,把分析好的数据和图片给你,你就可以写论文了,当然找人家做一般都是有偿的。

上一篇:软件技术的毕业论文

下一篇:瑞丽杂志是哪个出版社