欢迎来到学术参考网
当前位置:发表论文>论文发表

大数据发展趋势论文

发布时间:2023-12-07 10:10

大数据发展趋势论文

大数据论文【1】 大数据管理会计信息化解析

摘要:

在大数据时代下,信息化不断发展,信息化手段已经在我国众多领域已经得到较为广泛的应用和发展,在此发展过程,我国的管理会计信息化的应用和发展也得到了非常多的关注。

同时也面临着一些问题。

本文通过分析管理会计信息化的优势和应用现状以及所面临的的问题,以供企业在实际工作中对这些问题的控制和改善进行参考和借鉴。

关键词:

大数据;管理会计信息化;优势;应用现状;问题

在这个高速发展的信息时代,管理会计的功能已经由提供合规的信息不断转向进行价值创造的资本管理职能了。

而管理会计的创新作为企业管理创新的重要引擎之一,在大数据的时代下,管理会计的功能是否能够有效的发挥,与大数据的信息化,高效性、低廉性以及灵活性等特点是密不可分的。

一、大数据时代下管理会计信息化的优势及应用现状

在大数据时代下,管理者要做到有效地事前预测、事后控制等管理工作,在海量类型复杂的数据中及时高效的寻找和挖掘出价值密度低但是商业价值高的信息。

而管理会计信息化就能够被看做是大数据信息系统与管理会计的一个相互结合,可以认为是通过一系列系统有效的现代方法,

不断挖掘出有价值的财务会计方面的信息和其他非财务会计方面的综合信息,随之对这些有价值的信息进行整理汇总、分类、计算、对比等有效的分析和处理,

以此能够做到满足企业各级管理者对各个环节的一切经济业务活动进行计划、决策、实施、控制和反馈等的需求。

需要掌控企业未来的规划与发展方向就能够通过预算管理信息化来实现;需要帮助管理者优化企业生产活动就能够通过成本管理信息化对

供产销一系列流程进行监控来实现;需要对客观环境的变化进行了解以此帮助管理者为企业制定战略性目标能够通过业绩评价信息化来实现。

(一)预算管理信息化

在这个高速发展的信息时代下,预算管理对于企业管理而言是必不可少的,同时对企业的影响仍在不断加强。

正是因为企业所处的环境是瞬息万变,与此同此,越来越多的企业选择多元化发展方式,选择跨行业经营的模式,经营范围的跨度不断增大。

这就需要企业有较强的市场反应能力和综合实力,对企业的预算管理提出了新的发展挑战要求。

虽然不同企业的经营目标各不相同,但对通过环境的有效分析和企业战略的充分把握,从而进行研究和预测市场的需求是如出一辙的。

企业对需求的考量进而反应到企业的开发研发、成本控制以及资金流安排等各个方面,最终形成预算报表的形式来体现企业对未来经营活动和成果的规划与预测,

从而完成对企业经营活动事后核算向对企业经营活动全过程监管控制的转变。

然而从2013国务院国资委研究中心和元年诺亚舟一起做的一项针对大型国有企业的调研结果中得出,仅仅有4成的企业完成了预算管理的信息化应用,

大型的国有企业在预算管理信息化应用这方面的普及率都不高,足以说明我国整体企业的应用情况也不容乐观。

所以从整体上来讲,预算管理信息化的应用并未在我国企业中获得广泛的普及。

(二)成本管理信息化

企业由传统成本管理企业向精益成本管理企业转换是企业发展壮大的必然选择。

而基于大数据信息系统能够为企业提供对计划、协调、监控管理以及反馈等过程中各类相关成本进行全面集成化管理。

而进行成本管理的重中之重就是对企业价值链进行分析以及对企业价值流进行管理。

企业能够通过成本管理信息化对有关生产经营过程中的原材料等进行有效地信息记录及进行标示,并结合在财务信息系统中产生的单独标签,

使与企业有关的供应商、生产经营过程和销售等的过程全都处于企业的监控。

以此企业可以做到掌握生产经营的全过程,即能够通过财务信息系统实时了解到原材料的消耗,产品的入库及出库等一切企业生产经营活动。

同时,结合价值链的分析和价值流管理,企业通过将生产过程进行有效地分解,形成多条相互连接的价值链,运用信息化手段对企业的

每条价值链的成本数进行有效的追踪监管和综合分析,以此为基础为企业提出改进方案,并使用历史成本进行预测,达到减少企业的不需要的损失及浪费,最终达到优化生产经营过程。

虽然成本管理信息化是企业发展的一个重要趋势,以大数据信息技术为基础的信息系统可以使得企业完成全面的成本管理,给企业的成本管理带来了巨大的推动力。

然而信息化在成本控制方面的实施效果并不是很理想。

(三)业绩评价信息化

业绩评价是对企业财务状况以及企业的经营成果的一种反馈信息,当企业的绩效处于良好状态,代表企业的发展状况良好,

也反映了企业现阶段人才储备充足,发展处于上升期,由此企业定制扩张战略计划。

而当企业的绩效不断减少,代表企业的发展状况在恶化,也反映了企业的人才处在流失状态,企业在不断衰退,此时企业应该制定收缩战略计划。

企业进行业绩评价信息化的建设,通过对信息系统中的各类相关数据进行综合分析,有效地将对员工的业绩评价与企业的财务信息、顾客反馈、学习培训等各方面联系在一起。

对于企业而言,具备一套完善且与企业自身相适应的业绩评级和激励体系是企业财务信息系统的一个重要标志,也是企业组织内部关系成熟的一种重要表现。

然而,如今对于具备专业的业绩评价信息化工具平衡分卡等在企业的发展过程中并未得到广泛的应用。

其中最大的原因应该是对业绩评价的先进办法对于数据信息的要求比较简单,通常可以由传统方式获得。

所以,现如今能够完全将业绩评价纳入企业信息系统,并能够利用业绩评价信息化来提高企业管理效率的企业数量并不多。

二、大数据时代下管理会计信息化存在的主要问题

(一)企业管理层对管理会计信息化不重视

我国企业管理层对企业管理会计信息化建设存在着不重视的问题。

首先,对管理会计信息化概念和建设意义没有正确的认识,有甚至由于对于企业自身的认识不够充分,会对管理会计信息化的趋势产生了质疑和抵触心理。

再者,只有在一些发展较好的企业中进行了管理会计信息化的建设工作及应用,但是,企业应用所产生的效果并不是很理想,进而促使管理会计信息化在企业的发展速度缓慢。

(二)管理会计信息化程度较低

大数据时代下,信息化手段已经在我国众多领域已经得到较为广泛的应用和发展,在此发展过程,我国的管理会计信息化的应用和发展也得到了非常多的关注。

但是,由于管理会计在我国受重视程度不够,企业在进行管理会计信息化建设的过程中对与软件的设计和应用也要求较高,所以与管理会计信息化建设相关的基础建设还相对较落后。

(三)管理会计信息化理论与企业经管机制不协调

虽然随着国家政策鼓励和扶持,很多行业的不断涌现出新的企业,企业数量不断增多,但是由于这些企业在规模以及效益等方面都存在着较大的差距,同时在管理决策方面也产生了显著地差别。

很多企业在发展的过程中并没有实现真正的权责统一,产生了管理层短视行为,没有充分考虑企业的长远利益等管理水平低下的问题。

三、管理会计信息化建设的措施

(一)适应企业管理会计信息化发展的外部环境

企业在进行管理会计信息化建设时,要结合企业所处的外部环境进行全方面的规划和建设。

在企业进行规划和建设时,国家的法律法规等相关政策占据着十分重要的位置,需要对市场经济发展的相关法律法规进行充分理解和考虑,为企业管理会计信息化建设提供好的法律环境。

管理会计信息化系统的正常运转要求企业处于相对较好的环境之中,以此充分发挥出其应有的作用。

(二)管造合适的管理会计信息化发展内部环境

企业管理会计信息化的良好发展要求企业能够提供良好的内部环境。

树立有效推进企业管理会计信息化建设的企业文化,企业文化作为企业股东、懂事、管理层以及每个员工的价值观念体现,

有利于各级员工都能够正确认识到管理会计信息化建设的重要性,接受管理会计信息化的价值取向。

再者,企业要储备足够的管理会计人才,为管理会计信息化的建设提供源源不断的血液。

同时,为企业管理会计信息化建设提供强大的资金保障。

最后,对企业内部控制体系不断完善,为企业创造长足的生命力,为管理会计信息化赖以生存的环境。

(三)开发统一的企业信息化管理平台

在大数据时代下,信息化不断发展,对于企业而言,会同时使用多种不同的信息系统进行组合使用,并且这种情况在未来也可能将持续下去,企业需要建立综合统一的企业信息化管理平台。

四、结束语

管理会计信息化已经成为企业发展的重要趋势。

同时也面对着一些问题。

因此,相应的措施和不断地完善和改进是必不可少的,以此才能够促进管理会计信息化的不断发展。

作者:李瑞君 单位:河南大学

参考文献:

[1]冯巧根.

管理会计的理论基础与研究范式[J].

会计之友,2014(32).

[2]张继德,刘向芸.

我国管理会计信息化发展存在的问题与对策[J].

会计之友,2014(21).

[3]韩向东.

管理会计信息化的应用现状和成功实践[J].

会计之友,2014(32).

大数据论文【2】大数据会计信息化风险及防范

摘要:

随着科学技术的不断进步和社会经济的不断发展,大数据时代的发展速度加快,同时也推动着会计信息化的发展进程,提高了企业会计信息化工作的效率和质量,资源平台的共享也大大降低了会计信息化的成本。

但大数据时代下会计信息化的发展也存在一定的风险。

本文将会对大数据时代下会计信息化中所存在的风险给予介绍,并制定相应的防范对策,从而使大数据时代在避免给会计

信息化造成不良影响的同时发挥其巨大优势来促进会计信息化的发展进程。

关键词:

大数据时代;会计信息化;风险;防范

前言

近年来经济全球化进程不断加快,经济与科技的迅猛发展,我国在经历了农业、工业和信息时代以后终于踏入了大数据时代。

大数据是指由大量类型繁多、结构复杂的数据信息所组成的`数据集合,运用云计算的数据处理模式对数据信息进行集成共享、

交叉重复使用而形成的智力能力资源和信息知识服务能力。

大数据时代下的会计信息化具有极速化、规模性、智能性、多元化、和即时高效等特点,这使得会计从业人员可以更方便快捷的使用数

据信息,并在降低经济成本的同时有效实现资源共享,信息化效率逐渐增强。

但同时大数据时代下的会计信息化也面临着风险,应及时有效地提出防范对策,以确保会计信息化的长久发展。

一、大数据时代对会计信息化发展的影响

(一)提供了会计信息化的资源共享平台

进入大数据时代以来,我国的科学技术愈加发达,会计信息化也在持续地走发展和创新之路,网络信息资源平台的建立使数据与信息资源可以共同分享,平台使用者之间可以相互借鉴学习。

而最为突出的成就便是会计电算化系统的出现,它改变了传统会计手工做账的方式,实现了记账、算账和报账的自动化模式,

提高了会计数据处理的正确性和规范性,为信息化管理打下基础,推进了会计技术的创新和进一步发展。

但是“信息孤岛”的出现证明了会计电算化并没有给会计信息化的发展带来实质性的变化。

浅谈计算机与大数据的相关论文

  在大数据环境下,计算机信息处理技术也面临新的挑战,要求计算机信息处理技术必须不断的更新发展,以能够对当前的计算机信息处理需求满足。下面是我给大家推荐的计算机与大数据的相关论文,希望大家喜欢!

  计算机与大数据的相关论文篇一
  浅谈“大数据”时代的计算机信息处理技术

  [摘 要]在大数据环境下,计算机信息处理技术也面临新的挑战,要求计算机信息处理技术必须不断的更新发展,以能够对当前的计算机信息处理需求满足。本文重点分析大数据时代的计算机信息处理技术。

  [关键词]大数据时代;计算机;信息处理技术

  在科学技术迅速发展的当前,大数据时代已经到来,大数据时代已经占领了整个环境,它对计算机的信息处理技术产生了很大的影响。计算机在短短的几年内,从稀少到普及,使人们的生活有了翻天覆地的变化,计算机的快速发展和应用使人们走进了大数据时代,这就要求对计算机信息处理技术应用时,则也就需要在之前基础上对技术实施创新,优化结构处理,从而让计算机数据更符合当前时代发展。

  一、大数据时代信息及其传播特点

  自从“大数据”时代的到来,人们的信息接收量有明显加大,在信息传播中也出现传播速度快、数据量大以及多样化等特点。其中数据量大是目前信息最显著的特点,随着时间的不断变化计算机信息处理量也有显著加大,只能够用海量还对当前信息数量之大形容;传播速度快也是当前信息的主要特点,计算机在信息传播中传播途径相当广泛,传播速度也相当惊人,1s内可以完成整个信息传播任务,具有较高传播效率。在传播信息过程中,还需要实施一定的信息处理,在此过程中则需要应用相应的信息处理工具,实现对信息的专门处理,随着目前信息处理任务的不断加强,信息处理工具也有不断的进行创新[1];信息多样化,则也就是目前数据具有多种类型,在庞大的数据库中,信息以不同的类型存在着,其中包括有文字、图片、视频等等。这些信息类型的格式也在不断发生着变化,从而进一步提高了计算机信息处理难度。目前计算机的处理能力、打印能力等各项能力均有显著提升,尤其是当前软件技术的迅速发展,进一步提高了计算机应用便利性。微电子技术的发展促进了微型计算机的应用发展,进一步强化了计算机应用管理条件。

  大数据信息不但具有较大容量,同时相对于传统数据来讲进一步增强了信息间关联性,同时关联结构也越来越复杂,导致在进行信息处理中需要面临新的难度。在 网络技术 发展中重点集中在传输结构发展上,在这种情况下计算机必须要首先实现网络传输结构的开放性设定,从而打破之前计算机信息处理中,硬件所具有的限制作用。因为在当前计算机网络发展中还存在一定的不足,在完成云计算机网络构建之后,才能够在信息处理过程中,真正的实现收放自如[2]。

  二、大数据时代的计算机信息处理技术

  (一)数据收集和传播技术

  现在人们通过电脑也就可以接收到不同的信息类型,但是在进行信息发布之前,工作人员必须要根据需要采用信息处理技术实施相应的信息处理。计算机采用信息处理技术实施信息处理,此过程具有一定复杂性,首先需要进行数据收集,在将相关有效信息收集之后首先对这些信息实施初步分析,完成信息的初级操作处理,总体上来说信息处理主要包括:分类、分析以及整理。只有将这三步操作全部都完成之后,才能够把这些信息完整的在计算机网络上进行传播,让用户依照自己的实际需求筛选满足自己需求的信息,借助于计算机传播特点将信息数据的阅读价值有效的实现。

  (二)信息存储技术

  在目前计算机网络中出现了很多视频和虚拟网页等内容,随着人们信息接收量的不断加大,对信息储存空间也有较大需求,这也就是对计算机信息存储技术提供了一个新的要求。在数据存储过程中,已经出现一系列存储空间无法满足当前存储要求,因此必须要对当前计算机存储技术实施创新发展。一般来讲计算机数据存储空间可以对当前用户关于不同信息的存储需求满足,但是也有一部分用户对于计算机存储具有较高要求,在这种情况下也就必须要提高计算机数据存储性能[3],从而为计算机存储效率提供有效保障。因此可以在大数据存储特点上完成计算机信息新存储方式,不但可以有效的满足用户信息存储需求,同时还可以有效的保障普通储存空间不会出现被大数据消耗问题。

  (三)信息安全技术

  大量数据信息在计算机技术发展过程中的出现,导致有一部分信息内容已经出现和之前信息形式的偏移,构建出一些新的计算机信息关联结构,同时具有非常强大的数据关联性,从而也就导致在计算机信息处理中出现了新的问题,一旦在信息处理过程中某个信息出现问题,也就会导致与之关联紧密的数据出现问题。在实施相应的计算机信息管理的时候,也不像之前一样直接在单一数据信息之上建立,必须要实现整个数据库中所有将数据的统一安全管理。从一些角度分析,这种模式可以对计算机信息处理技术水平有显著提升,并且也为计算机信息处理技术发展指明了方向,但是因为在计算机硬件中存在一定的性能不足,也就导致在大数据信息安全管理中具有一定难度。想要为数据安全提供有效保障,就必须要注重数据安全技术管理技术的发展。加强当前信息安全体系建设,另外也必须要对计算机信息管理人员专业水平进行培养,提高管理人员专业素质和专业能力,从而更好的满足当前网络信息管理体系发展需求,同时也要加强关于安全技术的全面深入研究工作[4]。目前在大数据时代下计算机信息安全管理技术发展还不够成熟,对于大量的信息还不能够实施全面的安全性检测,因此在未来计算机信息技术研究中安全管理属于重点方向。但是因为目前还没有构建完善的计算机安全信息管理体系,因此首先应该强化关于计算机重点信息的安全管理,这些信息一旦发生泄漏,就有可能会导致出现非常严重的损失。目前来看,这种 方法 具有一定可行性。

  (四)信息加工、传输技术

  在实施计算机信息数据处理和传输过程中,首先需要完成数据采集,同时还要实时监控数据信息源,在数据库中将采集来的各种信息数据进行存储,所有数据信息的第一步均是完成采集。其次才能够对这些采集来的信息进行加工处理,通常来说也就是各种分类及加工。最后把已经处理好的信息,通过数据传送系统完整的传输到客户端,为用户阅读提供便利。

  结语:

  在大数据时代下,计算机信息处理技术也存在一定的发展难度,从目前专业方面来看,还存在一些问题无法解决,但是这些难题均蕴含着信息技术发展的重要机遇。在当前计算机硬件中,想要完成计算机更新也存在一定的难度,但是目前计算机未来的发展方向依旧是云计算网络,把网络数据和计算机硬件数据两者分开,也就有助于实现云计算机网络的有效转化。随着科学技术的不断发展相信在未来的某一天定能够进入到计算机信息处理的高速发展阶段。

  参考文献

  [1] 冯潇婧.“大数据”时代背景下计算机信息处理技术的分析[J].计算机光盘软件与应用,2014,(05):105+107.

  [2] 詹少强.基于“大数据”时代剖析计算机信息处理技术[J].网络安全技术与应用,2014,(08):49-50.

  [3] 曹婷.在信息网络下计算机信息处理技术的安全性[J].民营科技,2014, (12):89CNKI

  [4] 申鹏.“大数据”时代的计算机信息处理技术初探[J].计算机光盘软件与应用,2014,(21):109-110
  计算机与大数据的相关论文篇二
  试谈计算机软件技术在大数据时代的应用

  摘要:大数据的爆炸式增长在大容量、多样性和高增速方面,全面考验着现代企业的数据处理和分析能力;同时,也为企业带来了获取更丰富、更深入和更准确地洞察市场行为的大量机会。对企业而言,能够从大数据中获得全新价值的消息是令人振奋的。然而,如何从大数据中发掘出“真金白银”则是一个现实的挑战。这就要求采用一套全新的、对企业决策具有深远影响的解决方案。

  关键词:计算机 大数据时代 容量 准确 价值 影响 方案

  1 概述

  自从计算机出现以后,传统的计算工作已经逐步被淘汰出去,为了在新的竞争与挑战中取得胜利,许多网络公司开始致力于数据存储与数据库的研究,为互联网用户提供各种服务。随着云时代的来临,大数据已经开始被人们广泛关注。一般来讲,大数据指的是这样的一种现象:互联网在不断运营过程中逐步壮大,产生的数据越来越多,甚至已经达到了10亿T。大数据时代的到来给计算机信息处理技术带来了更多的机遇和挑战,随着科技的发展,计算机信息处理技术一定会越来越完善,为我们提供更大的方便。

  大数据是IT行业在云计算和物联网之后的又一次技术变革,在企业的管理、国家的治理和人们的生活方式等领域都造成了巨大的影响。大数据将网民与消费的界限和企业之间的界限变得模糊,在这里,数据才是最核心的资产,对于企业的运营模式、组织结构以及 文化 塑造中起着很大的作用。所有的企业在大数据时代都将面对战略、组织、文化、公共关系和人才培养等许多方面的挑战,但是也会迎来很大的机遇,因为只是作为一种共享的公共网络资源,其层次化和商业化不但会为其自身发展带来新的契机,而且良好的服务品质更会让其充分具有独创性和专用性的鲜明特点。所以,知识层次化和商业化势必会开启知识创造的崭新时代。可见,这是一个竞争与机遇并存的时代。

  2 大数据时代的数据整合应用

  自从2013年,大数据应用带来令人瞩目的成绩,不仅国内外的产业界与科技界,还有各国政府部门都在积极布局、制定战略规划。更多的机构和企业都准备好了迎接大数据时代的到来,大数据的内涵应是数据的资产化和服务化,而挖掘数据的内在价值是研究大数据技术的最终目标。在应用数据快速增长的背景下,为了降低成本获得更好的能效,越来越趋向专用化的系统架构和数据处理技术逐渐摆脱传统的通用技术体系。如何解决“通用”和“专用”体系和技术的取舍,以及如何解决数据资产化和价值挖掘问题。

  企业数据的应用内容涵盖数据获取与清理、传输、存储、计算、挖掘、展现、开发平台与应用市场等方面,覆盖了数据生产的全生命周期。除了Hadoop版本2.0系统YARN,以及Spark等新型系统架构介绍外,还将探讨研究流式计算(Storm,Samza,Puma,S4等)、实时计算(Dremel,Impala,Drill)、图计算(Pregel,Hama,Graphlab)、NoSQL、NewSQL和BigSQL等的最新进展。在大数据时代,借力计算机智能(MI)技术,通过更透明、更可用的数据,企业可以释放更多蕴含在数据中的价值。实时、有效的一线质量数据可以更好地帮助企业提高产品品质、降低生产成本。企业领导者也可根据真实可靠的数据制订正确战略经营决策,让企业真正实现高度的计算机智能决策办公,下面我们从通信和商业运营两个方面进行阐述。

  2.1 通信行业:XO Communications通过使用IBM SPSS预测分析软件,减少了将近一半的客户流失率。XO现在可以预测客户的行为,发现行为趋势,并找出存在缺陷的环节,从而帮助公司及时采取 措施 ,保留客户。此外,IBM新的Netezza网络分析加速器,将通过提供单个端到端网络、服务、客户分析视图的可扩展平台,帮助通信企业制定更科学、合理决策。电信业者透过数以千万计的客户资料,能分析出多种使用者行为和趋势,卖给需要的企业,这是全新的资料经济。中国移动通过大数据分析,对 企业运营 的全业务进行针对性的监控、预警、跟踪。系统在第一时间自动捕捉市场变化,再以最快捷的方式推送给指定负责人,使他在最短时间内获知市场行情。

  2.2 商业运营:辛辛那提动物园使用了Cognos,为iPad提供了单一视图查看管理即时访问的游客和商务信息的服务。借此,动物园可以获得新的收入来源和提高营收,并根据这些信息及时调整营销政策。数据收集和分析工具能够帮助银行设立最佳网点,确定最好的网点位置,帮助这个银行更好地运作业务,推动业务的成长。

  3 企业信息解决方案在大数据时代的应用

  企业信息管理软件广泛应用于解决欺诈侦测、雇员流动、客户获取与维持、网络销售、市场细分、风险分析、亲和性分析、客户满意度、破产预测和投资组合分析等多样化问题。根据大数据时代的企业挖掘的特征,提出了数据挖掘的SEMMA方法论――在SAS/EM环境中,数据挖掘过程被划分为Sample、Explore、Modify、Model、Assess这五个阶段,简记为SEMMA:

  3.1 Sample 抽取一些代表性的样本数据集(通常为训练集、验证集和测试集)。样本容量的选择标准为:包含足够的重要信息,同时也要便于分析操作。该步骤涉及的处理工具为:数据导入、合并、粘贴、过滤以及统计抽样方法。

  3.2 Explore 通过考察关联性、趋势性以及异常值的方式来探索数据,增进对于数据的认识。该步骤涉及的工具为:统计 报告 、视图探索、变量选择以及变量聚类等方法。

  3.3 Modify 以模型选择为目标,通过创建、选择以及转换变量的方式来修改数据集。该步骤涉及工具为:变量转换、缺失处理、重新编码以及数据分箱等。

  3.4 Model 为了获得可靠的预测结果,我们需要借助于分析工具来训练统计模型或者机器学习模型。该步骤涉及技术为:线性及逻辑回归、决策树、神经网络、偏最小二乘法、LARS及LASSO、K近邻法以及其他用户(包括非SAS用户)的模型算法。

  3.5 Assess 评估数据挖掘结果的有效性和可靠性。涉及技术为:比较模型及计算新的拟合统计量、临界分析、决策支持、报告生成、评分代码管理等。数据挖掘者可能不会使用全部SEMMA分析步骤。然而,在获得满意结果之前,可能需要多次重复其中部分或者全部步骤。

  在完成SEMMA步骤后,可将从优选模型中获取的评分公式应用于(可能不含目标变量的)新数据。将优选公式应用于新数据,这是大多数数据挖掘问题的目标。此外,先进的可视化工具使得用户能在多维直方图中快速、轻松地查阅大量数据并以图形化方式比较模拟结果。SAS/EM包括了一些非同寻常的工具,比如:能用来产生数据挖掘流程图的完整评分代码(SAS、C以及Java代码)的工具,以及交换式进行新数据评分计算和考察执行结果的工具。

  如果您将优选模型注册进入SAS元数据服务器,便可以让SAS/EG和SAS/DI Studio的用户分享您的模型,从而将优选模型的评分代码整合进入 工作报告 和生产流程之中。SAS模型管理系统,通过提供了开发、测试和生产系列环境的项目管理结构,进一步补充了数据挖掘过程,实现了与SAS/EM的无缝联接。

  在SAS/EM环境中,您可以从SEMMA工具栏上拖放节点进入工作区的工艺流程图中,这种流程图驱动着整个数据挖掘过程。SAS/EM的图形用户界面(GUI)是按照这样的思路来设计的:一方面,掌握少量统计知识的商务分析者可以浏览数据挖掘过程的技术方法;另一方面,具备数量分析技术的专家可以用微调方式深入探索每一个分析节点。

  4 结束语

  在近十年时间里,数据采集、存储和数据分析技术飞速发展,大大降低了数据储存和处理的成本,一个大数据时代逐渐展现在我们的面前。大数据革新性地将海量数据处理变为可能,并且大幅降低了成本,使得越来越多跨专业学科的人投入到大数据的开发应用中来。

  参考文献:

  [1]薛志文.浅析计算机网络技术及其发展趋势[J].信息与电脑,2009.

  [2]张帆,朱国仲.计算机网络技术发展综述[J].光盘技术,2007.

  [3]孙雅珍.计算机网络技术及其应用[J].东北水利水电,1994.

  [4]史萍.计算机网络技术的发展及展望[J].五邑大学学报,1999.

  [5]桑新民.步入信息时代的学习理论与实践[M].中央广播大学出版社,2000.

  [6]张浩,郭灿.数据可视化技术应用趋势与分类研究[J].软件导刊.

  [7]王丹.数字城市与城市地理信息产业化――机遇与挑战[J].遥感信息,2000(02).

  [8]杨凤霞.浅析 Excel 2000对数据的安全管理[J].湖北商业高等专科学校学报,2001(01).
  计算机与大数据的相关论文篇三
  浅谈利用大数据推进计算机审计的策略

  [摘要]社会发展以及时代更新,在该种环境背景下大数据风潮席卷全球,尤其是在进入新时期之后数据方面处理技术更加成熟,各领域行业对此也给予了较高的关注,针对当前计算机审计(英文简称CAT)而言要想加速其发展脚步并将其质量拔高就需要结合大数据,依托于大数据实现长足发展,本文基于此就大数据于CAT影响进行着手分析,之后探讨依托于大数据良好推进CAT,以期为后续关于CAT方面研究提供理论上参考依据。

  [关键词]大数据 计算机审计 影响

  前言:相较于网络时代而言大数据风潮一方面提供了共享化以及开放化、深层次性资源,另一方面也促使信息管理具备精准性以及高效性,走进新时期CAT应该融合于大数据风潮中,相应CAT人员也需要积极应对大数据带了的机遇和挑战,正面CAT工作,进而促使CAT紧跟时代脚步。

  一、初探大数据于CAT影响

  1.1影响之机遇

  大数据于CAT影响体现在为CAT带来了较大发展机遇,具体来讲,信息技术的更新以及其质量的提升促使数据方面处理技术受到了众多领域行业的喜爱,当前在数据技术推广普及阶段中呈现三大变化趋势:其一是大众工作生活中涉及的数据开始由以往的样本数据实际转化为全数据。其二是全数据产生促使不同数据间具备复杂内部关系,而该种复杂关系从很大程度上也推动工作效率以及数据精准性日渐提升,尤其是数据间转化关系等更为清晰明了。其三是大众在当前处理数据环节中更加关注数据之间关系研究,相较于以往仅仅关注数据因果有了较大进步。基于上述三大变化趋势,也深刻的代表着大众对于数据处理的态度改变,尤其是在当下海量数据生成背景下,人工审计具备较强滞后性,只有依托于大数据并发挥其优势才能真正满足大众需求,而这也是大数据对CAT带来的重要发展机遇,更是促进CAT在新时期得以稳定发展重要手段。

  1.2影响之挑战

  大数据于CAT影响还体现在为CAT带来一定挑战,具体来讲,审计评估实际工作质量优劣依托于其中数据质量,数据具备的高质量则集中在可靠真实以及内容详细和相应信息准确三方面,而在CAT实际工作环节中常常由于外界环境以及人为因素导致数据质量较低,如数据方面人为随意修改删除等等,而这些均是大数据环境背景下需要严格把控的重点工作内容。

  二、探析依托于大数据良好推进CAT措施

  2.1数据质量的有效保障

  依托于大数据良好推进CAT措施集中在数据质量有效保障上,对数据质量予以有效保障需要从两方面入手,其一是把控电子数据有效存储,简单来讲就是信息存储,对电子信息进行定期检查,监督数据实际传输,对信息系统予以有效确认以及评估和相应的测试等等,进而将不合理数据及时发现并找出信息系统不可靠不准确地方;其二是把控电子数据采集,通常电子数据具备多样化采集方式,如将审计单位相应数据库直接连接采集库进而实现数据采集,该种直接采集需要备份初始传输数据,避免数据采集之后相关人员随意修改,更加可以与审计单位进行数据采集真实性 承诺书 签订等等,最终通过电子数据方面采集以及存储两大内容把控促使数据质量更高,从而推动CAT发展。

  2.2公共数据平台的建立

  依托于大数据良好推进CAT措施还集中在公共数据平台的建立,建立公共化分析平台一方面能够将所有采集的相关数据予以集中化管理存储,更能够予以多角度全方面有效分析;另一方面也能够推动CAT作业相关标准予以良好执行。如果将分析模型看作是CAT作业标准以及相应的核心技术,则公共分析平台则是标准执行和相应技术实现关键载体。依托于公共数据平台不仅能够将基础的CAT工作实现便捷化以及统一化,而且深层次的实质研究有利于CAT数据处理的高速性以及高效性,最终为推动CAT发展起到重要影响作用。

  2.3审计人员的强化培训

  依托于大数据良好推进CAT措施除了集中在上述两方面之外,还集中在审计人员的强化培训上,具体来讲,培训重点关注审计工作于计算机上的具 体操 作以及操作重点难点,可以构建统一培训平台,在该培训平台中予以多元化资料的分享,聘请高技能丰富 经验 人士予以平台授课,提供专业技能知识沟通互动等等机会,最终通过强化培训提升审计人员综合素质,更加推动CAT未来发展。

  三、结论

  综上分析可知,当前大数据环境背景下CAT需要将日常工作予以不断调整,依托于大数据促使审计人员得以素质提升,并利用公共数据平台建立和相应的数据质量保障促使CAT工作更加高效,而本文对依托于大数据良好推进CAT进行研究旨在为未来CAT优化发展献出自己的一份研究力量。

猜你喜欢:

1. 人工智能与大数据论文

2. 大数据和人工智能论文

3. 计算机大数据论文参考

4. 计算机有关大数据的应用论文

5. 有关大数据应用的论文

浅析大数据发展趋势

浅析大数据发展趋势
虽然大数据仍在起步阶段,存在诸多挑战,但未来的发展依然非常乐观。大数据的发展呈现八大趋势:数据资源化,将成为最有价值的资产;大数据在更多的传统行业的企业管理落地;大数据和传统商业智能融合,行业定制化解决方案将涌现;数据将越来越开放,数据共享联盟将出现;大数据安全越来越受重视,大数据安全市场将愈发重要;大数据促进智慧城市发展,为智慧城市的引擎;大数据将催生一批新的工作岗位和相应的专业;大数据在多方位改善我们的生活。
趋势一:数据资源化,将成为最有价值的资产
随着大数据应用的发展,大数据价值得以充分的体现,大数据在企业和社会层面成为重要的战略资源,数据成为新的战略制高点,是大家抢夺的新焦点。《华尔街日报》在一份题为《大数据,大影响》的报告宣传,数据已经成为一种新的资产类别,就像货币或黄金一样。Google、Facebook、亚马逊、腾讯、百度、阿里巴巴和360等企业正在运用大数据力量获得商业上更大的成功,并且金融和电信企业也在运用大数据来提升自己的竞争力。我们有理由相信大数据将不断成为机构和企业的资产,成为提升机构和企业竞争力的有力武器。
趋势二:大数据在更多的传统行业的企业管理落地
一种新的技术往往在少数行业应用取得了好的效果,对其他行业就有强烈的示范效应。目前大数据在大型互联网企业已经得到较好的应用,其他行业的大数据尤其是电信和金融也逐渐在多种应用场景取得效果。因此,我们有理由相信,大数据作为一种从数据中创造新价值的工具,将会在许多行业的企业得到应用,带来广泛的社会价值。大数据将在帮助企业更好的理解和满足客户需求和潜在需求,更好的应用在业务运营智能监控、精细化企业运营、客户生命周期管理、精细化营销、经营分析和战略分析等方面。企业管理既有艺术也有科学,相信大数据在科学管理企业方面有更显著的促进,让更多拥抱大数据的企业实现智慧企业管理。
趋势三:大数据和传统商业智能融合,行业定制化解决方案将涌现
来自传统商业智能领域者将大数据当成一个新增的数据源,而大数据从业者则认为传统商业智能只是其领域中处理少量数据时的一种方法。大数据用户更希望能获得一种整体的解决方案,即不仅要能收集、处理和分析企业内部的业务数据,还希望能引入互联网上的网络浏览、微博、微信等非结构化数据。除此之外,还希望能结合移动设备的位置信息,这样企业就可以形成一个全面、完整的数据价值发展平台。毕竟,无论是大数据还是商业智能,目的都是为分析服务的,数据全面整合起来,更有利于发现新的商业机会,这就是大数据商业智能。同时,由于行业的差异性,很难研发出一套适用于各行业的大数据商业智能分析系统,因此,在一些规模较大的行业市场,大数据服务提供商将会以更加定制化的商业智能解决方案提供大数据服务。我们相信更多的大数据商业智能定制化解决方案将在电信、金融、零售等行业出现。
趋势四:数据将越来越开放,数据共享联盟将出现
大数据越关联越有价值,越开放越有价值。尤其是公共事业和互联网企业的数据开放数据将越来越多。我们看到,美国、英国、澳大利亚等国家的政府都在政府和公共事业上的数据做出努力。而国内的一些城市和部门也在逐渐开展数据开放的工作。比如北京市在2012年就开始试运行政务数据资源网,在2013年年底正式开放;上海在2012年启动了政府数据资源开放试点工作,数据涉及地理位置、交通、经济统计和资格资质等数据;2014年,贵州省也加入数据开放之列,10月份云上贵州正式上线。对于不同的行业,数据越共享也是越有价值。如果每一个医院想获得更多病情特征库以及药效信息,那么就需要全国,甚至全世界的医疗信息共享,从而可以通过平台进行分析,获取更大的价值。我们相信数据会呈现一种共享的趋势,不同领域的数据联盟将出现。
趋势五:大数据安全越来越受重视,大数据安全市场将愈发重要
随着数据的价值的越来越重要,大数据的安全稳定也将会逐渐被重视。网络和数字化生活也使得犯罪的分子更容易获取关于他人的信息,也有更多的骗术和犯罪手段出现,所以,在大数据时代,无论对于数据本身的保护,还是对于由数据而演变的一些信息的安全,对大数据分析有较高要求的企业将至关重要。大数据安全是跟大数据业务相对应的,与传统安全相比,大数据安全的最大区别是安全厂商在思考安全问题的时候首先要进行业务分析,并且找出针对大数据的业务的威胁,然后提出有针对性的解决方案。比如,对于数据存储这个场景,目前很多企业采用开源软件如Hadoop技术来解决大数据问题,由于其开源性,但是其安全问题也是突出的。因此,市场需要更多专业的安全厂商针对不同的大数据安全问题来提供专业的服务。
趋势六:大数据促进智慧城市发展,为智慧城市的引擎
随着大数据的发展,大数据在智慧城市将发挥着越来越重要的作用。由于人口聚集给城市带来了交通、医疗、建筑等各方面的压力,需要城市能够更合理地进行资源布局和调配,而智慧城市正是城市治理转型的最优解决方案。智慧城市是通过物与物、物与人、人与人的互联互通能力、全面感知能力和信息利用能力,通过物联网、移动互联网、云计算等新一代信息技术,实现城市高效的政府管理、便捷的民生服务、可持续的产业发展。智慧城市相对于之前数字城市概念,最大的区别在于对感知层获取的信息进行了智慧的处理。由城市数字化到城市智慧化,关键是要实现对数字信息的智慧处理,其核心是引入了大数据处理技术。大数据是智慧城市的核心智慧引擎。智慧安防、智慧交通、智慧医疗、智慧城管等,都是以大数据为基础的的智慧城市应用领域。
趋势七:大数据将催生一批新的工作岗位和相应的专业
一个新行业的出现,必将在工作职位方面有新的需求,大数据的出现也将推出一批新的就业岗位,例如,大数据分析师、数据管理专家、大数据算法工程师、数据产品经理等等。具有有丰富经验的数据分析人才将成为稀缺的资源,数据驱动型工作将呈现爆炸式的增长。而由于有强烈的市场需求,高校也将逐步开设大数据相关的专业,以培养相应的专业人才。企业也将和高校紧密合作,协助高校联合培养大数据人才。如2014年,IBM 全面推进与高校在大数据领域的合作,引入强大的研发团队和业务伙伴,推动“大数据平台”和“大数据分析”的面向行业产学研创新合作以及系统化知识体系建设和高价值人才培养,建设符合中国教学特色及人才需求的大数据相关学分课程,为未来建设特色专业方向做准备。
趋势八:大数据在多方位改善我们的生活
大数据不仅用于企业和政府,也应用于我们的生活。在健康方面:我们可以利用智能手环监测,对我们的睡眠模式来进行追踪,了解睡眠质量;我们可以利用智能血压计、智能心率仪远程的监控身在异地的家里老人的健康情况,让远在他方的外出工作者更加放心;在出行方面:我们可以利用智能导航出行GPS数据了解交通状况,并根据拥堵情况进行路线实时调优。在居家生活方面:大数据将成为智能家居的核心,智能家电实现了拟人智能,产品通过传感器和控制芯片来捕捉和处理信息,可以根据住宅空间环境和用户需求自动设置控制,甚至提出优化生活质量的建议,如我们的冰箱可能会在每天一大早建议我们当天的菜谱

浅析未来大数据的发展趋势

近年来,全球正大步迈向大数据新时代,数据的高效存储、处理和分析等需求也越来越旺盛。在此背景下,行业大数据得以高速发展,应用于各个领域,根据IDC发布的有关数据预测,2025年市场规模将达到19508亿元的高点。

全球大数据储量呈爆发式增长

随着信息通信技术的发展,各行各业信息系统采集、处理和积累的数据量越来越多,全球大数据储量呈爆炸式增长。根据国际数据公司(IDC)的监测数据显示,2013年全球大数据储量为4.3ZB(相当于47.24亿个1TB容量的移动硬盘),2014年和2015年全球大数据储量分别为6.6ZB和8.6ZB。近几年全球大数据储量的增速每年都保持在40%,2016年甚至达到了87.21%的增长率。2016年和2017年全球大数据储量分别为16.1ZB和21.6ZB,2018年全球大数据储量达到33.0ZB,2019年全球大数据储量达到41ZB。

中国的数据产生量约占全球数据产生量的23%

根据IDC最新发布的统计数据,中国的数据产生量约占全球数据产生量的23%,美国的数据产生量占比约为21%,EMEA(欧洲、中东、非洲)的数据产生量占比约为30%,APJxC(日本和亚太)数据产生量占比约为18%,全球其他地区数据产生量占比约为8%。

我国大数据行业市场规模增速连续四年保持在20%以上

随着互联网技术的快速发展,我国大数据产业也发展迅速。中国信息通信研究院结合对大数据相关企业的调研测算,发现我国大数据产业规模稳步增长。2016-2019年,短短四年时间,我国大数据产业市场规模由2840.8亿元增长到5386.2亿元,增速连续四年保持在20%以上。

2020年应用市场数据规模市场份额将达到40%

随着大数据相关产品及应用的不断普及,未来五年,应用层规模将逐步增长。在技术层、数据源层以及衍生层的共同支撑下,应用市场规模份额将达到40%。其中,交易市场规模虽然占比最少,但是正是由于他的存在,使得数据的交易从法律上实现数据的合法化问题,以及实现了数据价值兑现。

预计2025年中国大数据产业规模将达19508亿元的高点

当前,我国正在加速从数据大国向着数据强国迈进。随着中国物联网等新技术的持续推进,到2025年,其产生的数据将超过美国。数据的快速产生和各项配套政策的落实推动我国大数据行业高速发展,预计未来我国行业大数据市场规模增速将维持在15%-25%之间,到2025年中国大数据产业规模将达19508亿元的高点。

—— 以上数据及分析均来自于前瞻产业研究院《中国行业大数据市场发展前景预测与投资战略规划分析报告》。

大数据未来的发展趋势

由于数据科学的兴起,Web应用程序开发即将经历一场重大革命。到目前为止,开发者已经基于焦点小组、调查和对用户需求的合理猜测开发了应用程序。这种旧的工作方式是有偏见的,不能包括统计上显著数量的用户的输入。

由于物联网提供了千兆字节的可用数据,这种情况正在扭转。即时且持续的互联网接入引发了一波前所未有的用户生成数据浪潮,这些数据可以转化为可执行的见解。

网络开发公司从设计阶段就开始利用人工智能来理解所有这些数据点,并将这些发现整合到应用程序中。这种方法通过观察目标群体的特定行为和偏好,帮助公司节省时间和成本。

目前,软件开发涉及程序员编码或重新利用现有模块,以创建一个可工作的应用程序,满足一些预先设定的需求。深度学习将彻底改变这一现状。

开发者将不再决定应用菜单的位置。通过分析类似应用的使用情况,可以得出哪些对用户来说是必不可少的,哪些是应该强调的。与谷歌的自动补全功能相比,这是向前迈进了一步。

应用程序的升级也将取决于数据,而不是直觉或焦点小组的反馈。用户通过与app互动或在论坛和社交媒体上陈述需求来表达自己的需求。为了使用这些信息,开发团队应该收集这两种数据流,并将它们转化为可操作的见解。

事实上,英伟达副总裁兼总经理吉姆·麦克休(Jim McHugh)表示,升级将不再是战略团队的关注点,而是会自然而然地从数据中显现出来。当有更多的数据可供训练时,机器学习算法会变得更智能。当这种情况发生时,新的版本就会出现。

例如,一个新版本的聊天机器人将不断升级,使用用户生成的输入来包含以前没有返回令人满意结果的搜索或查询的答案。在这种升级中,开发者几乎没有投入。

由于当前的工作模式正在发生巨大的变化,网络应用开发者很可能在未来几年内担心失去工作。然而,这并不是对程序员需求降低的问题,而是对一套不同技能的需求。程序员和编码员的需求将比以往任何时候都高,但他们可能必须升级数据科学和数据分析方面的专业知识。

Web开发不再仅仅是写代码,而更多的是结构化数据,清理数据,管理数据,并确保它准备好教授算法。这些技能与十年前面向对象或web编程的含义相比有很大的不同,但在这个行业,进步是必然的。现在的趋势是用R或Matlab编写Python脚本和进行数据分析。

随着代码变得越来越丰富,对于我们现在所知道的开发人员来说,这可能意味着一个时代的结束。机器将有需要的代码在手边,他们也将知道如何整理这些片段到一个工作程序。

数据驱动的web应用程序可以带来什么

目前,理解数据仍然可以给组织带来竞争优势,但它很快将成为最低操作要求。

数据科学可以在几个领域产生真正的影响,包括生产力、效率和个性化。

网络应用能够记住我们的喜好,帮助我们重新开始,这样可以节省时间和精力。人工智能可以了解我们的消费习惯、时间使用和生活方式。通过分析这些经历背后的数据,它可以提供个性化的建议,简化我们的选择。

这些应用程序有潜力成为某种私人助理、值得信赖的合作伙伴、智能数据库或智能存储库。有些应用程序会提醒你重要的任务,找出你日程表上的空白,你可以利用这些空白,甚至可以阻止某些有害的习惯,比如拖延症。

人工智能应用很快就会像忠实的助手一样出现在你身边,但它们也比朋友和家人更能进入你的脑海。如今,我们的智能手机已经可以根据地理位置、过去的喜好以及与特定品牌的互动,为我们提供出色的提示。

很像Netflix和Amazon,推荐引擎可以扩展到其他需要提供定制响应的web应用程序。

这不仅是消费世界的下一个潮流,也是应用开发的总体方向。iPhone X和Galaxy S8等新一代智能手机都内置了人工智能功能。

在web应用开发中使用数据科学所引发的变化将对消费者和开发者产生同样的影响。存储在浏览器中的cookie,以及用户在网络会话期间提供的任何数据,将成为用户偏好的暗示,以及用户与之交互的应用的定制方式。对于开发人员来说,相同的数据可以作为升级和增强的主要来源。速度、可靠性和功能仍然有很高的要求,但将用户自己的数据整合到应用的外观、感觉和功能将产生不同。

上一篇:西北民族大学学报封面

下一篇:人类工效学期刊编辑