应用化工论文3000字
应用化工论文3000字
随着科技负效应的显现,工程伦理越来越受的人们的重视。化学工程有着与其他工程不同的特点。下面是我为大家整理的化学工程应用 毕业 论文,供大家参考。
《 化学工程中计算流体力学应用分析 》
摘要:计算流体力学是以多种计算方程为基础,在多种化学反应设备中进行能量、质量和动量的综合计算,分析出不同守恒定律中,这些变量的主控形式和变化规律,从而优化工程设计和工艺设备,提高化学反应中正向变化的进行,提高热量交换和原材料的反应速率等。从化学工程经济效益的角度分析,有利于工程成本的节约,提升了经济回报。 文章 计算流体力学的基本原理进行分析,并 总结 了其砸你化学工程中搅拌、热交换、精馏塔和化学反应工程的具体应用。
关键词:计算流体力学;求解;基本原理;化学工程;应用
化学工程在我国具有较长的研究与应用历程,并在实际的生产与生活中取得到巨大的应用成效,不仅能够供给正常的生活需求,同时根据新材料的开发,能够满足现代型环保材料的使用。在化学工程中,较多的反映环境和反应机制都是在溶液中进行的,具有质量守恒和热量守恒定律的应用。而这种质量与能量的关系正是计算流体力学的主要原理。通过对实际应用环境和原理的分析,能够优化工程设计和工艺改进,提高化学工程的生产效率。
1计算流体力学在化学工程中的基本原理
计算流体力学简称CFD,是通过数值计算 方法 来求解化工中几何形状空间内的动量、热量、质量方程等流动主控方程,从而发现化工领域中各种流体的流动现象和规律,其主要以化学方程式中的动量守恒定律、能量守恒定律及质量守恒方程为基础。一般情况下,计算流体力学的数值计算方法主要包括数值差分法、数值有限元法及数值有限体积法,其也是一门多门学科交叉的科目,计算流体力学不仅要掌握流体力学的知识,也要掌握计算几何学和数值分析等学科知识,其涉及面广。
针对计算流体力学的真实模拟,其主要目的是对流体流动进行预测,以获得流体流动的信息,从而有效控制化工领域中的流体流动。随着信息技术的发展,市场上也出现了计算流体力学软件,其具有对流场进行分析、计算、预测的功能,计算流体力学软件操作简单,界面直观形象,有利于化学工程师对流体进行准确的计算。
2计算流体力学砸你化学工程中的实际应用
2.1在搅拌中的应用分析
在搅拌的化学反应中,反映介质之间的流动性比较复杂,依据传统的计算形式根本无法解决,并在化学试剂在搅拌中存在不均匀扩散的特点,在湍流的形式中能量的分布状况也存在着空间特点。若是依据实验手段测得反映中物质、能量和质量的变化规律,其得出的结构往往存在较差时效性,实验骗差加大。
通过对二维计算流体力学的应用,能够对搅拌中流体的形式进行模拟,并进行质量、能量等数据的验证。但是流体的变化,不仅与化学试剂的浓度、减半速度有关,还与时间、容器的形状等有着之间的联系,需要建立三维空间模拟形式进行计算流行力学。随着科学技术和研究水平的提高,在通过借助多普勒激光测速仪后,已经对三维计算形式有了较大的突破,这对于化工工程中原料的有效应用和工程成本的减低具有促进的作用,但是在三维计算流体力学中还存在一定的缺陷,需要在今后的研究中不断的完善。
2.2CFD在化学工程换热器中的应用分析
换热器是化学工程中主要的应用设备,通过管式等换热器、板式换热器、冷却塔和再沸器等的应用,能够有效的控制化学试剂在反应中的温度变化。其中根据换热器的形式不同,计算流体力学的方式也就不同。在管式换热器中主要是通过流体湍流速度的改变,增加换热速率的。在板式换热器中是通过加大流体的接触面积,提高换热效率的。而在冷却塔和再沸器中,热量交换的形式更为复杂,但是却群在重复性换热的特点,增加了换热的时间,提高了换热的效果。从总体上分析,计算流量力学中,需要对温度变化、流体的速度变化、热交换面积变化和时间变化进行分析。通过CFD计算流体力学的应用,能够计算出不同设备的热交换效果,并根据生产的实际需求进行换热器的选择使用。
2.3在精馏塔中的应用
CFD已成为研究精馏塔内气液两相流动和传质的重要工具,通过CFD模拟可获得塔内气液两相微观的流动状况。在板式塔板上的气液传质方面,Vi-tankar等应用低雷诺数的k-ε模型对鼓泡塔反应器的持液量和速度分布进行了模拟,在塔气相负荷、塔径、塔高和气液系统的参数大范围变化的情况下,模拟结果和现实的数据能够较好的吻合。
Vivek等以欧拉-欧拉方法为基础,充分考虑了塔壁对塔内流体的影响,用CFD商用软件FLUENT模拟计算了矩形鼓泡塔内气液相的分散性能,以及气泡数量、大小和气相速度之间的关系,取得了很好的效果。在填料塔方面,Petre等建立了一种用塔内典型微型单元(REU)的流体力学性质来预测整塔的流体力学性质的方法,对每一个单元用FLUENT进行了模拟计算,发现塔内的主要能量损失来自于填料内的流体喷溅和流体与塔壁之间的碰撞,且用此方法预测了整塔的压降。
Larachi等发现流体在REU的能量损失(包括流体在填料层与层之间碰撞、与填料壁的碰撞引起的能量损失等)以及流体返混现象是影响填料效率的主要因素,而它们都和填料的几何性质相关,因此用CFD模拟计算了单相流在几种形状不同的填料中流动产生的压降,为改进填料提供了理论依据。CFD模拟精馏塔内流体流动也存在一些不足,如CFD模拟规整填料塔内流体流动的结果与实验值还有一定的偏差。这是由于对于许多问题所应用的数学模型还不够精确,还需要加强流体力学的理论分析和实验研究。
2.4CFD在化学反应工程中的应用研究
在化学反应工程中,反应物和生成物的化学反应速率与反应器、温度和压力等有着较大的联系,在实际的反应中可以利用计算流体力学进行数据的获取。但是这数据的获取具有一定的温度限制,当反应中温度过大,就会造成分子的剧烈运动,其运动轨迹的变化规律就会异常,在利用计算流体力学的模型计算中,计算数据与实际情况会发生较大的偏差。由于高温中分子的运动轨迹和运动速度难以获取,在计算流体力学的实际计算中,就要借助FLUENT进行三维建型,并利用测速反应器进行速度的测量,通过综合的比较分析,利用限元法进行数据的计算。可以得出不同环境下的反应器的流线、反应器内部的浓度梯度及温度梯度。通过CFD软件预测反应器的速度、温度及压力场,可以更进一步理解化学反应工程中的聚合过程,详细、准确的数据可以优化化学反应中的操作参数。
3结束语
计算流体力学对于化学工程的应用具有实际意义,并在经济效益的提高上具有重要的价值,在近几年,化学工程技术人员不断的计算流体力学中展开研究,以二维空间计算和模拟为基础,不断的完善三维空间的流量计算,并得出了一系列的流体流动规律。根据计算流体力学在化学工程中的广泛应用,在今后的化学工程发展中,应加强此类学科的教学与延伸,提供出更有效的反应设备和工艺操作。
参考文献
[1]余金伟,冯晓锋.计算流体力学发展综述[J].现代制造技术与装备,2013(06).
[2]舒长青,王友欣.计算流体力学在化学工程中的应用[J].化工管理,2014(06).
《 能源化学工程专业化工热力学教学思考 》
[摘要]《化工热力学》是能源化学工程专业一门理论性和逻辑性较强的专业基础课,文章阐述了作者在《化工热力学》课程教学过程中如何提高学生对学习本课程兴趣的教学实践和教学体会。通过明确教学内容和教学主线,改变传统的单一的课堂教学,将课堂教学与学科动态及工程实践密切结合,激发学生学习兴趣,培养学生自主学习能力和工程意识,以满足培养能源化学工程领域领军人物的要求。
[关键词]化工热力学;能源化学工程;教学实践;教学体会
化工热力学是化工类学生的专业必修课程之一,主要讲述热力学定律在化学工程领域的应用,包括化工过程中各种形式的能量之间相互转换规律及过程趋近平衡的极限条件等。它是培养学生分析和解决实际化工问题思维方法的重要专业理论基础课[1-3]。然而该课程的课程内容抽象、计算繁琐,学生感到非常难学又缺乏实际应用,在课程学习过程中学生产生恐惧和厌学心理,达不到良好的教学效果,因此,我们对该课程的教学内容和 教学方法 进行一些改革和尝试,希望激发学生学习的兴趣,进而更好地掌握这门课程,为后续专业课程的学习夯实基础。
武汉大学2013年新开设的能源化学工程专业是由1958年原武汉水利电力学院开办的“电厂化学”专业发展而来,主要面向电力行业及高效洁净能源领域(包括超临界火电、核电、生物质能、氢能、新型化学电源等),培养掌握化学与化工基础理论及能源化学专业知识和技能的未来行业发展的领军人物。
目前,本专业主要有水处理、材料腐蚀与防护、化学监督与控制、能源化学四个主要研究方向。为了适应学校对新专业发展和一流学科建设的要求,2015年在本专业大三学生中新增设了《化工热力学》这门化工类专业的专业基础课程。如何调动学生的课堂积极性,培养学生的创新能力,夯实学生的专业基础,使他们在54学时的学习过程中理解并掌握本门课程的基本概念,并且将抽象的理论与实际的能源化学过程联系起来是本课程的核心教学任务。本文结合我校能源化学工程专业的培养目标,浅谈《化工热力学》的教学体会,着重对教学方式进行了探索和实践,为培养能源化学工程领域的领军人物奠定基础。
1明确教学内容与课程主线
结合我校《化工热力学》课程以工程应用为中心、专业研究方向覆盖面广等特点,我们选用了朱自强等编著、化学工业出版社出版的《化工热力学》作为教材[4],同时,也鼓励学生使用部分参考教材(《化工热力学》,冯新等编,2008;《化工热力学(第二版)》,陈钟秀等编,2000;《化工热力学导论(原著第七版)》,J.M.史密斯等编,刘洪来等译,2007)[5-7]。化工热力学发展时间较长,已形成较完整的知识体系,如何在54学时内有效地把关键知识点教授给学生是本课程教学实践的关键。
由于本专业学生在大二《物理化学》课程中已经系统学习了理想气体相关的状态方程及其应用,因此在本课程教学中不再赘述,而是重点介绍工程实际应用较多的二参数状态方程、化工热力学分析、溶液热力学、流体相平衡和化学反应平衡等。在教学实践中,首先,详细分析《化工热力学》教材结构,围绕主线内容合理编排知识点;其次,建立好各知识点之间的逻辑关系,让学生在大脑中建立化工热力学框架图;最后,根据能源化学工程专业的需要,适当删减补充了教材内容,结合学科动态,增强化工热力学的应用能力,如燃料电池开路电压的计算、水/二氧化碳共电解制合成气过程中气体组成的计算等。
2改变单一课堂教学模式,培养学生自主学习能力
化工热力学课程设计的公式多而繁杂,学生在开始学习阶段容易产生恐惧厌学心理,传统的单一课堂教学模式具有“教师主导学生学习”的特点,与本课程“教师引导学生学习”的教学目的存在较大偏差。因此,应改变传统单一课堂讲授模式,充分采用“启发式”和“参与式”相结合的教学方法。
首先,教师在 课前预习 阶段设疑(提出问题),促使学生思考,复习旧知识,预习新知识;其次,教师在教学实践过程中采用多媒体和板书相结合的教学方式解疑(解决问题),并通过对例题和习题的讲解加深学生对化工热力学原理、方法和应用的理解,同时,教学过程中应避免陷于抽象的说教和枯燥的公式推导之中,重点讲述化工热力学知识点的应用条件和物理意义;最后,课堂教学结束后,教师主动与学生面对面交流答疑(探讨问题),并设置思考题让学生查阅相关资料。通过“设疑—解疑—答疑”的渐进式教学方法达到对关键知识点举一反三的目的,同时,吸引学生注意力,培养学生自主学习能力,提高学生学习的积极性和主动性。
3课堂教学与工程实践密切结合,培养学生初步的工程观点
化工热力学由于理论性较强、基本概念多且抽象,而且本科生在学习过程中接触科研课题及工程实践的机会较少,将课堂教学内容与科研课题及工程实践紧密结合起来,建立“以应用为中心”、“探究式”的特色教学模式,紧密联系我校在能源化学工程领域(特别是超临界火电、核电、生物质能、氢能、新型化学电源等方面)开发利用的化学工程实际问题,把学科前沿领域的科研成果带入课堂,可以使他们强化科研思想、激发听课兴趣、培养创新能力;同时,可以让学生获取利用化工热力学基本原理解决工程实际问题提供思路和方法,培养学生初步的工程观点。
4考核方式方法研究
传统的期末一张考卷为准的考试方式不利于学生能力的培养,也不能全面地体现学生对所学知识的掌握程度,为了更加系统全面地评价学生对课程内容的认识情况,我们对课程的考核方式方法进行了改革探索。目前,课程成绩总评包括平时成绩和期末成绩两部分,其中平时成绩包括学生的课堂综合表现、课程预习、作业三个部分,各占10%;期末考试采用开卷方式考试,考试的题目偏重于对知识点的理解和其在能源化学过程中的应用。然而由于该课程的课程内容抽象、计算繁琐,教学过程中发现仍有部分学生存在畏惧厌学心理,因此,在今后的教学实践中应考虑进一步激发学生的学习兴趣,增强学生的主观能动性,在课堂教学中引入分组讨论,开展导向性的专题研究,将课程内容与能源化学过程(特别是学科动态)相结合,培养学生查阅资料和分工协作的能力,为学生下一步学习专业课程夯实基础。
5结束语
在《化工热力学》课程的教学实践和尝试中,首先要明确教学内容与主线,打破单一的学生被动听讲的模式,理论联系实际应用,调动学生学习的积极性和主动性,激发学生对教学内容的兴趣,并且在教学的过程中对教学方法进行改革创新,因材施教,为学生下一步学习更专业的能源化学工程知识和从事新能源行业工作奠定扎实的基础。
参考文献
[1]陆小华,冯新,吉远辉,等.迎接化工热力学的第二个春天[J].化工高等 教育 ,2008,3:19-21.
[2]梁浩,刘惠茹,王春花.《化工热力学》教学实践与尝试[J].广东化工,2010,37(1):157-158.
[3]李兴扬,唐定兴,沈凤翠,等.化工热力学教学改革与体验[J].化工高等教育,2011,3:71-73.
[4]朱自强,吴有庭.化工热力学(第三版)[M].北京:化学工业出版社,2009.
[5]冯新,宣爱国,周彩荣,等.化工热力学[M].北京:化学工业出版社,2008.
[6]陈钟秀,顾飞燕,胡望明.化工热力学(第二版)[M].北京:化学工业出版社,2000.
[7]史密斯JM,范内斯HC,阿博特MM,等编;刘洪来,陆小华,陈新志,等译.化工热力学导论(原著第七版)(IntroductiontoChemicalEngineeringThermodynamics,SevenEdition).北京:化学工业出版社,2007.
有关化学工程应用毕业论文推荐:
1. 化学工程毕业论文
2. 化学毕业论文精选范文
3. 化工毕业论文范文大全
4. 化学毕业论文范例
5. 化学毕业论文范文
6. 化工毕业设计论文范文
急需一篇关于《化学工程与工艺》的毕业论文——3000-5000字
MATLAB在化学工程与工艺
实验数据处理中的应用*
摘要]本文对MATLAB在化学工程与工艺实验中的应用进行了初步的尝试,传统的化工实验的数据
处理是相当复杂的,需要花费大量的人力物力,由于化工实验需要平行实验,数据处理过程的重复性也
非常大。借助MATLAB软件的应用,可以使人们从大量的数据处理当中解脱出来。本文以“化工原
理”实验为例,利用MATLAB软件编写一个数据处理程序:只需输入任意一组原始数据,就可以把实验
结果,数据模型以及作图一起显示出来。
[关键词]化学工程与工艺;专业实验;数据处理;Matlab
一、引言
化学工程与工艺专业实验是初步了解、学习
和掌握化学工程与工艺科学实验研究方法的一个
重要的实践性环节。专业实验不同于基础实验,
其目的不仅仅是为了验证一个原理、观察一种现
象或是寻求一个普遍适用的规律,而应当是为了
有针对性地解决一个具有明确工业背景的化学工
程与工艺问题。[1]化工实验的特点流程较长,规模
较大,数据处理也较为复杂。因此依靠计算机处
理数据会使繁琐的数据处理过程变得简单快捷,
大大提高工作效率。
数据处理是每一个化学工程实验必不可少的
步骤,也是至关重要的一个步骤。通过实验可以
建立过程模型、分析工艺技术的可行条件。但是
化工实验数据的处理往往并不是那么简单,它需
要通过复杂的数学计算,若仅仅依靠手工计算则
需要花费大量的时间,而且化工实验数据的处理
量很大、重现性很高,因此应用计算机来处理实验
数据可以大大提高工作效率。
化学工程与工艺专业是一个以实验为基础的
专业学科。实验的目的是通过有限的实验点去寻
找某一对象或某一过程中各参数之间的定量关
系,从而揭示某化工过程所遵循的客观规律。由
于人力、物力、时间等条件的限制,任何实验所能
完成的实验点都是有限的,如何根据这些有限的
实验点归纳出各参数之间的关系,便是实验数据
的处理问题。
由于化工过程的复杂性,实验过程中各参数
之间的关系往往是非线性的,数据处理或数据拟
合的工作量往往比较大,且计算过程也比较繁琐。
若能利用计算机进行数据处理,不仅处理结果的
准确度很高,而且还会省下很多不必浪费的人力
和时间,大大提高了工作效率。
Matlab是集数学计算、结果可视化和编程于
一身,能够方便地进行科学计算和大量工程运算
的工程软件。它具有简单易用、人机界面良好,能
使繁琐的科学计算和编程变得日益简单和准确有
效。[2]
本文以两个化工原理实验为例,阐述利用
Matlab软件处理化工实验数据与人工处理相比
较带来的方便,而且数据的结果更精确,误差更
小。
Matlab软件是一种简单易学的编写语言。
它具有支持多平台操作系统(Windows、Unix
等)、编写效率高、用途广泛、功能超强、程序极容
易维护等等优点。
二、数据处理程序的设计
(一)程序框图
由于化工实验有很多,而且每一个实验数据
的处理的步骤、公式都不一样,所以很难用一个程
序来描述。但是,每一个实验都有类似之处,因此
每一个程序都可以用如图2-1来描述。
这样则可以利用Matlab中的polyfit()函数
进行线性拟合,此即为本文编写数据处理程序的
基本原理。
3.基本数据库
从文献中只能查出特殊温度下的物性数据。
例如:10℃、20℃、30℃等。但是工业生产中的温
度就不可能那么凑巧和文献符合,因此,需要我们
进行计算。平时学习中遇到这样的问题,我们往
往是选两个相近的数据近似认为它们是线性关
系,然后采用内插或外推法计算出工作温度下的
物性常数。
本文中所编写的程序把温度与密度、温度与
粘度进行多项式拟合,使它们之间有两两对应关
系。即在程序运行后,只需输入工作温度,程序就
可以得到该温度下所需的物性常数。
(三)程序的调试与运行结果
1.流体阻力原始数据输入
三、结论
在化学工程与工艺实验中用Matlab软件处
理实验数据是很有必要的。以本文中的化工原理
实验为例,每一次实验都有大量的数据要处理,我
们只要处理自己的原始数据,但教师在批改时就
要把我们所有的实验数据都要计算,这个工作量
是很大的。有了数据处理程序,教师只需要输入
原始数据,运行程序后,就可了解学生的实验是否
做得好、实验数据处理结果是否准确,这就可以节
省很多的时间。在实际工程中,需要处理的数据
更多,计算公式更加复杂,有时为了导出计算公
式,还需要建立复杂的数学模型,手工计算基本是
不可能完成的。因此,把Matlab软件应用到化学
工程与工艺实验中进行实验数据的处理是十分必
要的。(责任编辑:张明德)
参考文献:
[1]房鼎业,乐清华,李福清主编.化学工程与工艺专业实
验[M].北京:化学工业出版社,2000.
[2]李丽,王振领编著.MATLAB工程计算机应用[M].
北京:人民邮电出版社,2001.
[3]黄华江编著.实用化工计算机模拟———MATLAB在
化学工程中的应用[M].北京:化学工业出版社,2004.
[4]姚玉瑛主编.化工原理(新版)(上册)[M].天津:天津
大学出版社,2003.
函授大专应用化工技术的毕业论文怎么写
摘要是文章主要内容的摘录,要求短、精、完整。字数少可几十字,多不超过三百字为宜[3]。
摘要的规范
摘要是对论文的内容不加注释和评论的简短陈述,要求扼要地说明研究工作的目的、研究方法和最终结论等,重点是结论,是一篇具有独立性和完整性的短文,可以引用、推广。
关键词
关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作计算机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。
主题词是经过规范化的词,在确定主题词时,要对论文进行主题分析,依照标引和组配规则转换成主题词表中的规范词语。(参见《汉语主题词表》和《世界汉语主题词表》)。
化学在石油工程中的应用3000字论文 帮忙啊
绿色化学在石油化工中的研究进展和应用 2003 年5 月国际工程学会在美国Sandestin 主办了“绿色工程: 定义原则”( Green Engineering :Defining the Principle) 的会议,目的是确定一套绿色工程的原则以指导工程师在设计产品和工艺时,使其符合企业、政府和社会的需要,这包括了成本、安全、使用性能和对环境的影响. 最后发表了“工程师工作框架的Sandestin 原则”,提出了在工程项目中为全面实现绿色工程,工程师要遵循的9 条原则. 这9 条原则是: (1) 整体考虑工艺过程和产品,使用系统分析与集成的方法来评估对环境的影响; (2) 保障并改善自然生态系统,同时也要保护人类健康和生活安宁; (3) 在工程活动中考虑整个生态循环; (4) 尽可能保障所有的物质和能量安全并良性地输入和输出; (5) 尽可能减少对自然资源的消耗; (6) 努力减少废物产生; (7) 在对当地地理和人文认知的基础上,开发和实施工程解决方案; (8) 革新、创造和发明技术以实现可持续发展,在传统和主流工艺之上,创造性地提出工程解决方案; (9) 让股东和社会共同积极参与工程解决方案的开发[2 ] . 20 世纪的化学工业是建立在煤、石油和天然气等矿物质资源基础上的, 尤其是到了60 年代前后, 石油化学工业获得了飞速发展, 与此同时, 也产生了日益严重的资源、环境等社会问题。1990年以来, 绿色化学的理念迅速崛起, 并成为包括石化工业在内的化学工业可持续发展的方向, 越来越受到各国政府、企业和学术界的普遍重视。在石油化工领域, 一批绿色化工技术不断被开发和应用,甚至逐渐成为一些新兴产业。本文作者介绍可持续发展的石油化工技术的一些新进展。1 以过氧化氢作氧化剂的烃类“原子经济”氧化反应 反应的“原子经济”性是衡量在化学反应中究竟有多少原料的原子进入到产品之中, 这一标准既要求尽可能地节约原料资源, 又要求最大限度地减少废物排放。在石化工业中烃类的氧化反应是一类非常重要的反应过程, 由于具有含氧官能团的产物分子比原料烃类要活泼得多, 此类反应的选择性通常较低, 还有一些反应需要经多步骤才能完成, 过程往往产生很多废物。过氧化氢作为一种温和的氧化剂, 在某些材料的催化作用下, 可进行选择性很高的定向氧化反应, 而且其本身无毒并在反应后转化为无害的水, 使反应的“原子经济”性大大提高, 因而被看作是绿色的氧化剂[1 ] 。1.1 钛硅分子筛催化环己酮氨肟化制备环己酮肟实现工业应用环己酮肟的制备作为目前化纤单体ε- 己内酰胺主流生产技术的核心工艺, 需经环己酮与羟胺的盐进行反应而得, 而羟胺盐制备过程的“原子经济”性较差, 腐蚀和污染严重。20 世纪80 年代后期意大利EniChem 公司提出了一种全新的环己酮氨肟化工艺, 即在钛硅分子筛的催化作用下, 环己酮与氨、过氧化氢一步“原子经济”反应直接合成环己酮肟。中国石化石油化工科学研究院也开发成功具有自主知识产权的环己酮氨肟化新工艺, 并与中国石化巴陵分公司合作, 于2003 年8 月率先完成了70 kt/ a 的工业试验, 环己酮转化率和环己酮肟选择性均超过99.5 % , 氨的利用率达97 %以上。而传统的磷酸羟铵肟化法工艺(HPO) 氨的利用率不足60 %; 同时, 新工艺避免了NOx 、SOx(HPO) 等的生成和使用, 使环己酮肟的制备成为清洁生产过程。传统的以苯为原料的己内酰胺生产过程流程长、工艺复杂、投资大、成本高, 国外Du Pont 、BASF 和DSM 等公司已分别研究开发了以丁二烯为原料的己内酰胺生产新技术[2 , 3 ] , 可简化工艺流程和降低生产成本, 但由于新建装置巨大的投资和技术风险等原因, 至今尚未工业化。环己酮氨肟化新工艺适宜对现有装置的技术改造, 将使由苯生产己内酰胺的工艺路线更具竞争性。1.2 丙烯环氧化制备环氧丙烷新技术取得新进展自从钛硅分子筛( TS - 1) 诞生以来, 低温下利用过氧化氢作氧化剂的液相氧化反应工艺一直在不断地研究开发, 另一类取得突出进展的是烯烃与过氧化氢进行环氧化反应制取环氧化物, 其中最重要的过程是丙烯环氧化制备环氧丙烷。以TS - 1 为催化剂, 用过氧化氢环氧化丙烯制备环氧丙烷, 产物环氧丙烷的收率达97 %以上(以丙烯计) ,以过氧化氢计其收率为87 %[4 ] , 副产物主要为水和氧气。该过程原子的有效利用率达76 %。而传统的二步氯醇法生产工艺原子的有效利用率仅为31 % , 需要消耗大量的氯气和石灰, 并且设备腐蚀和环境污染严重。针对TS - 1 分子筛价格较高、与产物分离难度较大, 丙烯环氧化的其他催化剂体系也在不断研究之中, 以过氧化氢为氧化剂的新型氧化催化材料正在研究的有负载锡的β- 沸石[5 ] 、有机氮络合Fe2 系催化剂[6 , 7 ] 和含钨的金属簇相转移催化剂[8 ]等。最近, BASF 和Dow 化学公司合作, 在丙烯的过氧化氢环氧化反应工艺(HPPO) 的开发中取得了重大进展, 已完成各自的详细评估。据称, HPPO工艺由于不联产其他产品, 流程短, 投资低, 占地少, 尤其对较小规模生产装置投资回报率大幅度提高。双方计划近期完成中试放大, 开始建设第一套300 kt/ a 规模生产装置, 预计2007 年初建成投产[9 ] 。此外, Degussa 和Uhde 也拟在南非Sasol 建设60 kt/ a 环氧丙烷装置, 将采用HPPO 工艺。据报道[10 ]其开发了一种专用分子筛催化剂, 副产物生成量可降低到最低限度。丙烯环氧化新工艺虽然使用了价格较高的过氧化氢作氧化剂, 但只要采用适合的催化剂, 可使产物收率大幅提高, 同时由于工艺简化, 该工艺仍具有较好的技术经济性, 加之该技术的环保优势, 有望对环氧丙烷行业产生重要的影响。1.3 其他有机含氧化合物的制备技术以过氧化氢为氧化剂, 烯烃、醇和羰基化合物可高选择性地氧化生产环氧化物、醇和羧酸, 并可避免使用金属催化剂、含氯氧化剂和有机溶剂。文献[11 ]介绍Kazuhiko Sato 等开发了由烯烃氧化生成二醇类化合物的新工艺。采用普通的树脂负载的磺酸催化剂, 用不同的链烯烃和环烯烃与过量的30 %双氧水反应, 可高选择性和高收率地得到反-1 , 2 - 二醇, 带有端基羟基的链烯烃也可一步反应生成三羟基化合物。杜泽学等[12 ]以钛硅分子筛为催化剂, 开发了氯丙烯与过氧化氢环氧化制备环氧氯丙烷的悬浮催化蒸馏新工艺, 反应选择性达98 %以上, 有望取代现有的氯醇法生产工艺。2 取代有毒有害原材料的绿色化工技术光气、氢氰酸等是剧毒物质, 因它们的化学性质极为活泼, 至今仍作为化工原料广泛使用, 但这些化学品在制造和使用中一旦不慎泄漏, 就将造成难以估量的人身伤亡和环境灾难, 因此, 用无毒、无害的原料代替剧毒光气、氢氰酸等绿色化工技术的开发受到重视[13 ] 。取代光气, 生产异氰酸酯、聚碳酸酯新工艺 目前替代光气制造异氰酸酯的工艺有: 由伯胺和二氧化碳或碳酸二甲酯制造异氰酸酯, 由伯胺和一氧化碳进行氧化羰化制异氰酸酯, 由硝基苯和一氧化碳羰基化制异氰酸酯。这些技术有的正在小试, 有的已进入中试阶段, 但是生产成本比原有的光气法高10 %左右, 不经济, 所以还需改进。代替光气生产聚碳酸酯, 已经开发成功以碳酸二甲酯为原料的工艺。首先由碳酸二甲酯与苯酚反应生成碳酸二苯酯, 再和双酚A 进行酯交换、缩聚生成高分子聚碳酸酯, 现正在建厂, 而且生产碳酸二甲酯采用甲醇氧化羰基化法, 取代了传统光气为原料的路线。韩国L G化学公司称独自开发了一种非光气的聚碳酸酯生产新工艺, 由于工艺简化,可减少投资70 % , 装置操作费用和生产成本明显降低。可见, 代替剧毒原料也可找到经济合理的绿色工艺路线。2.2 甲基丙烯酸甲酯生产新工艺继异丁烯氧化法、乙烯氢甲酰化法生产甲基丙烯酸甲酯(MMA) 技术工业化后, 人们仍在积极开发新工艺以取代传统氢氰酸为原料的丙酮氰醇法。异丁烷直接氧化法因资源更丰富、廉价而受到重视。这种方法包括异丁烷氧化制取甲基丙烯醛、甲基丙烯醛再氧化制取MMA 两步反应。由于异丁烷反应活性低于异丁烯, 通常选用具有强氧化性的杂多酸类催化剂。近年来研究发现, P - Mo 系杂多酸中引入V、Cu、Cs 等元素, 可促进甲基丙烯醛的氧化反应, 提高反应收率; 进一步将P - Mo - V- Cu - Cs 五元催化剂和Mo - V 的复合氧化物作为助剂, 添加到“MMA 高选择性催化剂”浆态杂多酸催化剂中, 可使MMA 的收率提高2 倍, 达到10 %以上, 表现出一定的工业应用前景。英国Lucite 国际公司开发成功其专有的α-MMA 技术, 并计划建设第一套100 kt/ a MMA 生产装置, 预计2007 年末建成投产。α- MMA 是两步法工艺。第一步由乙烯与甲醇、一氧化碳进行羰基化反应生成丙酸甲酯。据称, 所用的钯基催化剂活性很高, 选择性达9919 % , 且具有良好的稳定性, 反应温度和压力条件温和, 对装置的腐蚀性小; 第二步中丙酸甲酯与甲醛反应生成MMA 和水, 采用专有的多相催化剂, MMA 的选择性较高[14 ] 。该工艺大大改进了产品的经济性, 是三十年来开发的最重要的MMA 生产工艺。MMA 在中国是一个发展前景良好的有机化工原料, 随着国民经济的持续高速增长, 其需求还将不断增长, 中国应该慎选一条符合国情的绿色路线进行开发, 注意克服其不足之处。3 使用环境友好催化剂的化学反应石油化工生产技术的核心是催化剂, 催化剂的消耗虽不大, 但同样可能对环境产生很大的危害。硫酸、氢氟酸、三氯化铝等液态酸是广泛应用的酸性催化剂, 使用过程易腐蚀设备、危害人身健康和社区安全, 同时还产生废液、废渣污染环境。目前应大力开发环境友好的固体酸催化剂代替液体酸,已有一批工业化成果。在苯与烯烃烷基化过程中采用ZSM - 5 分子筛代替三氯化铝的气相法合成乙苯, 采用USY 或β- 沸石或MCM - 22 沸石代替三氯化铝的液相法合成异丙苯等; 此外, 还有采用固体酸替代氢氟酸的长链烷基苯合成的新工艺。采用上述分子筛固体酸取代三氯化铝、氢氟酸等催化剂, 虽然推出了新一代的烯烃烷基化绿色技术, 但是由于分子筛催化剂的酸强度不如氢氟酸、三氯化铝高, 分布也不够均匀, 而且酸中心数量较少, 于是采用这类固体酸催化剂时反应温度升高, 压力增加, 同时少量的副产物和杂质有所增高, 所以又出现了开发新固体酸催化剂的热点。负载型杂多酸催化剂可望克服上述缺点, 成为新一代的催化剂; 正在研究的还有一些新型催化材料, 如包裹型液体酸、纳米分子筛复合材料、离子液体等。这方面的研究, 中国已有一定基础, 应组织人力, 加速开发, 力争取得领先地位。
大专生应用化工技术专业毕业论文8000字?
题目定好的话我可以帮你写开题。。。在论文工作布置后,每个人都应遵循选题的基本原则,在较短的时间内把选题的方向确定下来。从论文题目的性质来看,基本上可以分为两大类:一类是社会主义现代化建设实践中提出的理论和实际问题;另一类是专业学科本身发展中存在的基本范畴和基本理论问题。
上一篇:本科中期论文答辩ppt
下一篇:论文里面的开题报告是啥