麻省理工大学数学杂志
麻省理工大学数学杂志
1965年出生于河南开封,现为美国加州大学洛杉矶分校教授,浙江大学数学中心执行主任。1985年在北京大学数学系获学士学位。1988年在中科院数学所获硕士学位,导师:陆启铿院士、钟家庆教授。1993年在美国哈佛大学数学系获博士学位,导师:丘成桐教授。 1993任美国麻省理工学院数学系讲师。1996年任美国斯坦福大学数学系助理教授。2000年任美国加州大学洛杉矶分校数学系副教授。 2002年任美国加州大学洛杉矶分校数学系教授。刘克峰教授先后在最有影响的国际一流杂志上发表学术论文50余篇。现任国际顶尖数学杂志《Comm. Analysis and Geometry》主编。他荣获了全球华人数学最高奖“晨兴数学金奖”和2004年国家教育部十大科技进展。他还获得了国际上著名的谷庚海默奖、全球华人数学家大会银奖、Sloan奖、Terman奖等多项重要国际奖项,谷庚海默奖是颁发给取得重大成就的美国科学家、艺术家、作家的最高奖项之一,获奖者被授予谷庚海默院士称号,许多诺贝尔奖、菲尔兹奖获得者先后获得过这一大奖。先后多次应邀在重要国际学术会议上作大会报告和特邀报告,其中包括2002年国际数学家大会特邀报告、2001年国际华人数学家大会大会报告等。
创造几何图形的温州数学家是谁?
自20世纪20年代至今的大半个世纪中,在中国江南水乡的温州,涌现了一大批卓有成就的数学家。温籍数学家群体在现代中国的数学研究,数学教育,以及数学活动的组织和传播方面都作出了重大贡献,产生了广泛的社会影响。以至作为这些数学家家乡的温州,被人们美称为“数学家之乡”。2003年10月,国际数学大师陈省身教授访问温州时,就曾为此题写了“数学家之乡”5个大字(见右)[1]。下面,就10位温籍数学家院士的主要成就,及其在现代中国数学界的影响作一概要介绍。
姜立夫
(1890—1978,中央研究院院士),浙江平阳(现温州苍南县)人。他1910年以庚子赔款赴美国入加利福尼亚大学伯克利分校学习数学,1915年获学士学位,1919年获美国哈佛大学哲学博士学位,1934年到德国汉堡大学进修,1935—1936年又转德国哥廷根大学作访问研究。先后担任南开大学,厦门大学,西南联合大学,岭南大学和中山大学数学教授,曾任“新中国数学会”会长(1940),中央研究院数学研究所所长(1947),1948年当选为中央研究院院士[2]。他专长用代数和分析方法来处理几何问题,特别在“圆素几何与矩阵理论方面”有精深研究。在数学教育方面,他1920年回国一人创办了南开大学算学系并任第一任系主任,培养了如刘晋年,陈省身,江泽涵,申又枨,吴大任和廖山涛等一批国内外著名的数学家[3]。培育高质量数学人才,是姜立夫的突出成就之一。在科研和教学之外,他还兼顾中国数学队伍的组织工作,如领导“新中国数学会”,筹建中央研究院数学研究所,积极联系推荐青年数学学者出国深造等。此外,他还担任数学名词审查委员会主席(1923),为中、英、德、日对应的数学名词的审定,出版《算学名词汇编》(1938)作出贡献。关于姜立夫在现代中国数学界的地位和影响,国际数学大师陈省身教授说:“在许多年的时间里,姜先生是中国数学界最主要的领袖①。苏步青院士评说:“他对中国现代数学事业功劳重大,影响至深,没有他,中国数学面貌将会是另一个样子”。[3]
①陈省身.在姜立夫教授诞辰100周年纪念会上的讲话,南开校友通讯,第一期(1990)。
苏步青
(1902—2003,中央研究院院士,中国科学院院士),浙江平阳(现温州平阳县)人。1920年进日本东京高等工业学校电机系学习,1923年入东北帝国大学数学系深造,1927年直接升入该校当研究生,1931年获理学博士学位。他先后担任浙江大学(1931)和复旦大学(1952)数学教授,创办了复旦大学数学研究所并任所长多年,曾任复旦大学校长(1980)和名誉校长(1983)。并且,是中国有史以来第一份数学杂志《中国数学会学报》的总编辑(1936),创办了国际性数学杂志《数学年刊》任第一任主编(1980),先后当选为中央研究院院士(1948)和中国科学院院士(1955,当时称学部委员,1994年改为院士)[2]。苏步青在微分几何和计算几何领域成就卓著,特别是专长仿射微分几何,射影微分几何和一般空间微分几何。他创立的中国微分几何学派,在国内外均具广泛影响。自1927年以来,他发表学术论文160余篇,出版专著和教材10多部。苏步青是一位杰出的数学教育家,1931年从日本回国后,担任了浙江大学数学系主任。除了和陈建功教授一起开设了多门近代数学的基础课程以外,还在中国首创开设数学讨论班,先后培养了张素诚,熊全治,方德植,白正国,杨忠道,谷超豪和胡和生等一批卓有成就的数学家。苏步青热心数学学术交流和普及工作,著有《谈谈如何学习数学》等科普册子。自1952年以后长期担任上海市数学会理事长,并任中国数学会副理事,1983年选为名誉理事长,多次组织上海和全国性的数学竞赛活动。他还是著名的社会活动家,曾任中国民主同盟中央参议委员会主任和第7届全国政协副主席。对于苏步青的成就和影响,1934年德国著名数学家布拉希克(ke)就曾评价认为:“苏步青是东方第一个几何学家!”,1976年美国数学代表团在访问中国后总结指出:浙江大学曾建立了“以苏步青为首的中国微分几何学派”。1987年,在庆贺他85岁寿辰和执教60周年的科学报告会上,他的学生谷超豪教授说:“苏老是国际上公认的几何学权威,他对仿射微分几何和射影微分几何的高水平工作,至今在国际数学界占有无可争辩的地位。苏老对我国数学学科的建设建立了功勋,他在浙大、复旦为创建国内外有影响的学科,呕心沥血。他为我国文教事业的改革也作出了不可磨灭的贡献”。[3]“他是我国现代数学的奠基人之一”。[4]
柯召
(1910—2003,中国科学院院士),浙江温岭(1937,1954-1957,1958-1962温州专区温岭县,现台州温岭县)人。1926年考上厦门大学预科,1928年升入该校数学系,1931年转学清华大学算学系,1933年毕业,1935年以庚子赔款公费留学英国曼彻斯特大学,1937年获博士学位。先后任南开大学数学系助教,四川大学和重庆大学数学教授,重庆大学数学研究所所长(1949—1950),四川大学数学研究所所长(1953),校长。曾任《四川大学学报》主编和《数学年刊》副主编。1955年当选为中国科学院院士[2]。柯召是数论专家,在数论,组合论和代数等领域有杰出成就。1937年以来在国内外发表学术论文上百篇,出版专著3部。1940年担任四川大学数学系主任后,重视教师科研工作和学生能力的培养,发起创办有老师和同学共同参加的数学专题研究课。他提倡开展应用数学研究,推动了四川大学的泛函分析与控制论,偏微分方程和计算数学学科建设的快速发展。并且,亲自与中青年教师一道参加数学的应用与普及工作。柯召的贡献和影响不限于四川,他为中国的数学发展作过大量工作,1983年被推举为中国数学会名誉理事长。1990年,美国数学家斯托勒()对柯召成果的评价是:“很惊异中国人那么早就己作出了巨大的成就”,还说“关于二次型的大作,棒极了!”。在四川大学的校史上则记载,柯召发起的专题研究课“造就了一批在数学上锐进不已的人才”[5]
徐贤修
(1912—2002,中央研究院院士(台湾)),浙江永嘉(现温州永嘉县)人。1935年毕业于清华大学数学系,1946年赴美国就读布朗大学,1948年获应用数学博士学位,1949年在普林斯顿文学研究院一年,暑期在麻省理工学院攻读博士后,中央研究院院士(台湾)。他先后受聘任美国普渡大学工程科学教授,伊利诺理工学院应用数学讲座教授,普渡大学航空系教授,以及台湾大学,清华大学(新竹)和交通大学(新竹)兼任教授。徐贤修是一位应用型学者,他1973一1980年主管台湾的“国家科学委员会”,1979—1989年任“工业研究院”董事长,建议设立了台湾新竹科学工业园,为台湾的现代科技和工业发展作出巨大贡献。同时,他1961年为新竹清华大学创办数学系,1962年起每年举办暑期数学研讨会,1970—1975年任新竹清华大学校长。他积极推动台湾数学教育,使大学的水平和规模取得迅速发展。鉴于徐贤修1955—1963年以及1968—1978年两度为普渡大学作出突出贡献,1980年普渡大学颁授他杰出贡献奖,1993年又授予他名誉博士学位。同时,由于他对台湾的科技和教育所作出的特殊贡献,1989年台湾当局还颁给他景星奖章。[6]
项黼宸
(1916—1990,中央研究院院士(台湾)),浙江瑞安(现温州瑞安市)人。1944年毕业于厦门大学数学系,1944—1946年任浙江大学数学研究所助理研究员,后赴美国加利福尼亚大学伯克利分校访问研究,1970年当选为中央研究院院士(台湾)。1947年起任台湾大学数学系讲师,副教授,教授,并曾任系主任以及台湾中央研究院数学研究所所长。项黼宸专长分析数学,成果累累,著述丰富。特别是,在富里埃级数和泛函分析的研究方面取得突出成就。他在数学教学方面对学生谆谆善诱,诲人不倦,成绩卓著。曾先后在美国纽约州立大学布法罗分校,日本仙台东北大学,马来西亚大学,新加坡南洋大学和荷兰的荷兰大学任教数学,还曾兼任台湾的东吴大学和淡江大学数学教授,可谓桃李满天下。为表彰他的杰出成就,1958—1968年荣获台湾第一届中山奖和台湾当局教育部的第一届著作奖。②
②蔡韵箫 项黼宸教授 台湾大学数学系资料,No.272(2002).
杨忠道
(1923— ,中央研究院院士(台湾)),浙江平阳(现温州苍南县)人。1946年毕业于浙江大学数学系,1948年任中央研究院数学研究所助理员,1949年进美国杜伦大学学习,1954年获数学博士学位,同年去伊利诺大学攻读博士后,1954年在美国普林斯顿高级研究院作访问研究。长期担任美国宾夕法尼亚大学数学教授,曾兼任数学系研究生部主任4年,数学系主任5年,1968年当选为中央研究院院士(台湾)。杨忠道专长代数拓扑和拓扑变换群。主要成就有建立了拓扑学中的“杨忠道定理”,证明了代松()猜测和最后解决了布拉希克(ke)猜测等,还曾与众多国外著名数学家合作研究取得了许多重要成果。先后发表学术论文上百篇和出版拓扑学方面的著作多部。他在宾夕法尼亚大学任教35年,培养了一批数学人才,如担任马萨诸塞大学数学系主任多年的拉利·马文(larryMawn)即出自他的门下。[7]自1989年以来,他多次回国讲学,为中国培养现代数学人才作出贡献。
谷超豪
(1926— ,中国科学院院士),浙江温州(现温州鹿城区)人。1948年毕业于浙江大学数学系,1957年赴前苏联莫斯科大学数学力学系进修,1959年获物理一数学科学博士学位,1980年当选为中国科学院院士[3]。先后任教浙江大学数学系(1948)和复旦大学数学系(1952),曾任复旦大学数学研究所所长,研究生院院长和副校长,中国科技大学校长(1988)和温州大学校长(1999)。他的研究领域遍及微分几何,偏微分方程和数学物理。在无限连续变换拟群,双曲型方程组和混合型偏微分方程,以及规范场的数学结构方面取得国际数学界瞩目的成就。自1951年以来,发表论文一百余篇,专著多部。为表彰他在科学研究上的突出成就,2003年上海市授予他第一届科技功臣称号。他带领的偏微分方程课题组现已发展成为在国内外享有声誉的研究室,同时培养了新一代在国内外有影响的数学家。曾任中国数学会副理事长和上海数学会理事长。他先后应邀访问美国,墨西哥,西德,法国,意大利,日本,英国,苏联,保加利亚等国进行学术交流,并在国内许多大学和台湾讲学。他的博士论文《论变换拟群的某些通性及其在微分几何中的应用》,评述人认为是“继近代最有名的微分几何大师嘉当()之后,在这一领域里第一个做出了有实质性发展和推进的”工作。著名美国数学家弗里特里克斯(Friedrichs)评价:“谷超豪的工作实现了他想把正对称方程进一步用于混合型方程的夙愿”。谷超豪的卓越成就饮誉国内外。
项武忠
(1935— ,中央研究院院士(台湾)),浙江乐清(现温州乐清市)人。1953年入台湾大学数学系学习,1957年获学士学位,1962年获美国普林斯顿大学博士学位。1980年当选为中央研究院院士(台湾),1989年当选美国国家艺术与科学学院院士。先后任美国耶鲁大学和普林斯顿大学数学教授,以及加利福尼亚大学伯克利分校,斯坦福大学,荷兰阿姆斯特丹大学和德国波恩大学访问教授。1982—1985年曾任普林斯顿大学数学系主任③。项武忠是著名拓扑学家,在低维拓扑学方面多有建树,成就卓著。由于他在拓扑学研究方面不断取得突出成果,1970年和1983年曾两次被邀请在法国尼斯和波兰华沙举行的国际数学家大会上作45分钟和1小时的邀请报告。可见,他的成就享誉国际数学界。他还是美国出版的国际性期刊《数学年刊》等多份学术杂志的编辑委员。
③美国普林斯顿大学资料(2004)。
姜伯驹
(1937— ,中国科学院院士),浙江平阳(现温州苍南县,出生于天津)人,著名数学家姜立夫之子。1953年进北京大学数学力学系学习,1978—1979年为美国普林斯顿高等研究所访问学者,1980一1981年在加利福尼亚大学伯克利分校和洛杉矶分校讲学,1980年当选为中国科学院士,1985年当选为第三世界科学院院士。他自1957年起一直任职北京大学,1985—1992年兼任南开数学研究所副所长,1995—1998年任北京大学数学科学学院第一任院长,1989—1997年担任北京数学会理事长[注6]。姜伯驹主攻拓扑学,在不动点理论领域做出杰出贡献。由于他的一系列卓越成就,曾获得全国科学大会奖,多次获国家自然科学奖等奖项。特别是,还曾获第一届陈省身数学奖(1988)和何梁何利基金科学技术进步奖(1996)。姜伯驹以发展中国的数学事业为己任,总是把教学和指导研究生工作放在第一位,讲课精益求精,多年来主持数学教改小组积极参与数学教育改革。他热心数学普及工作,积极参与中学生数学竞赛和数学讲座,还出版多册科普数学著作,在青少年中产生很大影响。
李邦河
(1942— ,中国科学院院士),浙江乐清(现温州乐清市)人。1965年毕业于中国科学技术大学应用数学系,同年到中国科学院数学研究所工作,曾担任该所基础数学研究室主任,现任中国科学院数学与系统科学研究院研究员。2003年,他当选为中国科学院院士。李邦河的研究领域相当广泛,在微分拓扑,低维拓扑,偏微分方程,广义函数,非标准分析,以及代数几何和代数机械化诸方向均取得重要成果或重大突破。先后发表研究论文90余篇。例如,在偏微分方程解的定性研究中,他否定了俄国科学院院士奥列尼克关于间断线条数可数的论断,解答了美国科学院院士拉克斯和格利姆关于通有性和分片解析性的三个猜想。前苏联科学院通讯院士伊万诺夫对他在非标准分析用于广义函数方面的工作曾评说:“对广义函数的乘法,以前只在很少的情况下成功,李邦河运用非标准分析得到了一系列结果”。他关于微分拓扑的工作曾获第二届陈省身数学奖(1989),他的许多研究结果被国内外学者所引用,在国际上产生了较大影响。在20世纪,温州曾孕育了众多著名数学家。为了发扬温州重视数学基础教育传统,在21世纪培育出更多数学英才,温州市于2002年创立了旨在培养青少年新苗的“数学家摇篮工程。”相信在这一数学史上不多见的创新举措下,温州在造就数学人才方面将再创辉煌,为在21世纪把中国建为数学大国做出贡献!
堵丁柱的基本信息
堵丁柱教授,1949年出生在齐齐哈尔市,1978年在东北重型机械学院(今燕山大学)计算机系学习,1982年获中国科学院硕士学位,1985年获美国加里弗尼亚大学圣巴巴拉分校博士学位。1985年~1986年在美国加州伯克利数学科学研究院作博士后,1986~1987年在美国麻省理工大学数学系作访问学者,1987年任中国科学院应用数学所教授。他先后在美国伯克利大学(Berkeley), 麻省理工大学, 普林斯顿大学数学研究所工作。1991年和1995年成为 Minnesota大学计算机系的副教授和教授。 并于1998到1999年之间任职香港城市大学计算机科学系访问教授。 1987-2002年为中国科学院应用数学所研究员。堵丁柱教授现任德克萨斯大学达拉斯分校(UTD)计算机系教授,美国自然科学基金委计算机理论的项目主管,也是西安交通大学教授。 他的研究方向包括组合优化,计算机网络和计算理论。堵丁柱教授已经发表论文60多篇, 出版了20本书。 他是组合优化杂志和系列书籍《网络理论和应用》的主编, 是超过15个杂志的编委。 1998年获得美国INFORMS的CSTS奖,1993年获得中国自然科学二等奖, 1992年获得中国科学院自然科学一等奖。
60年数学发展史
数学是中国古代科学中一门重要的学科,根据中国古代数学发展的特点,可以分为五个时期:萌芽;体系的形成;发展;繁荣和中西方数学的融合。 中国古代数学的萌芽 原始公社末期,私有制和货物交换产生以后,数与形的概念有了进一步的发展,仰韶文化时期出土的陶器,上面已刻有表示1234的符号。到原始公社末期,已开始用文字符号取代结绳记事了。 西安半坡出土的陶器有用1~8个圆点组成的等边三角形和分正方形为100个小正方形图案,半坡遗址的房屋基址都是圆形和方形。为了画圆作方,确定平直,人们还创造了规、矩、准、绳等作图与测量工具。据《史记·夏本纪》记载,夏禹治水时已使用了这些工具。 商代中期,在甲骨文中已产生一套十进制数字和记数法,其中最大的数字为三万;与此同时,殷人用十个天干和十二个地支组成甲子、乙丑、丙寅、丁卯等60个名称来记60天的日期;在周代,又把以前用阴、阳符号构成的八卦表示八种事物发展为六十四卦,表示64种事物。 公元前一世纪的《周髀算经》提到西周初期用矩测量高、深、广、远的方法,并举出勾股形的勾三、股四、弦五以及环矩可以为圆等例子。《礼记·内则》篇提到西周贵族子弟从九岁开始便要学习数目和记数方法,他们要受礼、乐、射、驭、书、数的训练,作为”六艺”之一的数已经开始成为专门的课程。 春秋战国之际,筹算已得到普遍的应用,筹算记数法已使用十进位值制,这种记数法对世界数学的发展是有划时代意义的。这个时期的测量数学在生产上有了广泛应用,在数学上亦有相应的提高。 战国时期的百家争鸣也促进了数学的发展,尤其是对于正名和一些命题的争论直接与数学有关。名家认为经过抽象以后的名词概念与它们原来的实体不同,他们提出”矩不方,规不可以为圆”,把”大一”(无穷大)定义为”至大无外”,”小一”(无穷小)定义为”至小无内”。还提出了”一尺之棰,日取其半,万世不竭”等命题。 而墨家则认为名来源于物,名可以从不同方面和不同深度反映物。墨家给出一些数学定义。例如圆、方、平、直、次(相切)、端(点)等等。 墨家不同意”一尺之棰”的命题,提出一个”非半”的命题来进行反驳:将一线段按一半一半地无限分割下去,就必将出现一个不能再分割的”非半”,这个”非半”就是点。 名家的命题论述了有限长度可分割成一个无穷序列,墨家的命题则指出了这种无限分割的变化和结果。名家和墨家的数学定义和数学命题的讨论,对中国古代数学理论的发展是很有意义的。 中国古代数学体系的形成 秦汉是封建社会的上升时期,经济和文化均得到迅速发展。中国古代数学体系正是形成于这个时期,它的主要标志是算术已成为一个专门的学科,以及以《九章算术》为代表的数学著作的出现。 《九章算术》是战国、秦、汉封建社会创立并巩固时期数学发展的总结,就其数学成就来说,堪称是世界数学名著。例如分数四则运算、今有术(西方称三率法)、开平方与开立方(包括二次方程数值解法)、盈不足术(西方称双设法)、各种面积和体积公式、线性方程组解法、正负数运算的加减法则、勾股形解法(特别是勾股定理和求勾股数的方法)等,水平都是很高的。其中方程组解法和正负数加减法则在世界数学发展上是遥遥领先的。就其特点来说,它形成了一个以筹算为中心、与古希腊数学完全不同的独立体系。 《九章算术》有几个显著的特点:采用按类分章的数学问题集的形式;算式都是从筹算记数法发展起来的;以算术、代数为主,很少涉及图形性质;重视应用,缺乏理论阐述等。 这些特点是同当时社会条件与学术思想密切相关的。秦汉时期,一切科学技术都要为当时确立和巩固封建制度,以及发展社会生产服务,强调数学的应用性。最后成书于东汉初年的《九章算术》,排除了战国时期在百家争鸣中出现的名家和墨家重视名词定义与逻辑的讨论,偏重于与当时生产、生活密切相结合的数学问题及其解法,这与当时社会的发展情况是完全一致的。 《九章算术》在隋唐时期曾传到朝鲜、日本,并成为这些国家当时的数学教科书。它的一些成就如十进位值制、今有术、盈不足术等还传到印度和阿拉伯,并通过印度、阿拉伯传到欧洲,促进了世界数学的发展。 中国古代数学的发展 魏、晋时期出现的玄学,不为汉儒经学束缚,思想比较活跃;它诘辩求胜,又能运用逻辑思维,分析义理,这些都有利于数学从理论上加以提高。吴国赵爽注《周髀算经》,汉末魏初徐岳撰《九章算术》注,魏末晋初刘徽撰《九章算术》注、《九章重差图》都是出现在这个时期。赵爽与刘徽的工作为中国古代数学体系奠定了理论基础。 赵爽是中国古代对数学定理和公式进行证明与推导的最早的数学家之一。他在《周髀算经》书中补充的”勾股圆方图及注”和”日高图及注”是十分重要的数学文献。在”勾股圆方图及注”中他提出用弦图证明勾股定理和解勾股形的五个公式;在”日高图及注”中,他用图形面积证明汉代普遍应用的重差公式,赵爽的工作是带有开创性的,在中国古代数学发展中占有重要地位。 刘徽约与赵爽同时,他继承和发展了战国时期名家和墨家的思想,主张对一些数学名词特别是重要的数学概念给以严格的定义,认为对数学知识必须进行”析理”,才能使数学著作简明严密,利于读者。他的《九章算术》注不仅是对《九章算术》的方法、公式和定理进行一般的解释和推导,而且在论述的过程中有很大的发展。刘徽创造割圆术,利用极限的思想证明圆的面积公式,并首次用理论的方法算得圆周率为157/50和3927/1250。 刘徽用无穷分割的方法证明了直角方锥与直角四面体的体积比恒为2:1,解决了一般立体体积的关键问题。在证明方锥、圆柱、圆锥、圆台的体积时,刘徽为彻底解决球的体积提出了正确途径。 东晋以后,中国长期处于战争和南北分裂的状态。祖冲之父子的工作就是经济文化南移以后,南方数学发展的具有代表性的工作,他们在刘徽注《九章算术》的基础上,把传统数学大大向前推进了一步。他们的数学工作主要有:计算出圆周率在3.1415926~3.1415927之间;提出祖(日恒)原理;提出二次与三次方程的解法等。 据推测,祖冲之在刘徽割圆术的基础上,算出圆内接正6144边形和正12288边形的面积,从而得到了这个结果。他又用新的方法得到圆周率两个分数值,即约率22/7和密率355/113。祖冲之这一工作,使中国在圆周率计算方面,比西方领先约一千年之久; 祖冲之之子祖(日恒)总结了刘徽的有关工作,提出”幂势既同则积不容异”,即等高的两立体,若其任意高处的水平截面积相等,则这两立体体积相等,这就是著名的祖(日恒)公理。祖(日恒)应用这个公理,解决了刘徽尚未解决的球体积公式。 隋炀帝好大喜功,大兴土木,客观上促进了数学的发展。唐初王孝通的《缉古算经》,主要讨论土木工程中计算土方、工程分工、验收以及仓库和地窖的计算问题,反映了这个时期数学的情况。王孝通在不用数学符号的情况下,立出数字三次方程,不仅解决了当时社会的需要,也为后来天元术的建立打下基础。此外,对传统的勾股形解法,王孝通也是用数字三次方程解决的。 唐初封建统治者继承隋制,656年在国子监设立算学馆,设有算学博士和助教,学生30人。由太史令李淳风等编纂注释《算经十书》,作为算学馆学生用的课本,明算科考试亦以这些算书为准。李淳风等编纂的《算经十书》,对保存数学经典著作、为数学研究提供文献资料方面是很有意义的。他们给《周髀算经》、《九章算术》以及《海岛算经》所作的注解,对读者是有帮助的。隋唐时期,由于历法的需要,天算学家创立了二次函数的内插法,丰富了中国古代数学的内容。 算筹是中国古代的主要计算工具,它具有简单、形象、具体等优点,但也存在布筹占用面积大,运筹速度加快时容易摆弄不正而造成错误等缺点,因此很早就开始进行改革。其中太乙算、两仪算、三才算和珠算都是用珠的槽算盘,在技术上是重要的改革。尤其是”珠算”,它继承了筹算五升十进与位值制的优点,又克服了筹算纵横记数与置筹不便的缺点,优越性十分明显。但由于当时乘除算法仍然不能在一个横列中进行。算珠还没有穿档,携带不方便,因此仍没有普遍应用。 唐中期以后,商业繁荣,数字计算增多,迫切要求改革计算方法,从《新唐书》等文献留下来的算书书目,可以看出这次算法改革主要是简化乘、除算法,唐代的算法改革使乘除法可以在一个横列中进行运算,它既适用于筹算,也适用于珠算。 中国古代数学的繁荣 960年,北宋王朝的建立结束了五代十国割据的局面。北宋的农业、手工业、商业空前繁荣,科学技术突飞猛进,火药、指南针、印刷术三大发明就是在这种经济高涨的情况下得到广泛应用。1084年秘书省第一次印刷出版了《算经十书》,1213年鲍擀之又进行翻刻。这些都为数学发展创造了良好的条件。 从11~14世纪约300年期间,出现了一批著名的数学家和数学著作,如贾宪的《黄帝九章算法细草》,刘益的《议古根源》,秦九韶的《数书九章》,李冶的《测圆海镜》和《益古演段》,杨辉的《详解九章算法》《日用算法》和《杨辉算法》,朱世杰的《算学启蒙》《四元玉鉴》等,很多领域都达到古代数学的高峰,其中一些成就也是当时世界数学的高峰。 从开平方、开立方到四次以上的开方,在认识上是一个飞跃,实现这个飞跃的就是贾宪。杨辉在《九章算法纂类》中载有贾宪”增乘开平方法”、”增乘开立方法”;在《详解九章算法》中载有贾宪的”开方作法本源”图、”增乘方法求廉草”和用增乘开方法开四次方的例子。根据这些记录可以确定贾宪已发现二项系数表,创造了增乘开方法。这两项成就对整个宋元数学发生重大的影响,其中贾宪三角比西方的帕斯卡三角形早提出600多年。 把增乘开方法推广到数字高次方程(包括系数为负的情形)解法的是刘益。《杨辉算法》中”田亩比类乘除捷法”卷,介绍了原书中22个二次方程和1个四次方程,后者是用增乘开方法解三次以上的高次方程的最早例子。 秦九韶是高次方程解法的集大成者,他在《数书九章》中收集了21个用增乘开方法解高次方程(最高次数为10)的问题。为了适应增乘开方法的计算程序,奏九韶把常数项规定为负数,把高次方程解法分成各种类型。当方程的根为非整数时,秦九韶采取继续求根的小数,或用减根变换方程各次幂的系数之和为分母,常数为分子来表示根的非整数部分,这是《九章算术》和刘徽注处理无理数方法的发展。在求根的第二位数时,秦九韶还提出以一次项系数除常数项为根的第二位数的试除法,这比西方最早的霍纳方法早500多年。 元代天文学家王恂、郭守敬等在《授时历》中解决了三次函数的内插值问题。秦九韶在”缀术推星”题、朱世杰在《四元玉鉴》”如象招数”题都提到内插法(他们称为招差术),朱世杰得到一个四次函数的内插公式。 用天元(相当于x)作为未知数符号,立出高次方程,古代称为天元术,这是中国数学史上首次引入符号,并用符号运算来解决建立高次方程的问题。现存最早的天元术著作是李冶的《测圆海镜》。 从天元术推广到二元、三元和四元的高次联立方程组,是宋元数学家的又一项杰出的创造。留传至今,并对这一杰出创造进行系统论述的是朱世杰的《四元玉鉴》。 朱世杰的四元高次联立方程组表示法是在天元术的基础上发展起来的,他把常数放在中央,四元的各次幂放在上、下、左、右四个方向上,其他各项放在四个象限中。朱世杰的最大贡献是提出四元消元法,其方法是先择一元为未知数,其他元组成的多项式作为这未知数的系数,列成若干个一元高次方程式,然后应用互乘相消法逐步消去这一未知数。重复这一步骤便可消去其他未知数,最后用增乘开方法求解。这是线性方法组解法的重大发展,比西方同类方法早400多年。 勾股形解法在宋元时期有新的发展,朱世杰在《算学启蒙》卷下提出已知勾弦和、股弦和求解勾股形的方法,补充了《九章算术》的不足。李冶在《测圆海镜》对勾股容圆问题进行了详细的研究,得到九个容圆公式,大大丰富了中国古代几何学的内容。 已知黄道与赤道的夹角和太阳从冬至点向春分点运行的黄经余弧,求赤经余弧和赤纬度数,是一个解球面直角三角形的问题,传统历法都是用内插法进行计算。元代王恂、郭守敬等则用传统的勾股形解法、沈括用会圆术和天元术解决了这个问题。不过他们得到的是一个近似公式,结果不够精确。但他们的整个推算步骤是正确无误的,从数学意义上讲,这个方法开辟了通往球面三角法的途径。 中国古代计算技术改革的高潮也是出现在宋元时期。宋元明的历史文献中载有大量这个时期的实用算术书目,其数量远比唐代为多,改革的主要内容仍是乘除法。与算法改革的同时,穿珠算盘在北宋可能已出现。但如果把现代珠算看成是既有穿珠算盘,又有一套完善的算法和口诀,那么应该说它最后完成于元代。 宋元数学的繁荣,是社会经济发展和科学技术发展的必然结果,是传统数学发展的必然结果。此外,数学家们的科学思想与数学思想也是十分重要的。宋元数学家都在不同程度上反对理学家的象数神秘主义。秦九韶虽曾主张数学与道学同出一源,但他后来认识到,”通神明”的数学是不存在的,只有”经世务类万物”的数学;莫若在《四元玉鉴》序文中提出的”用假象真,以虚问实”则代表了高度抽象思维的思想方法;杨辉对纵横图结构进行研究,揭示出洛书的本质,有力地批判了象数神秘主义。所有这些,无疑是促进数学发展的重要因素。 中西方数学的融合 中国从明代开始进入了封建社会的晚期,封建统治者实行极权统治,宣传唯心主义哲学,施行八股考试制度。在这种情况下,除珠算外,数学发展逐渐衰落。 16世纪末以后,西方初等数学陆续传入中国,使中国数学研究出现一个中西融合贯通的局面;鸦片战争以后,近代数学开始传入中国,中国数学便转入一个以学习西方数学为主的时期;到19世纪末20世纪初,近代数学研究才真正开始。 从明初到明中叶,商品经济有所发展,和这种商业发展相适应的是珠算的普及。明初《魁本对相四言杂字》和《鲁班木经》的出现,说明珠算已十分流行。前者是儿童看图识字的课本,后者把算盘作为家庭必需用品列入一般的木器家具手册中。 随着珠算的普及,珠算算法和口诀也逐渐趋于完善。例如王文素和程大位增加并改善撞归、起一口诀;徐心鲁和程大位增添加、减口诀并在除法中广泛应用归除,从而实现了珠算四则运算的全部口诀化;朱载墒和程大位把筹算开平方和开立方的方法应用到珠算,程大位用珠算解数字二次、三次方程等等。程大位的著作在国内外流传很广,影响很大。 1582年,意大利传教士利玛窦到中国,1607年以后,他先后与徐光启翻译了《几何原本》前六卷、《测量法义》一卷,与李之藻编译《圜容较义》和《同文算指》。1629年,徐光启被礼部任命督修历法,在他主持下,编译《崇祯历书》137卷。《崇祯历书》主要是介绍欧洲天文学家第谷的地心学说。作为这一学说的数学基础,希腊的几何学,欧洲玉山若干的三角学,以及纳皮尔算筹、伽利略比例规等计算工具也同时介绍进来。 在传入的数学中,影响最大的是《几何原本》。《几何原本》是中国第一部数学翻译著作,绝大部分数学名词都是首创,其中许多至今仍在沿用。徐光启认为对它”不必疑”、”不必改”,”举世无一人不当学”。《几何原本》是明清两代数学家必读的数学书,对他们的研究工作颇有影响。 其次应用最广的是三角学,介绍西方三角学的著作有《大测》《割圆八线表》和《测量全义》。《大测》主要说明三角八线(正弦、余弦、正切、余切、正割、余割、正矢、余矢)的性质,造表方法和用表方法。《测量全义》除增加一些《大测》所缺的平面三角外,比较重要的是积化和差公式和球面三角。所有这些,在当时历法工作中都是随译随用的。 1646年,波兰传教士穆尼阁来华,跟随他学习西方科学的有薛凤柞、方中通等。穆尼阁去世后,薛凤柞据其所学,编成《历学会通》,想把中法西法融会贯通起来。《历学会通》中的数学内容主要有比例对数表》《比例四线新表》和《三角算法》。前两书是介绍英国数学家纳皮尔和布里格斯发明增修的对数。后一书除《崇祯历书》介绍的球面三角外,尚有半角公式、半弧公式、德氏比例式、纳氏比例式等。方中通所著《数度衍》对对数理论进行解释。对数的传入是十分重要,它在历法计算中立即就得到应用。 清初学者研究中西数学有心得而著书传世的很多,影响较大的有王锡阐《图解》、梅文鼎《梅氏丛书辑要》(其中数学著作13种共40卷)、年希尧《视学》等。梅文鼎是集中西数学之大成者。他对传统数学中的线性方程组解法、勾股形解法和高次幂求正根方法等方面进行整理和研究,使濒于枯萎的明代数学出现了生机。年希尧的《视学》是中国第一部介绍西方透视学的著作。 清康熙皇帝十分重视西方科学,他除了亲自学习天文数学外,还培养了一些人才和翻译了一些著作。1712年康熙皇帝命梅彀成任蒙养斋汇编官,会同陈厚耀、何国宗、明安图、杨道声等编纂天文算法书。1721年完成《律历渊源》100卷,以康熙”御定”的名义于1723年出版。其中《数理精蕴》主要由梅彀成负责,分上下两编,上编包括《几何原本》、《算法原本》,均译自法文著作;下编包括算术、代数、平面几何平面三角、立体几何等初等数学,附有素数表、对数表和三角函数表。由于它是一部比较全面的初等数学百科全书,并有康熙”御定”的名义,因此对当时数学研究有一定影响。 综上述可以看到,清代数学家对西方数学做了大量的会通工作,并取得许多独创性的成果。这些成果,如和传统数学比较,是有进步的,但和同时代的西方比较则明显落后了。 雍正即位以后,对外闭关自守,导致西方科学停止输入中国,对内实行高压政策,致使一般学者既不能接触西方数学,又不敢过问经世致用之学,因而埋头于究治古籍。乾嘉年间逐渐形成一个以考据学为主的乾嘉学派。 随着《算经十书》与宋元数学著作的收集与注释,出现了一个研究传统数学的高潮。其中能突破旧有框框并有发明创造的有焦循、汪莱、李锐、李善兰等。他们的工作,和宋元时代的代数学比较是青出于蓝而胜于蓝的;和西方代数学比较,在时间上晚了一些,但这些成果是在没有受到西方近代数学的影响下独立得到的。 与传统数学研究出现高潮的同时,阮元与李锐等编写了一部天文数学家传记-《畴人传》,收集了从黄帝时期到嘉庆四年已故的天文学家和数学家270余人(其中有数学著作传世的不足50人),和明末以来介绍西方天文数学的传教士41人。这部著作全由”掇拾史书,荃萃群籍,甄而录之”而成,收集的完全是第一手的原始资料,在学术界颇有影响。 1840年鸦片战争以后,西方近代数学开始传入中国。首先是英人在上海设立墨海书馆,介绍西方数学。第二次鸦片战争后,曾国藩、李鸿章等官僚集团开展”洋务运动”,也主张介绍和学习西方数学,组织翻译了一批近代数学著作。 其中较重要的有李善兰与伟烈亚力翻译的《代数学》《代微积拾级》;华蘅芳与英人傅兰雅合译的《代数术》《微积溯源》《决疑数学》;邹立文与狄考文编译的《形学备旨》《代数备旨》《笔算数学》;谢洪赉与潘慎文合译的《代形合参》《八线备旨》等等。 《代微积拾级》是中国第一部微积分学译本;《代数学》是英国数学家德·摩根所著的符号代数学译本;《决疑数学》是第一部概率论译本。在这些译著中,创造了许多数学名词和术语,至今还在应用,但所用数学符号一般已被淘汰了。戊戌变法以后,各地兴办新法学校,上述一些著作便成为主要教科书。 在翻译西方数学著作的同时,中国学者也进行一些研究,写出一些著作,较重要的有李善兰的《《尖锥变法解》《考数根法》;夏弯翔的《洞方术图解》《致曲术》《致曲图解》等等,都是会通中西学术思想的研究成果。 由于输入的近代数学需要一个消化吸收的过程,加上清末统治者十分腐败,在太平天国运动的冲击下,在帝国主义列强的掠夺下,焦头烂额,无暇顾及数学研究。直到1919年五四运动以后,中国近代数学的研究才真正开始。 近现代数学发展时期 这一时期是从20世纪初至今的一段时间,常以1949年新中国成立为标志划分为两个阶段。 中国近3年留日的冯祖荀,1908年留美的郑之蕃,1910年留美的胡明复和赵元任,1911年留美的姜立夫,1912年留法的何鲁,1913年留日的陈建功和留比利时的熊庆来(1915年转留法),1919年留日的苏步青等人。他们中的多数回国后成为著名数学家和数学教育家,为中国近现代数学发展做出重要贡献。其中胡明复1917年取得美国哈佛大学博士学位,成为第一位获得博士学位的中国数学家。随着留学人员的回国,各地大学的数学教育有了起色。最初只有北京大学1912年成立时建立的数学系,1920年姜立夫在天津南开大学创建数学系,1921年和1926年熊庆来分别在东南大学(今南京大学)和清华大学建立数学系,不久武汉大学、齐鲁大学、浙江大学、中山大学陆续设立了数学系,到1932年各地已有32所大学设立了数学系或数理系。1930年熊庆来在清华大学首创数学研究部,开始招收研究生,陈省身、吴大任成为国内最早的数学研究生。三十年代出国学习数学的还有江泽涵(1927)、陈省身(1934)、华罗庚(1936)、许宝騄(1936)等人,他们都成为中国现代数学发展的骨干力量。同时外国数学家也有来华讲学的,例如英国的罗素(1920),美国的伯克霍夫(1934)、奥斯古德(1934)、维纳(1935),法国的阿达马(1936)等人。1935年中国数学会成立大会在上海召开,共有33名代表出席。1936年《中国数学会学报》和《数学杂志》相继问世,这些标志着中国现代数学研究的进一步发展。 解放以前的数学研究集中在纯数学领域,在国内外共发表论着600余种。在分析学方面,陈建功的三角级数论,熊庆来的亚纯函数与整函数论研究是代表作,另外还有泛函分析、变分法、微分方程与积分方程的成果;在数论与代数方面,华罗庚等人的解析数论、几何数论和代数数论以及近世代数研究取得令世人瞩目的成果;在几何与拓扑学方面,苏步青的微分几何学,江泽涵的代数拓扑学,陈省身的纤维丛理论和示性类理论等研究做了开创性的工作:在概率论与数理统计方面,许宝騄在一元和多元分析方面得到许多基本定理及严密证明。此外,李俨和钱宝琮开创了中国数学史的研究,他们在古算史料的注释整理和考证分析方面做了许多奠基性的工作,使我国的民族文化遗产重放光彩。 1949年11月即成立中国科学院。1951年3月《中国数学学报》复刊(1952年改为《数学学报》),1951年10月《中国数学杂志》复刊(1953年改为《数学通报》)。1951年8月中国数学会召开建国后第一次全国代表大会,讨论了数学发展方向和各类学校数学教学改革问题。 建国后的数学研究取现代数学开始于清末民初的留学活动。较早出国学习数学的有:190得长足进步。50年代初期就出版了华罗庚的《堆栈素数论》(1953)、苏步青的《射影曲线概论》(1954)、陈建功的《直角函数级数的和》(1954)和李俨的《中算史论丛》(5辑,1954-1955)等专着,到1966年,共发表各种数学论文约2万余篇。除了在数论、代数、几何、拓扑、函数论、概率论与数理统计、数学史等学科继续取得新成果外,还在微分方程、计算技术、运筹学、数理逻辑与数学基础等分支有所突破,有许多论著达到世界先进水平,同时培养和成长起一大批优秀数学家。 60年代后期,中国的数学研究基本停止,教育瘫痪、人员丧失、对外交流中断,后经多方努力状况略有改变。1970年《数学学报》恢复出版,并创刊《数学的实践与认识》。1973年陈景润在《中国科学》上发表《大偶数表示为一个素数及一个不超过二个素数的乘积之和》的论文,在哥德巴赫猜想的研究中取得突出成就。此外中国数学家在函数论、马尔可夫过程、概率应用、运筹学、优选法等方面也有一定创见。 1978年11月中国数学会召开第三次代表大会,标志着中国数学的复苏。1978年恢复全国数学竞赛,1985年中国开始参加国际数学奥林匹克数学竞赛。1981年陈景润等数学家获国家自然科学奖励。1983年国家首批授于18名中青年学者以博士学位,其中数学工作者占2/3。1986年中国第一次派代表参加国际数学家大会,加入国际数学联合会,吴文俊应邀作了关于中国古代数学史的45分钟演讲。近十几年来数学研究硕果累累,发表论文专著的数量成倍增长,质量不断上升。1985年庆祝中国数学会成立50周年年会上,已确定中国数学发展的长远目标。代表们立志要不懈地努力,争取使中国在世界上早日成为新的数学大国。
顶级数学家有多野?
从身无分文到一夜暴富有多遥远?其实,只要解决一道数学题就能实现。2000年5月,由美国富豪出资建立的克莱数学研究所,精心挑选了7大未解数学难题。无论你是数学家还是流浪汉,任何人只要解决其中一题,都可以领走100万美金。七道题也被称为“千禧年数学七大难题”,美国希望通过悬赏的方式高效解决问题,对于数学家而言,无疑也是一次扬名立万的机会。但有这么一位视金钱如粪土的俄罗斯数学天才,解决了七大难题中困扰人类100年的“庞加莱猜想”,却拒绝领取100万美金。
佩雷尔曼
2010年6月,为表彰佩雷尔曼攻克庞加莱猜想,巴黎举行的千禧奖仪式决定授予他100万美元的奖金,但佩雷尔曼却以“对钱不感兴趣”为由,拒绝领奖。对大众而言,这简直难以置信,但在数学界看来,这一点也不令人意外,因为这已经是佩雷尔曼第N次拒绝荣誉和奖金了。
菲尔兹奖
2006年8月,有着数学界诺贝尔奖之称的“菲尔兹奖”,授予了佩雷尔曼,以表彰他在几何学上的贡献。一枚印有阿基米德浮雕头像的奖章和约1.35万美元的奖金,同样被拒之门外。对此,他给出的理由是“没有路费来领奖”。联盟主席约翰鲍尔表示:愿意支付来回所有食宿费,但佩雷尔曼还是不为所动。佩雷尔曼唯一领取的奖是在1982年,他16岁那年在布达佩斯举行的国际代数和几何奥林匹克竞赛中,以满分42分拿到的金牌。
年轻时的佩雷尔曼
此后他便走上了“拒绝”之路,在他拿到金牌后的1个月,耶鲁大学向他抛出橄榄枝,表示愿意提供20万美元的奖学金和解决住房问题。由于政治原因,身为苏联人的他拒绝了美国高等学府的邀请。他还拒绝过1995年斯坦福大学职位的邀请,理由是不能接受要求自己投递简历;1996年拒绝过只颁发给32岁以下数学家的杰出青年数学家奖和不菲的奖金,等等。佩雷尔曼的名气,实际早已盖过他所解决的百年难题——庞加莱猜想。
庞加莱
庞加莱猜想是庞加莱在1904年提出的,属于拓扑学中的难题。拓扑学简单来说,就是将几何图形扭曲拉伸,不断割离和粘合,连续变换后,研究图形中保持不变和规律的一门学科。越是难题,它的问题就越简单,庞加莱猜想的问题简单到只有一句话:“任何一个单连通的封闭三维流形,一定同胚于一个三维球面”。
通俗易懂的语言描述这个问题就是:上图中的小球,我们用一根绳子套住,绳子的两端在黄点位置相遇,如果在黄点用力向左右两端拉绳子,会发现绳子套的圈在慢慢缩小,最后可以缩小到一个点,将绳子收回。庞加莱猜想就是要证明:任何情况下都可以收回绳子的物体是球形。
举个例子:麦哲伦环球航行证明地球是圆的,这并不严谨,如果将地球的南北极贯通,地球就变成了上图中的甜甜圈形状,并不是圆的,但绕一圈也可以回到原点。用收绳子的方法验证这个问题,会发现上图中右下方的红线,绕了甜甜圈一圈,用力拉绳子的两端,绳子会被甜甜圈卡住,无法收回,说明这个图形不是球形。庞加莱猜想可以帮助天文学家探索宇宙的形状,应对未知危机。佩雷尔曼解决庞加莱猜想所用的工具,并非拓扑学知识,而是独辟蹊径利用微分几何学的新知识来证明。2002年11月到2003年7月,他将三篇证明过程,陆续发表在康奈尔大学的ArXiv共享网站上,这个网站是未经审评的论文初稿网站,算不上权威。
第一篇证明过程发表后,佩雷尔曼通过邮件通知了拓扑学专家,哥伦比亚大学的约翰摩根,普林斯顿大学的田刚等人。三组数学团队分别对证明过程进行审查,但由于内容思维极具跳跃性,麻省理工学院索性直接邀请他来学校当面讲解。
2003年4月,麻省理工学院的讲堂里挤满了人,但他们大多数都是来凑热闹的,很多人只想一睹这位数学天才的风采,真正研究过证明过程的人少之又少。直到2006年,田刚和摩根出版了一本研究佩氏证明的专著,对证明过程进行了注解和分析,数学界终于松了一口气,花了3年时间终于能看懂佩雷尔曼写的是什么了。
数学界经过多方校对,确认了证明的正确性,但想要领取100万美金,需要将证明过程发表到权威数学期刊,佩雷尔曼毫不理会这样的规定。最终,克莱数学研究所妥协了,只要佩雷尔曼来领奖就可以了,但他依旧无动于衷。就差直接把100万美元堆在他家门口了。佩雷尔曼很有钱吗?100万美元都不放在眼里。实际上,他已经穷到可以拿救济金的地步了,还经常被误认为是乞丐。
据邻居回忆:每次见他都穿着一件防水布衣和布满灰泥的长裤,在他家旁边住了7年都不知道他叫什么,头发不剪,胡子不刮,刚开始以为是个精神病人。有一次找他帮忙进他家才发现,除了床和电话什么也没有。
佩雷尔曼并非不食人间烟火,偶尔还是会到商场购物。据超市店员回忆,他每次来买的东西都一样:通心粉和面包,还有特定牌子的酸奶,不吃水果,也不沾烟酒。在研究庞加莱猜想的几年时间里,佩雷尔曼辞掉了所有工作,断绝人际交往,仅依靠此前工作的积蓄度日,几乎像是从人间蒸发了。
生活如此贫困却不领奖金,与他人生中几段经历有关。1987年,佩雷尔曼大学毕业后,留在了俄罗斯的司捷克洛夫数学研究所工作,也经常游走于国内外讲学,这使他有了一份不错的收入。但研究所要求,所有人每5年要进行一次职称评比,需要写一定数量的论文,这是硬性要求,佩雷尔曼认为这占据了他大量的时间,并非纯粹的数学研究。有一次在几何研究院,他还与同事发生了争执,最后佩雷尔曼被调往与他研究方向不同的科室,从此他就不再来研究所上班了,1994年开始专心研究庞加莱猜想。恰巧,庞加莱猜想在2000年被评选为千禧年难题,正是这个机遇让人们了解了这位隐世奇才。
2006年,佩雷尔曼被评选上菲尔兹奖后,被告知由西班牙国王颁奖,他说道:“国王又不是数学家,为什么有资格颁奖?”按照佩雷尔曼的原话翻译:“今天他们说你有资格获奖,你就有资格,明天说你没资格,你就没资格”骨子里透露着对组织和制度的厌恶。
实际上,佩雷尔曼在2005年之后就不再是数学家了。他曾向自己的老师抱怨,说对整个数学界的人和体制都失望至极,数学圈的争名夺利,嫉妒他人成果是家常便饭,为了抢夺科研果实的明争暗斗也屡见不鲜。这次,他彻底辞职了。
时至今日,这位曾经满脑子都是数学的男孩已经53岁了,孤身一人并未结婚。他也拒绝了所有媒体的采访,《纽约时报》一篇文章的标题就是:“佩雷尔曼你在哪里?”。有人开玩笑说,他现在说不定正在深山里捡柴火。2014年,有媒体拍到他在瑞典的一家纳米技术公司上班,但很快就不见了踪影。
从整个国家一夜之间变得风雨飘摇,再到家庭的分崩离析。佩雷尔曼最后还是决定,回到俄罗斯圣彼得堡的母亲身边,靠着退休金生活,闲暇之余还会去森林里采摘蘑菇。
将近20年时间,七道千禧年难题,只有庞加莱猜想被攻克,剩下的六题分别是:杨-米尔斯存在性和质量间隔、贝赫和斯维讷通-戴尔猜想、NS方程解的存在性与光滑性、P/NP问题、霍奇猜想、黎曼假设。
上一篇:数学通报是核心期刊
下一篇:中学物理期刊有哪些