二次函数论文1000字
二次函数论文1000字
在初中教材中,对二次函数作了较详细的研究,由于初中学生基础薄弱,又受其接受能力的限制,这部份内容的学习多是机械的,很难从本质上加以理解。进入高中以后,尤其是高三复习阶段,要对他们的基本概念和基本性质(图象以及单调性、奇偶性、有界性)灵活应用,对二次函数还需再深入学习。一、进一步深入理解函数概念初中阶段已经讲述了函数的定义,进入高中后在学习集合的基础上又学习了映射,接着重新学习函数概念,主要是用映射观点来阐明函数,这时就可以用学生已经有一定了解的函数,特别是二次函数为例来加以更深认识函数的概念。二次函数是从一个集合A(定义域)到集合B(值域)上的映射�0�6:A→B,使得集合B中的元素y=ax2+bx+c(a≠0)与集合A的元素X对应,记为�0�6(x)= ax2+ bx+c(a≠0)这里ax2+bx+c表示对应法则,又表示定义域中的元素X在值域中的象,从而使学生对函数的概念有一个较明确的认识,在学生掌握函数值的记号后,可以让学生进一步处理如下问题:类型I:已知�0�6(x)= 2x2+x+2,求�0�6(x+1)这里不能把�0�6(x+1)理解为x=x+1时的函数值,只能理解为自变量为x+1的函数值。类型Ⅱ:设�0�6(x+1)=x2-4x+1,求�0�6(x)这个问题理解为,已知对应法则�0�6下,定义域中的元素x+1的象是x2-4x+1,求定义域中元素X的象,其本质是求对应法则。一般有两种方法:(1)把所给表达式表示成x+1的多项式。�0�6(x+1)=x2-4x+1=(x+1)2-6(x+1)+6,再用x代x+1得�0�6(x)=x2-6x+6(2) 变量代换:它的适应性强,对一般函数都可适用。 令t=x+1,则x=t-1 ∴(t)=(t-1)2-4(t-1)+1=t2-6t+6从而�0�6(x)= x2-6x+6二、二次函数的单调性,最值与图象。在高中阶阶段学习单调性时,必须让学生对二次函数y=ax2+bx+c在区间(-∞,-]及[-,+∞) 上的单调性的结论用定义进行严格的论证,使它建立在严密理论的基础上,与此同时,进一步充分利用函数图象的直观性,给学生配以适当的练习,使学生逐步自觉地利用图象学习二次函数有关的一些函数单调性。类型Ⅲ:画出下列函数的图象,并通过图象研究其单调性。(1)y=x2+2|x-1|-1
(2)y=|x2-1|
(3)= x2+2|x|-1这里要使学生注意这些函数与二次函数的差异和联系。掌握把含有绝对值记号的函数用分段函数去表示,然后画出其图象。类型Ⅳ设�0�6(x)=x2-2x-1在区间[t,t+1]上的最小值是g(t)。求:g(t)并画出 y=g(t)的图象解:�0�6(x)=x2-2x-1=(x-1)2-2,在x=1时取最小值-2当1∈[t,t+1]即0≤t≤1,g(t)=-2当t>1时,g(t)=�0�6(t)=t2-2t-1当t<0时,g(t)=�0�6(t+1)=t2-2 t2-2, (t<0) g(t)= -2,(0≤t≤1) t2-2t-1, (t>1)首先要使学生弄清楚题意,一般地,一个二次函数在实数集合R上或是只有最小值或是只有最大值,但当定义域发生变化时,取最大或最小值的情况也随之变化,为了巩固和熟悉这方面知识,可以再给学生补充一些练习。如:y=3x2-5x+6(-3≤x≤-1),求该函数的值域。三、二次函数的知识,可以准确反映学生的数学思维:类型Ⅴ:设二次函数�0�6(x)=ax2+bx+c(a>0)方程�0�6(x)-x=0的两个根x1,x2满足0<x1<x2<。(Ⅰ)当X∈(0,x1)时,证明X<�0�6(x)<x1。(Ⅱ)设函数�0�6(x)的图象关于直线x=x0对称,证明x0< 。解题思路:本题要证明的是x<�0�6(x),�0�6(x)<x1和x0< ,由题中所提供的信息可以联想到:①�0�6(x)=x,说明抛物线与直线y=x在第一象限内有两个不同的交点;②方程�0�6(x)-x=0可变为ax2+(b-1)x+1=0,它的两根为x1,x2,可得到x1,x2与a.b.c之间的关系式,因此解题思路明显有三条①图象法②利用一元二次方程根与系数关系③利用一元二次方程的求根公式,辅之以不等式的推导。现以思路②为例解决这道题: (Ⅰ)先证明x<�0�6(x),令�0�6(x)=�0�6(x)-x,因为x1,x2是方程�0�6(x)-x=0的根,�0�6(x)=ax2+bx+c,所以能�0�6(x)=a(x-x1)(x-x2)因为0<x1<x2,所以,当x∈(0,x1)时, x-x1<0, x-x2<0得(x-x1)(x-x2)>0,又a>0,因此�0�6(x) >0,即�0�6(x)-x>0.至此,证得x<�0�6(x)根据韦达定理,有 x1x2= ∵ 0<x1<x2<,c=ax1x2<x=�0�6(x1), 又c=�0�6(0),∴�0�6(0)<�0�6(x1), 根据二次函数的性质,曲线y=�0�6(x)是开口向上的抛物线,因此,函数y=�0�6(x)在闭区间[0,x1]上的最大值在边界点x=0或x=x1处达到,而且不可能在区间的内部达到,由于�0�6(x1)>�0�6(0),所以当x∈(0,x1)时�0�6(x)<�0�6(x1)=x1,即x<�0�6(x)<x1b24a(Ⅱ) ∵�0�6(x)=ax2+bx+c=a(x+-)2+(c- ),(a>0)函数�0�6(x)的图象的对称轴为直线x=- ,且是唯一的一条对称轴,因此,依题意,得x0=-,因为x1,x2是二次方程ax2+(b-1)x+c=0的根,根据违达定理得,x1+x2=-,∵x2-<0,∴x0=-=(x1+x2-)<,即x0=。二次函数,它有丰富的内涵和外延。作为最基本的幂函数,可以以它为代表来研究函数的性质,可以建立起函数、方程、不等式之间的联系,可以偏拟出层出不穷、灵活多变的数学问题,考查学生的数学基础知识和综合数学素质,特别是能从解答的深入程度中,区分出学生运用数学知识和思想方法解决数学问题的能力。二次函数的内容涉及很广,本文只讨论至此,希望各位同仁在高中数学教学中也多关注这方面知识,使我们对它的研究更深入。
给我一篇数学论文 二次函数实用性的调查报告
项目组负责人--
高凌峰性别--
男项目类型--
小论文大班-小班--
200817B3合作者--
林海峰、陈辉指导教师--
孙海琴项目涉及相关学科--
数学、物理、化学项目所属学科--
.数学选题背景--
通过本课题的研究,我们了解函数的形成发展的历史以及函数的意义,在实际生活中,函数将会在哪方面发挥它独特的作用,在学习中,深刻地了解函数,让我们对函数的认识更加全面更加透彻,能使我们更加好地学好数学中的函数,同时通过研究性学习,让我们有更好地解决实际问题的能力,提升说话探究的能力,总之,在这次学习会有着不可估量的作用。 项目条件--
① 我们的研究活动成本少、过程较简单、有实际意义。
② 每个组员都有能力及条件。
研究目的--
学习函数在交通、设计、建设、航天、军事方面的用途.自17世纪近代数学产生以来,函数的概念一直处于数学的核心位置,数学和科学的绝大部分都与函数内容有关,在数学和科学的绝大部分学科中,函数关系随处可见,例如,圆柱体的体积和表面积是其半径的函数,流体膨胀的体积是温度的函数,运动物体的路程是时间的函数,抛出的物体在空中的位置可以在坐标轴中用一个一个点的位置来表示,相乘的两个数的关系是反比例等等。在数学领域函数是一种关系,这种关系是一个集合里的每一个元素对应在另一个集合里的唯一元素,这也是用函数表示。所以通过这次研究性学习活动,让我们了解更多关于函数的内容,以帮助高中数学的学习。主要研究方法--
(1) 资料查阅法
(2) 统计法研究的基本思路--
先了解各种函数,明白它的解析式,然后深入了解这个函数在生活、生产、军事、科研等等各方面发挥的作用。研究的科学性先进性实用性--
科学性: 能帮助我们更好地学习科学和数学。
实用性: 在生活、生产、军事、科研等等各方面的用途。
研究的基本过程--
1. 网上查找资料:了解函数有关信息。
2. 分析:对函数的应用、先进性、实用性进行分析。
各成员在项目中的主要贡献--
总负责:高凌峰
开题报告、结题报告:林海峰
查阅资料:陈辉
各成员研究心得--
研究性学习活动的体会
在组内,我负责的是整合各类资料以及写各类文章,看似简单的工作,实际上也并不是那么简单。
最先我们定下的研究主题是函数,这仅仅是图个简单,素材好找,结论容易写,可当我开始一起着手整理材料的时候,发现材料很少。与期望中的相差甚远,也没有多少觉得很有意思的材料,难道这样就不行了,是否应该考虑换了个主题。后来我又在网上找别的资料,却意外地发现了函数在实际中也蕴含着不少有趣的东西。以及函数发展力程,坎坎坷坷,充满着惊奇,让我无不感叹它发展的巨大变化,同时,在其中,我也发现了函数它所具有的意义——简化计算,预测趋势——就像那红红绿绿让人看不懂的股票,实际上是根据函数的用途,也让我从中明白了很多知识。
在活动中,我从中明白了很多很多,首先就是最先的一步,查找资料,也需要我们有点耐心,有点细心,常常找到的一篇文章只有几句与我们所写的主题有关,为了找材料,常常让我们眼睛盯得生疼。还有就是合作能力,每个人的思想都不同,常常意见达不到统一,这里就需要人与人之间的相互理解。在写文章时,也更难,当时我接这份工作也仅仅想是为了提高自已的组织语言能力。当我开始写后总觉得无话可说,但当真真切切地去体会,才会觉得这并不是主题的缘故,而是我没有用心仔细想,这是一切基础的前提,还是合作,没有相互之间的理解信任,怎么行?这也是我人这次活动中收获的。
在这次活动,也发生过不少小插曲,一次相互交流意义进,谈到其实际作用,却不知怎么回事,从曲线谈到股票,渐渐地却谈到了心电图,渐渐地又谈到踢足球,又谈到篮球,一组员在玩笔,无意将笔一抛,我们谈到那支笔上,正谈到热火朝天地步,突然一个组员回过神来:“不要谈了,再谈都要计算登月了。”我们一愣,随即又笑起来,原来函数作用挺大的。
感谢这次活动让我明白了许多。
陈辉
研究性学习心得
我们组研究的课题是函数,这是数学发展史上的一个重要组成部分,我们所研究的就是这个。函数的发展表明了世界数学历史的发展,是各个时代不同数学家的努力结晶。
通过研究,我们了解函数的历史、种类、各种函数的概念意义以及实用价值。研究过程中,我们对函数产生了许多疑问,通过讨教研究,我们了解各种函数的表示形式、图象以及如何求解,我们深深被数学家的智慧所拜服,在那个函数末知的时代,研究了如此深奥的函数。
函数的出现,使交通、设计、建设、航天等方面有了巨大进步,在军事方面也有突出贡献。有函数,可以计算出导弹的着落点、轨迹使导弹有了准确的目标,增加了确度。
我们研究的函数造福了全人类,如今,还有许多学者在不懈地研究着函数,我们应努力学习,投入到建设社会的大军中去。
林海峰
体 会
这次研究性学习活动令我感触颇深,我们小组研究的是有关于函数,虽然对于我们来说,函数并不适合我们研究,好像这种深奥的数学问题应该是那些数学家研究的。但我感觉,现在就对其有些深入的了解,一定是有益无害的,而且更有助于我对函数知识在生活中的一些具体应用的了解。
原来以为函数内容就这么点,不适合研究,想换一个研究对象,但到网上一看,才知道什么叫井底之蛙,见识颇浅,函数原来也是丰富多彩的,它涉及的领域之广令我瞠目结舌,我不得不承认它是构成一个完整的领域之一重要部分。
总之,这次的研究性学习活动,不但增强了我的团队合作能力,也令我见识到了更多。相信,在以后一定会产生影响,例如,以后如果在大学组织什么活动,我不会不知所措,我能明确的知道应该怎么办,制订出具体的有效的方法,从而顺利的完成任务。
进一步完善的建议和设想--
可查找更多的资料、以及向老师请教向生活中的有些人请教函数在他们生产、生活的用途。摘要中文--
函数是高中数学学习内容的主线。实际上只是两个变量之间的关系但是实际上函数有着不可估量的实际作用。小到我们生活中的随便抛一个物体,大到我们发射火箭卫星航天飞机,无处不是蕴含着函数那条奇妙的线。通过本课题的研究,我们了解函数的形成发展的历史以及函数的意义,在实际生活中,函数将会在哪方面发挥它独特的作用,在学习中,深刻地了解函数,让我们对函数的认识更加全面更加透彻,能使我们更加好地学好数学中的函数,同时通过研究性学习,让我们有更好地解决实际问题的能力,提升说话探究的能力,总之,在这次学习会有着不可估量的作用。研究它们,学习这些知识和体会这些奇妙的曲线的作用,会让我们收益很多. 摘要英文--
The high school mathematics learning function is the main content. Actually the relationship between two variables is actually function of immeasurable actual effect. Small to our life in a casual to our object space shuttle, the rocket satellite contains the function is not the wonderful line. Through this topic research, we understand the functions of the formation and development of the meaning and function of history, in real life, function will play where its unique role in learning and profound understanding of the function, let us function more thorough understanding of more comprehensive, can make us more good to learn mathematics, while the function of research-oriented learning through, let us have a better solution actual problem ability, enhance the ability to speak, anyhow, exploring in the study of immeasurable role. To study them, learning the knowledge and experience the wonderful curve, will let us earnings.关键词--
数学|函数|作用|意义罗列研究资料--
高中的课程中让大多数学生头疼的一门课是数学。而在学习数学这门课中又让学生非常头疼的内容应该是函数。但是高中数学中除了几何知识以外函数是占了非常大的比例。函数是高中数学学习内容的主线。实际上函数有着不可估量的实际作用。在21世纪的今天,科学的发展为我们提供了莫大的便利,交通、科技、资讯等空前发达,在火星上拍点照片,在太平洋底游弋一番,这些都已不在话下,我们似乎已成了这个世界的主人,还有什么不能征服呢?难道这些不就是都用到函数?小到我们生活中的随便抛一个物体,大到我们发射火箭卫星航天飞机,无处不是蕴含着函数那条奇妙的线。自17世纪近代数学产生以来,函数的概念一直处于数学的核心位置,数学和科学的绝大部分都与函数内容有关,在数学和科学的绝大部分学科中,函数关系随处可见,例如,圆柱体的体积和表面积是其半径的函数,流体膨胀的体积是温度的函数,运动物体的路程是时间的函数,抛出的物体在空中的位置可以在坐标轴中用一个一个点的位置来表示,相乘的两个数的关系是反比例等等。在数学领域函数是一种关系,这种关系是一个集合里的每一个元素对应在另一个集合里的唯一元素,这也是用函数表示。函数包括:三角函数、二次函数、对数函数、指数函数、一次函数、反函数、幂函数、虚函数等等。十七世纪伽俐略在《两门新科学》一书中,几乎全部都包含函数,用文学和比例的语言表达函数的关系,1914年在《集合纪纲要》中用弧的概念,1930年的现代函数定义为若对集合M的任意元素X,总在集合N确定的关系与之对应,则称为集合M上定义函数记为y=f(x)。在中国清代数学家李善兰(1811—1882)翻译的《代数学》一书中首次用中文把“function”翻译为“函数”,此译名沿用至今。对为什么这样翻译这个概念,书中解释说“凡此变数中函彼变数者,则此为彼之函数”;这里的“函”是包含的意思。) 总之,函数的出现,使交通、设计、建设、航天、等方面有了巨大进步,在军事方面也有突出贡献。有了函数,可以计算出导弹的着落点、轨迹使导弹有了准确的目标,增加了准确度。不知有着多少作用不被我们知道。研究结果--
实际上函数有着不可估量的实际作用。研究结果分析--
在21世纪的今天,科学的发展为我们提供了莫大的便利,交通、科技、资讯等空前发达,在火星上拍点照片,在太平洋底游弋一番,这些都已不在话下,我们似乎已成了这个世界的主人,还有什么不能征服呢?难道这些不就是都用到函数?小到我们生活中的随便抛一个物体,大到我们发射火箭卫星航天飞机,无处不是蕴含着函数那条奇妙的线。自17世纪近代数学产生以来,函数的概念一直处于数学的核心位置,数学和科学的绝大部分都与函数内容有关,在数学和科学的绝大部分学科中,函数关系随处可见,例如,圆柱体的体积和表面积是其半径的函数,流体膨胀的体积是温度的函数,运动物体的路程是时间的函数,抛出的物体在空中的位置可以在坐标轴中用一个一个点的位置来表示,相乘的两个数的关系是反比例等等。 总之,函数的出现,使交通、设计、建设、航天、等方面有了巨大进步,在军事方面也有突出贡献。有了函数,可以计算出导弹的着落点、轨迹使导弹有了准确的目标,增加了准确度。不知有着多少作用不被我们知道。从中,我们觉得深入了解函数,会有非常大的意义研究建议--
在研究过程中,我们会碰到许许多多的难题。比如说或许我们看到的函数现在我们没有教过以至于难以理解、或许有的函数我们实在没法理解它的用途、或许因为条件不好而导致无法理解全面,这些问题都难以解决,但我们会尽自己最大努力去解决它的。
求一篇有关“二次函数,一元二次方程,一元二次不等式的区别于联系”的小论文
可以给你提供几个要点参考:
三者的联系最明显的就是根的判别式,即“△”。二次函数中的“△”可以和二次项系数“a”一起判断图像与X轴的交点个数;在一元二次方程中用于判断方程根的个数;在一元二次不等式中可以通过观察二次函数的图像来确定自变量X的取值范围。总之“△”可以说是用一条线把三者串联起来了。
三者的区别在于:二次函数是一个研究因变量Y与自变量X变化关系的过程,其中需要探究函数图像增减性、单调性、对称性以及极值等等;一元二次方程则是探究方程中的未知数是否有解的过程,而一元二次不等式是探究未知数X满足条件的范围的过程,但一元二次不等式和二次函数的联系是非常紧密的,因为其经常要利用二次函数的图像来确定未知数X的范围。
综合起来,可以这样说:一元二次方程是寻找二次函数图像上的点;一元二次不等式是截取二次函数图像上的一段,而研究二次函数则是探索无数函数中的一类特殊的函数关系。
高中数学论文
2009年06月03日
数学(shuxue)建模论文范文--利用数学(shuxue)建模解数学应用题
数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。
强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的
高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好
数学应用问题进行剖析,希望得到同仁的帮助和指正。
一、数学应用题的特点
我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,
从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点:
第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各
个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现
代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。
第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。
第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合
能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。
第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海
战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具
有广阔的发展空间和潜力。
二、数学应用题如何建模
建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次:
第一层次:直接建模。
根据题设条件,套用现成的数学公式、定理等数学模型,注解图为:
将题材设条件翻译
成数学表示形式
应用题 审题 题设条件代入数学模型 求解
选定可直接运用的
数学模型
第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要
的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。
第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。
第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车
流平稳,没有突发事件等才能建模。
三、建立数学模型应具备的能力
从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数
学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。
3.1提高分析、理解、阅读能力。
阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并
给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定
义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。
3.2强化将文字语言叙述转译成数学符号语言的能力。
将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。
例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少?
将题中给出的文字翻译成符号语言,成本y=a(1-p%)5
3.3增强选择数学模型的能力。
选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函
数建模为例,以下实际问题所选择的数学模型列表:
函数建模类型 实际问题
一次函数 成本、利润、销售收入等
二次函数 优化问题、用料最省问题、造价最低、利润最大等
幂函数、指数函数、对数函数 细胞分裂、生物繁殖等
三角函数 测量、交流量、力学问题等
3.4加强数学运算能力。
数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前
功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只
重视推理过程,不重视计算过程的做法是不可取的。
利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高
学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质
教育所必须的,需要引起教育工作者的足够重视。
加强高中数学建模教学培养学生的创新能力
摘要:通过对高中数学新教材的教学,结合新教材的编写特点和高中研究性学习的开展,对如何加强高中数学建模
教学,培养学生的创新能力方面进行探索。
关键词:创新能力;数学建模;研究性学习。
《全日制普通高级中学数学教学大纲(试验修订版)》对学生提出新的教学要求,要求学生:
(1)学会提出问题和明确探究方向;
(2)体验数学活动的过程;
(3)培养创新精神和应用能力。
其中,创新意识与实践能力是新大纲中最突出的特点之一,数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面同样需要得到训
练和提高,而培养学生的分析和解决实际问题的能力仅仅靠课堂教学是不够的,必须要有实践、培养学生的创新意识
和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知
识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。
数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的
兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义,现就如何加强高中数学建模教学谈几点体会。
一.要重视各章前问题的教学,使学生明白建立数学模型的实际意义。
教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就
能用数学模型得到解决,这样,学生就会产生创新意识,对新数学模型的渴求,实践意识,学完要在实践中试一试。
如新教材“三角函数”章前提出:有一块以O点为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD辟
为绿册,使其册边AD落在半圆的直径上,另两点BC落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对
称的点A、D的位置,可以使矩形面积最大?
这是培养创新意识及实践能力的好时机要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型,
并通过新旧两种思路方法,提出新知识,激发学生的知欲,如不可挫伤学生的积极性,失去“亮点”。
这样通过章前问题教学,学生明白了数学就是学习,研究和应用数学模型,同时培养学生追求新方法的意识及
参与实践的意识。因此,要重视章前问题的教学,还可据市场经济的建设与发展的需要及学生实践活动中发现的问
题,补充一些实例,强化这方面的教学,使学生在日常生活及学习中重视数学,培养学生数学建模意识。
2.通过几何、三角形测量问题和列方程解应用题的教学渗透数学建模的思想与思维过程。
学习几何、三角的测量问题,使学生多方面全方位地感受数学建模思想,让学生认识更多现在数学模型,巩固
数学建模思维过程、教学中对学生展示建模的如下过程:
现实原型问题
数学模型
数学抽象
简化原则
演算推理
现实原型问题的解
数学模型的解
反映性原则
返回解释
列方程解应用题体现了在数学建模思维过程,要据所掌握的信息和背景材料,对问题加以变形,使其简单化,以
利于解答的思想。且解题过程中重要的步骤是据题意更出方程,从而使学生明白,数学建模过程的重点及难点就是据
实际问题特点,通过观察、类比、归纳、分析、概括等基本思想,联想现成的数学模型或变换问题构造新的数学模型
来解决问题。如利息(复利)的数列模型、利润计算的方程模型决策问题的函数模型以及不等式模型等。
3.结合各章研究性课题的学习,培养学生建立数学模型的能力,拓展数学建模形式的多样性式与活泼性。
高中新大纲要求每学期至少安排一个研究性课题,就是为了培养学生的数学建模能力,如“数列”章中的“分期
付款问题”、“平面向是‘章中’向量在物理中的应用”等,同时,还可设计类似利润调查、洽谈、采购、销售等问
题。设计了如下研究性问题。
例1根据下表给出的数据资料,确定该国人口增长规律,预测该国2000年的人口数。
时间(年份)
人中数(百万) 39 50 63 76 92 106 123 132 145
分析:这是一个确定人口增长模型的问题,为使问题简化,应作如下假设:(1)该国的政治、经济、社会环境稳
定;(2)该国的人口增长数由人口的生育,死亡引起;(3)人口数量化是连续的。基于上述假设,我们认为人口数
量是时间函数。建模思路是根据给出的数据资料绘出散点图,然后寻找一条直线或曲线,使它们尽可能与这些散点吻
合,该直线或曲线就被认为近似地描述了该国人口增长规律,从而进一步作出预测。
通过上题的研究,既复习巩固了函数知识更培养了学生的数学建模能力和实践能力及创新意识。在日常教学中注
意训练学生用数学模型来解决现实生活问题;培养学生做生活的有心人及生活中“数”意识和观察实践能力,如记住
一些常用及常见的数据,如:人行车、自行车的速度,自己的身高、体重等。利用学校条件,组织学生到操场进行实
习活动,活动一结束,就回课堂把实际问题化成相应的数学模型来解决。如:推铅球的角度与距离关系;全班同学手
拉手围成矩形圈,怎样围使围成的面积最大等,用砖块搭成多米诺牌骨等。
四、培养学生的其他能力,完善数学建模思想。
由于数学模型这一思想方法几乎贯穿于整个中小学数学学习过程之中,小学解算术运用题中学建立函数表达式及
解析几何里的轨迹方程等都孕育着数学模型的思想方法,熟练掌握和运用这种方法,是培养学生运用数学分析问题、
解决问题能力的关键,我认为这就要求培养学生以下几点能力,才能更好的完善数学建模思想:
(1)理解实际问题的能力;
(2)洞察能力,即关于抓住系统要点的能力;
(3)抽象分析问题的能力;
(4)“翻译”能力,即把经过一生抽象、简化的实际问题用数学的语文符号表达出来,形成数学模型的能力和对
应用数学方法进行推演或计算得到注结果能自然语言表达出来的能力;
(5)运用数学知识的能力;
(6)通过实际加以检验的能力。
只有各方面能力加强了,才能对一些知识触类旁通,举一反三,化繁为简,如下例就要用到各种能力,才能顺利解出。
例2:解方程组
x+y+z=1 (1)
x2+y2+z2=1/3 (2)
x3+y3+z3=1/9 (3)
分析:本题若用常规解法求相当繁难,仔细观察题设条件,挖掘隐含信息,联想各种知识,即可构造各种等价数学模型解之。
方程模型:方程(1)表示三根之和由(1)(2)不难得到两两之积的和(XY+YZ+ZX)=1/3,再由(3)又可将三根之积
(XYZ=1/27),由韦达定理,可构造一个一元三次方程模型。(4)x,y,z 恰好是其三个根
t3-t2+1/3t-1/27=0 (4)
函数模型:
由(1)(2)知若以xz(x+y+z)为一次项系数,(x2+y2+z2)为常数项,则以3=(12+12+12)为二次项系数的二次函f(x)
=(12+12+12)t2-2(x+y+z)t+(x2+y2+z2)=(t-x)2+(t-y)2+( t-z)2为完全平方函数3(t-1/3)2,从而有t-x=t-y=t-z,而x=y=z再
由(1)得x=y=z=1/3,也适合(3)
平面解析模型
方程(1)(2)有实数解的充要条件是直线x+y=1-z与圆x2+y2=1/3-z2有公共点后者有公共点的充要条件是圆心(O、O)到直
线x+y的距离不大于半径。
总之,只要教师在教学中通过自学出现的实际的问题,根据当地及学生的实际,使数学知识与生活、生产实际联系起来,就
能增强学生应用数学模型解决实际问题的意识,从而提高学生的创新意识与实践能力。
数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学
应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模
解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得
到同仁的帮助和指正。
一、数学应用题的特点
我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决
的一类数学问题叫做数学应用题。数学应用题具有如下特点:
第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实
际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场
经济、环境保护、实事政治等有关的应用题等。
第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。
第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的
知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。
第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解
决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。
二、数学应用题如何建模
建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次:
第一层次:直接建模。
根据题设条件,套用现成的数学公式、定理等数学模型,注解图为:
将题材设条件翻译
成数学表示形式
应用题 审题 题设条件代入数学模型 求解
选定可直接运用的
数学模型
第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模
型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。
第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。
第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有
突发事件等才能建模。
三、建立数学模型应具备的能力
从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱
,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。
3.1提高分析、理解、阅读能力。
阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如
1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身
综合素质,这种理解能力直接影响数学建模质量。
3.2强化将文字语言叙述转译成数学符号语言的能力。
将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数
学建成模的基础性工作。
例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少?
将题中给出的文字翻译成符号语言,成本y=a(1-p%)5
3.3增强选择数学模型的能力。
选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主
要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选
择的数学模型列表:
函数建模类型 实际问题
一次函数 成本、利润、销售收入等
二次函数 优化问题、用料最省问题、造价最低、利润最大等
幂函数、指数函数、对数函数 细胞分裂、生物繁殖等
三角函数 测量、交流量、力学问题等
3.4加强数学运算能力。
数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强
数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程
的做法是不可取的。
利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素
质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工
作者的足够重视
上一篇:内燃机学报ei检索号
下一篇:科技日报与中国科学报