欢迎来到学术参考网
当前位置:发表论文>论文发表

研究生运筹与优化写论文

发布时间:2023-12-05 23:38

研究生运筹与优化写论文

Operation Research原意是操作研究、作业研究、运用研究、作战研究,译作运筹学,是借用了《史记》“运筹策于帷幄之中,决胜于千里之外”一语中“运筹”二字,既显示其军事的起源,也表明它在我国已早有萌芽。

运筹学作为一门现代科学,是在第二次世界大战期间首先在英美两国发展起来的,有的学者把运筹学描述为就组织系统的各种经营作出决策的科学手段。与l在他们的奠基作中给运筹学下的定义是:“运筹学是在实行管理的领域,运用数学方法,对需要进行管理的问题统筹规划,作出决策的一门应用科学。”运筹学的另一位创始人定义运筹学是:“管理系统的人为了获得关于系统运行的最优解而必须使用的一种科学方法。”它使用许多数学工具(包括概率统计、数理分析、线性代数等)和逻辑判断方法,来研究系统中人、财、物的组织管理、筹划调度等问题,以期发挥最大效益。

现代运筹学的起源可以追溯到几十年前,在某些组织的管理中最先试用科学手段的时候。可是,现在普遍认为,运筹学的活动是从二次世界大战初期的军事任务开始的。当时迫切需要把各项稀少的资源以有效的方式分配给各种不同的军事经营及在每一经营内的各项活动,所以美国及随后美国的军事管理当局都号召大批科学家运用科学手段来处理战略与战术问题,实际上这便是要求他们对种种(军事)经营进行研究,这些科学家小组正是最早的运筹小组。

第二次世界大战期间,“OR”成功地解决了许多重要作战问题,显示了科学的巨大物质威力,为“OR”后来的发展铺平了道路。

当战后的工业恢复繁荣时,由于组织内与日俱增的复杂性和专门化所产生的问题,使人们认识到这些问题基本上与战争中所曾面临的问题类似,只是具有不同的现实环境而已,运筹学就这样潜入工商企业和其它部门,在50年代以后得到了广泛的应用。对于系统配置、聚散、竞争的运用机理深入的研究和应用,形成了比较完备的一套理论,如规划论、排队论、存贮论、决策论等等,由于其理论上的成熟,电子计算机的问世,又大大促进了运筹学的发展,世界上不少国家已成立了致力于该领域及相关活动的专门学会,美国于1952年成立了运筹学会,并出版期刊《运筹学》,世界其它国家也先后创办了运筹学会与期刊,1957年成立了国际运筹学协会。

运筹学的特点是:1.运筹学已被广泛应用于工商企业、军事部门、民政事业等研究组织内的统筹协调问题,故其应用不受行业、部门之限制;2.运筹学既对各种经营进行创造性的科学研究,又涉及到组织的实际管理问题,它具有很强的实践性,最终应能向决策者提供建设性意见,并应收到实效;3.它以整体最优为目标,从系统的观点出发,力图以整个系统最佳的方式来解决该系统各部门之间的利害冲突。对所研究的问题求出最优解,寻求最佳的行动方案,所以它也可看成是一门优化技术,提供的是解决各类问题的优化方法。

运筹学的研究方法有:1.从现实生活场合抽出本质的要素来构造数学模型,因而可寻求一个跟决策者的目标有关的解;2.探索求解的结构并导出系统的求解过程;3.从可行方案中寻求系统的最优解法。

运筹学的具体内容包括:规划论(包括线性规划、非线性规划、整数规划和动态规划)、图论、决策论、对策论、排队论、存储论、可靠性理论等。

数学规划即上面所说的规划论,是运筹学的一个重要分支,早在1939年苏联的康托洛维奇(ob )和美国的希奇柯克(ock)等人就在生产组织管理和制定交通运输方案方面首先研究和应用一线性规划方法。1947年旦茨格等人提出了求解线性规划问题的单纯形方法,为线性规划的理论与计算奠定了基础,特别是电子计算机的出现和日益完善,更使规划论得到迅速的发展,可用电子计算机来处理成千上万个约束条件和变量的大规模线性规划问题,从解决技术问题的最优化,到工业、农业、商业、交通运输业以及决策分析部门都可以发挥作用。从范围来看,小到一个班组的计划安排,大至整个部门,以至国民经济计划的最优化方案分析,它都有用武之地,具有适应性强,应用面广,计算技术比较简便的特点。非线性规划的基础性工作则是在1951年由库恩()和达克()等人完成的,到了70年代,数学规划无论是在理论上和方法上,还是在应用的深度和广度上都得到了进一步的发展。

图论是一个古老的但又十分活跃的分支,它是网络技术的基础。图论的创始人是数学家欧拉。1736年他发表了图论方面的第一篇论文,解决了著名的哥尼斯堡七桥难题,相隔一百年后,在1847年基尔霍夫第一次应用图论的原理分析电网,从而把图论引进到工程技术领域。20世纪50年代以来,图论的理论得到了进一步发展,将复杂庞大的工程系统和管理问题用图描述,可以解决很多工程设计和管理决策的最优化问题,例如,完成工程任务的时间最少,距离最短,费用最省等等。图论受到数学、工程技术及经营管理等各方面越来越广泛的重视。

排队论又叫随机服务系统理论。1909年丹麦的电话工程师爱尔朗()排队问题,1930年以后,开始了更为一般情况的研究,取得了一些重要成果。1949年前后,开始了对机器管理、陆空交通等方面的研究,1951年以后,理论工作有了新的进展,逐渐奠定了现代随机服务系统的理论基础。排队论主要研究各种系统的排队队长,排队的等待时间及所提供的服务等各种参数,以便求得更好的服务。它是研究系统随机聚散现象的理论。

可靠性理论是研究系统故障、以提高系统可靠性问题的理论。可靠性理论研究的系统一般分为两类:(1)不可修系统:如导弹等,这种系统的参数是寿命、可靠度等,(2)可修复系统:如一般的机电设备等,这种系统的重要参数是有效度,其值为系统的正常工作时间与正常工作时间加上事故修理时间之比。

决策论研究决策问题。所谓决策就是根据客观可能性,借助一定的理论、方法和工具,科学地选择最优方案的过程。决策问题是由决策者和决策域构成的,而决策域又由决策空间、状态空间和结果函数构成。研究决策理论与方法的科学就是决策科学。决策所要解决的问题是多种多样的,从不同角度有不同的分类方法,按决策者所面临的自然状态的确定与否可分为:确定型决策、风险型决策和不确定型决策;按决策所依据的目标个数可分为:单目标决策与多目标决策;按决策问题的性质可分为:战略决策与策略决策,以及按不同准则划分成的种种决策问题类型。不同类型的决策问题应采用不同的决策方法。决策的基本步骤为:(1)确定问题,提出决策的目标;(2)发现、探索和拟定各种可行方案;(3)从多种可行方案中,选出最满意的方案;(4)决策的执行与反馈,以寻求决策的动态最优。

如果决策者的对方也是人(一个人或一群人)双方都希望取胜,这类具有竞争性的决策称为对策或博弈型决策。构成对策问题的三个根本要素是:局中人、策略与一局对策的得失。目前对策问题一般可分为有限零和两人对策、阵地对策、连续对策、多人对策与微分对策等。

运筹学是软科学中“硬度”较大的一门学科,兼有逻辑的数学和数学的逻辑的性质,是系统工程学和现代管理科学中的一种基础理论和不可缺少的方法、手段和工具。运筹学已被应用到各种管理工程中,在现代化建设中发挥着重要作用。
在中国战国时期,曾经有过一次流传后世的赛马比赛,相信大家都知道,这就是田忌赛马。田忌赛马的故事说明在已有的条件下,经过筹划、安排,选择一个最好的方案,就会取得最好的效果。可见,筹划安排是十分重要的。

现在普遍认为,运筹学是近代应用数学的一个分支,主要是将生产、管理等事件中出现的一些带有普遍性的运筹问题加以提炼,然后利用数学方法进行解决。前者提供模型,后者提供理论和方法。

运筹学的思想在古代就已经产生了。敌我双方交战,要克敌制胜就要在了解双方情况的基础上,做出最优的对付敌人的方法,这就是“运筹帷幄之中,决胜千里之外”的说法。

但是作为一门数学学科,用纯数学的方法来解决最优方法的选择安排,却是晚多了。也可以说,运筹学是在二十世纪四十年代才开始兴起的一门分支。

运筹学主要研究经济活动和军事活动中能用数量来表达的有关策划、管理方面的问题。当然,随着客观实际的发展,运筹学的许多内容不但研究经济和军事活动,有些已经深入到日常生活当中去了。运筹学可以根据问题的要求,通过数学上的分析、运算,得出各种各样的结果,最后提出综合性的合理安排,已达到最好的效果。

运筹学作为一门用来解决实际问题的学科,在处理千差万别的各种问题时,一般有以下几个步骤:确定目标、制定方案、建立模型、制定解法。

虽然不大可能存在能处理及其广泛对象的运筹学,但是在运筹学的发展过程中还是形成了某些抽象模型,并能应用解决较广泛的实际问题。

随着科学技术和生产的发展,运筹学已渗入很多领域里,发挥了越来越重要的作用。运筹学本身也在不断发展,现在已经是一个包括好几个分支的数学部门了。比如:数学规划(又包含线性规划;非线性规划;整数规划;组合规划等)、图论、网络流、决策分析、排队论、可靠性数学理论、库存论、对策论、搜索论、模拟等等。

各分支简介

数学规划的研究对象是计划管理工作中有关安排和估值的问题,解决的主要问题是在给定条件下,按某一衡量指标来寻找安排的最优方案。它可以表示成求函数在满足约束条件下的极大极小值问题。

数学规划和古典的求极值的问题有本质上的不同,古典方法只能处理具有简单表达式,和简单约束条件的情况。而现代的数学规划中的问题目标函数和约束条件都很复杂,而且要求给出某种精确度的数字解答,因此算法的研究特别受到重视。

这里最简单的一种问题就是线性规划。如果约束条件和目标函数都是呈线性关系的就叫线性规划。要解决线性规划问题,从理论上讲都要解线性方程组,因此解线性方程组的方法,以及关于行列式、矩阵的知识,就是线性规划中非常必要的工具。

线性规划及其解法—单纯形法的出现,对运筹学的发展起了重大的推动作用。许多实际问题都可以化成线性规划来解决,而单纯形法有是一个行之有效的算法,加上计算机的出现,使一些大型复杂的实际问题的解决成为现实。

非线性规划是线性规划的进一步发展和继续。许多实际问题如设计问题、经济平衡问题都属于非线性规划的范畴。非线性规划扩大了数学规划的应用范围,同时也给数学工作者提出了许多基本理论问题,使数学中的如凸分析、数值分析等也得到了发展。还有一种规划问题和时间有关,叫做“动态规划”。近年来在工程控制、技术物理和通讯中的最佳控制问题中,已经成为经常使用的重要工具。

排队论是运筹学的又一个分支,它有叫做随机服务系统理论。它的研究目的是要回答如何改进服务机构或组织被服务的对象,使得某种指标达到最优的问题。比如一个港口应该有多少个码头,一个工厂应该有多少维修人员等。

排队论最初是在二十世纪初由丹麦工程师艾尔郎关于电话交换机的效率研究开始的,在第二次世界大战中为了对飞机场跑道的容纳量进行估算,它得到了进一步的发展,其相应的学科更新论、可靠性理论等也都发展起来。

因为排队现象是一个随机现象,因此在研究排队现象的时候,主要采用的是研究随机现象的概率论作为主要工具。此外,还有微分和微分方程。排队论把它所要研究的对象形象的描述为顾客来到服务台前要求接待。如果服务台以被其它顾客占用,那么就要排队。另一方面,服务台也时而空闲、时而忙碌。就需要通过数学方法求得顾客的等待时间、排队长度等的概率分布。

排队论在日常生活中的应用是相当广泛的,比如水库水量的调节、生产流水线的安排,铁路分成场的调度、电网的设计等等。

对策论也叫博弈论,前面讲的田忌赛马就是典型的博弈论问题。作为运筹学的一个分支,博弈论的发展也只有几十年的历史。系统地创建这门学科的数学家,现在一般公认为是美籍匈牙利数学家、计算机之父——冯·诺依曼。

最初用数学方法研究博弈论是在国际象棋中开始的——如何确定取胜的着法。由于是研究双方冲突、制胜对策的问题,所以这门学科在军事方面有着十分重要的应用。近年来,数学家还对水雷和舰艇、歼击机和轰炸机之间的作战、追踪等问题进行了研究,提出了追逃双方都能自主决策的数学理论。近年来,随着人工智能研究的进一步发展,对博弈论提出了更多新的要求。

搜索论是由于第二次世界大战中战争的需要而出现的运筹学分支。主要研究在资源和探测手段受到限制的情况下,如何设计寻找某种目标的最优方案,并加以实施的理论和方法。在第二次世界大战中,同盟国的空军和海军在研究如何针对轴心国的潜艇活动、舰队运输和兵力部署等进行甄别的过程中产生的。搜索论在实际应用中也取得了不少成效,例如二十世纪六十年代,美国寻找在大西洋失踪的核潜艇“打谷者号”和“蝎子号”,以及在地中海寻找丢失的氢弹,都是依据搜索论获得成功的。

运筹学有广阔的应用领域,它已渗透到诸如服务、库存、搜索、人口、对抗、控制、时间表、资源分配、厂址定位、能源、设计、生产、可靠性、等各个方面。

数学建模中评价类论文需要注意什么

数模论文的写作在比赛中可能是你论文质量好坏,得奖与否的最重要的因素。据初步的调查,很多同学在准备比赛时,把自己的主要精力放在阅读往年优秀论文,精通某种软件和算法上面。不可否认,这会使你的建模水平得到提高,但在比赛时,你的想法再好,如果文字表达不清楚,很有可能使你的论文前功尽弃,因此学会如何写数模论文就很有必要了。关于怎么样写论文已经有了很多的介绍文章,这些都足以说明论文写作的重要性。

一、充分重视论文摘要的写作
摘要在整个数模论文中占有及其重要的地位,它是评委对你所写论文的第一印象。在全国大学生数学建模竞赛中,组委会对论文摘要提出了专门的要求,再三明文提醒参赛者要注重摘要的写作。在论文的评阅中,摘要是你的论文是否取得好名次的决定性因素,评委们通过你的摘要就决定是否继续阅读你的论文。换句话说,就算你的论文其他方面写得再好,摘要不行,你的论文也不会得到重视或者根本上就没有评委来阅读你的论文。

在摘要中一定要突出6个方面:问题,方法,模型,算法,结论,特色。简而言之,摘要应该体现你用什么方法,解决了什么问题,得出了什么结论。避免有主观评论,一定要突出重点,让人一看就知道这篇论文的目的是什么,做了什么工作,用的什么方法,得到了什么结果,有什么创新和特色。只有这样的摘要才是成功的。

具体写摘要的时间一般安排在论文基本完成以后,由一个队员具体负责,在写出初稿后由其他队员交替阅读提出修改,直到大家满意为止。

好的摘要都包含了两个共同的特点:简单与清晰。篇幅在一页之内。

范例一:公交车调度方案的优化模型

摘 要

本文建立了公交车调度方案的优化模型,使公交公司在满足一定的社会效益和获得最大经济效益的前提下,给出了理想发车时刻表和最少车辆数。并提供了关于采集运营数据的较好建议。

在模型Ⅰ中,对问题1建立了求最大客容量、车次数、发车时间间隔等模型,运用决策方法给出了各时段最大客容量数,再与车辆最大载客量比较,得出载完该时组乘客的最少车次数462次,从便于操作和发车密度考虑,给出了整分发车时刻表和需要的最少车辆数61辆。模型Ⅱ建立模糊分析模型,结合层次分析求得模型Ⅰ带给公司和乘客双方日满意度为(0.941,0.811)根据双方满意度范围和程度,找出同时达到双方最优日满意度(0.8807,0.8807),且此时结果为474次50辆;从日共需车辆最少考虑,结果为484次45辆。

对问题2,交待了综合效益目标模型及线性规划法求解。

对问题3,采集方法是遵照前门进中门出的规律,运用两个自动记录机对上下车乘客数记录和自动报站机(加报时间信息)作录音结合,给出准确的各项数据,返站后结合日期储存到公司总调度室。

关键词:公交调度 模糊优化法 层次分析 满意度

范例二:彩票发行方案的最优决策

摘 要

目前,彩票在我国得到了迅速健康的发展,并且为我国的福利公益事业的发展做出了很大 贡献。本文针对目前流行的各种不同彩票发行方案,综合分析了各种奖项出现的可能性、奖项和奖金额的设置以及对彩民的吸引力等因素对各方案的影响,建立了三个模型。

模型I:利用超几何分布原理,建立了头奖期望模型。依照此模型,得出传统型彩票中方案 、乐透型彩票中方案 (即 )设计较为合理;总体而言,乐透型彩票的方案 头奖期望最大,方案设计最为合理。

模型II:综合考虑影响方案合理性的各种因素,建立了高项奖中奖概率、总中奖概率、奖项的设置以及奖金分配的多目标决策模型,求解得到:①方案19的加权目标函数值最大,在所有方案中它是最合理的一个方案;②“传统型”彩票方案1~4中,方案4较为合理;③“传统型”彩票方案(1~4)的加权目标函数值总体上小于“乐透型”方案(5~29),从普遍意义上讲,“乐透型”方案相对优于“传统型”; ④对于 (从 中选 )型的方案, 相同时, 为35、30、32、33、34时它们的合理性依次递减。

模型III:考虑到彩票市场供给与需求的关系,并结合彩票管理部门与彩民双方的满意度,建立了多目标最优决策模型。通过彩票市场供给、需求随销售的走势,找到了均衡点,同时利用计算机编程,搜索出了更优的彩票发行方案。

本文还从 的变化对模型的灵敏性作了准确分析,以及从单式投注向复式投注、适当提高总奖金额等方面为设置彩票发行方案作了进一步讨论。

最后据此模型,向彩票管理部门提出了更为积极、实用的彩票发行建议;并从充分认识彩票、入市动机及心态、策略和技巧等三个方面对彩民摸彩、投彩提出了科学的参考意见。

关键词: 机率 期望 多目标决策 超几何分布 满意度

范例三:奥运会临时MS超市网点设计的数学模型

摘 要

本文对调查数据进行了统计分析,在此基础上求出各商区人流量百分比和分布规律,然后进行MS网点的设计,建立了三个模型,并进行了仿真检验。

对问题一,分析得到不同年龄段观众在出行、就餐、消费等方面存在较大差别,因此依照年龄段按照性别的不同,分别对出行、就餐、消费等三个方面总结出观众概率分布的8条规律。

对问题二,利用BP神经网络原理,按照年龄段-性别-商区-进出口将网络分为三级,从就餐习惯和出入场馆两个方面进行链条分析,建立了各场馆最短路径下的人流量模型,编程求解得到20个商区的人流量分布(%):A1到A10商区分别为11.887、7.621、8.540、10.378、18.963、7.621、8.540、8.036、10.378;B1到B6商区分别为11.686、 13.932、 18.760、 11.686、 13.932、 30.004; C1到C4商区分别为18.75、 20.9843、 18.75、 41.5157。在人流量分布求出后,总结出对称性定理,即人流量以场馆进出口连线为轴斜对称,并给出了详细证明。

在问题三中,对观众购买欲望的相关因素进行了细致分析,建立了购买欲望与年龄、消费额的数学表达式,得到欲望矩阵 ,并对购买能力进行了模糊计算。然后,由两个基本限制条件:满足奥运会期间的购物需求和分布基本均衡,建立了数学表达式,建立了以赢利为目标函数的非线性多目标决策模型:

用Lingo编程求解,得到了一种可参考的MS网点设计方案:A1到A10商区建立大MS个数分别为3、1、0、0、1、3、1、0、0、1,小MS个数分别为0,1,2,2、1、1、1、2、2、1;B1到B6商区建立大MS个数分别为1、2、3、1、2、3,小MS个数分别为2、1、1、2、1、1;C1到C4商区建立大MS个数分别为2、4、2、1,小MS个数分别为2、0、2、1。

考虑到奥运赛程的安排,实际人流量、消费额、赢利等将随时间而发生变化,为进一步优化网点设计方案,根据系统动力学原理,基于Venple5.3技术用计算机对人流量与收益模型进行了系统仿真,并通过调式,对模型进行了检验和评估,从而验证了模型的合理性、科学性和实用性。
最后,对北京2008年奥运会从经济收入、旅游和硬件建设等方面提出了几点建议。

关键词:概率 人流量 对称性 欲望矩阵 多目标决策 系统动力学 系统仿真

范例四:长江水质的综合评价与预测控制

摘 要
本文根据调查数据的统计分析,对近两年的长江水质做出了全方位的综合评价,找到了高锰酸盐和氨氮污染源所在主要地区,并对未来10年水质污染进行了预测,提出了控制方案,给出了一系列较为科学的防污建议。

首先对近两年来长江流域17个主要监测断面的水质抽样,按照时间-空间的先后交互顺序进行统计,建立概率统计评判模型,结果发现:2003-2005年,长江85%的断面满足Ⅰ~Ⅲ类水质要求,12%的断面属Ⅳ、Ⅴ类水质,劣Ⅴ类水质占3%。两年来,长江水质局部变化较大,整体较为平稳,但优质水正在下降,超标水质呈上升趋势。为了寻找污染源,我们以长江干流7个断面作为基本观察点,根据水流量、水流速和降解系数,确立了污染源反馈指标:

经计算发现:江苏南京、湖南岳阳高锰酸盐污染最为严重,湖南岳阳同时又是氨氮污染源的主要地区,较为次之的是安徽安庆和江苏南京,但同比之下相差较大。

其次,对近10年的主要统计数据,按照GM(1,1)灰色原理,建立灰色预测模型,归一化处理后,通过DPS数学统计软件的计算,得到了水质类别的预测值和趋势函数,分析认为:长江 I、II、Ⅲ类水质总量呈现下降趋势,其中 I、Ⅲ类水质急剧下降,劣Ⅴ类水质上升幅度较大,到2014年超标水质总量百分比将达到45.88%,长江水质全面恶化,水生态环境严重失去平衡。为了有效控制污染恶化趋势,防止超标水质的上升,运用二次多项式逐步回归分析,得到废水排放总量关于各类水质百分比的函数,经编程运算,我们提出了长江污水处理方案。未来10年需要处理的污水量依次是:0,0,2.66,5.14,5.76,8.21,10.86,13.71,16.77,20.07(单位:10亿吨)。

最后,基于对长江水质状况的综合评价和未来污染趋势的预测,根据“保护长江万里行”考察团的实践调查,我们深刻意识到:长江流域水生态环境破坏日益严重,前景不容乐观。为防止长江“癌变”,我们提出了几种水环保理念:做到教育先行,努力唤起民众环境保护意识;坚持依法治水,为保护长江立法;实行科学规划,走可持续发展之路;提倡人文环保,构建和谐的生态系统和人居环境。

关键词 监测断面;概率统计评判;污染源反馈;灰色预测;逐步回归;人文环保;

二、论文主体要鲜明、结构要完整
按照数模论文的特点,其论文主体部分就包括以下内容:

(1)问题提出——明确问题

这一部分没有过多的说明,一般是直接 copy 赛题的原文就行了,但我认为在时间充裕情况下可以适当归纳总结;因此可以写点这个问题的一些背景知识。

明确问题即建模的准备阶段,要建立现实问题的数学模型,第一步是要对解决的问题有一个明确清晰的提法,通常我们遇到的某个实际问题,在开始阶段是比较模糊的,又带实际背景,因此在建模前必须对问题进行全面深入细致的了解和调查,查阅有关的文献,同时要着手收集有关的数据,收集数据时事先应考好数据的整理形式,例如利用表格或图形等。在这期间还应仔细分析已有的数据和条件,使问题进一步明确化。即从数据中得到什么信息?数据来源是否可靠?所给的条件有什么意义?那些条件是本质?那些条件是变动的等。对数据和条件的分析会进一步增强我们对问题的了解,使我们要更好地抓住问题的本质及特征,为下一步建模打下好良好的基础。

(2)模型假设——合理的假设

作为题目的原型都是复杂的,具体的,是质和量、现象和本质、偶然和必然的统一体。这样的原型如果不抽象和简化,人们对其认识是困难的,也是很难把握它的本质属性,而建模假设就是根据建模的目的对模型进行抽象,简化。把那些反映问题本质属性的形态,量及其关系抽象出来,简化掉那些非本质的因素,使之摆脱原型的具体复杂形态,形成对建模有用的信息资源和前提条件。

但如何对问题提出合理的假设是一个比较困难的问题,这是因为作得过于简单,则使模型远离现实,无法用来解决现实问题,假设做得过于详细,试图把各个方面的因素都想进去,模型就会十分复杂,甚至难以建立,也对我们计算带来复杂化,一般模型假设遵从以下原则:

①目的性原则,从原型中抽象出与建模目的有关的因素,简化掉无关的因素或关系不大的因素。
②简明性原则,所给的假设条件要简单,精确,有利于构造模型。
③真实性原则,假设条款要符合情理,简化带来的误差应满足实际问题所允许的范围内。
④全面性原则,在对事物原型本身作出的假设的同时,还要给出原型所处的环境条件。
最简单的作法:假设的条件一般可以从题目中挖掘。

(1)根据题目中条件作出假设
(2)根据题目中要求作出假设

需要值得注意的是:
①对我们所解决问题本身没有影响(或影响比较小)但可以使模型得到简化的因素应该在假设中体现。
②不能为了简化问题而大量假设(使求解问题本身与原题意不符),因此应注意假设的量与度。

(3).符号说明——不可缺少

在你的论文中不可避免的会出现大量的数学符号,因此在这部分里应把这些符号做一个简要的说明,可以从符号,类型(变量,常量),单位,含义几个方面来说明(如下表):

符号
类型
单位
含义

需要注意的是单位量纲要统一,含义解释要准确,清楚。

(4).问题分析——思路清晰、图文并茂

从题目到模型是一种从具体到抽象的思维过程,本部分即是这一过程的体现。这部分应是论文主体的一个亮点,建议在文字说明的同时用图形或图表列出思维过程,这会使你的思维显得很清晰,让人觉得一目了然。另外,这部分应对题目做整体分析,充分利用题目中的信息和条件,确定用什么方法来建立什么模型。经验告诉我们可以从题目中得到问题的一些初步的判定:比如说可以得到在极限情况下的最大产量,花费的最少时间等,使我们最后得到的方案不能超过(或低于)我们这里分析的量。在这部分应能体现我们解决原问题的雏形。总之,问题分析在整个论文中的作用在于承上启下,也很能反应出参赛者的综合水平。

(5).模型建立——数学语言

数学模型就是:数学公式、图表、方案等。
模型的建立是将原问题抽象成用数学语言的表达式,其建立方式会由于对问题的理解和着眼点不同而不同。近年来的数学建模竞赛出题主要有两个方向:一是概率统计问题;一是运筹优化问题。因此掌握好以上两方面的知识对于建立模型来说是十分重要的。
另外,我还觉得应注意对每个模型式子的解释一定要清楚到位,其中的数学符号一定要与前面的说明保持一致。

其基本方法为:

在建模的假设的基础上,进一步分析建模假设的条款,首先区分那些是常量,哪些是变量,哪些已知、未知,然后查出各种量所处的位置、作用和它们之间的关系 ,选择恰当的数学工具和构造模型的方法对其进行表征,构造出刻划实际问题的数学模型。

这里要注意两点:其一,构造一具体问题的模型是要尽可能地简单的模型,然后把它与实际问题进行比较,再把其次要的因素加进去,逐渐逼近现实来修改模型,使之趋于完善,这样应形成了由模型一,到模型二,再模型三,……,这样逐步逼迫现实的数学模型。其二,要善于借鉴已有的数学模型,许多的实际问题,尽管现象和背景都不同却有相同的模型。例如,力学中描述的力,质量和加速度之间的关系的的牛顿第二定律F= M a ,经济学中描述单价、销售金额和销售量之间的关系的公式C= p q等,数学模型都是y= k x ,要学会观察和分析,看到问题的本质,抓住本质特征,对我们已有的模型进行修正。

(6).模型求解——软件帮忙

不同的模型要用到不同数学工具求解,如可以采用解方程,画图形,证明定理,逻辑运算,数值运算等传统的方法和近代的数学方法,建模发展到现代,多数场合的模型一般多用软件编程求解。三大软件(Matlab,Maple,Mathematic)至少应熟悉一种,另外应学会一些专用软件。比如说解概率统计问题的DPS,SAS,SPSS;解运筹优化问题的 Lingo,Lindo 等。熟练利用这些数学软件会为我们求解带来快捷和方便。其次尽量用不同方法求解,这既能反应出你的思维比较开阔,也能间接地验证你所求解结果的正确性。另外应给出主要算法的一些简要步骤,处理或简化问题的方式,并适当应用表格或图像说明。
最后需要提醒大家的是在必要时可以给出数学上的证明,这会使你的论文增色不少。

(7).模型(结果分析)——检验与修正
建立数学模型的目的在于解决实际问题。因此必须把模型解得的结果返回到实际问题,如果模型的结果与实际问题状况相符合,表明模型经检验是符合实际问题的,相反则不行,它就不能直接应用于实际问题。这时数学模型建立如果没有问题,就需要考虑建模时关于所假设的是否合理,检验是否忽略了不应该忽略的因素或还保留了不应该保留的因素。对假设给出必要的修正,重复前面的建模过程,直到使模型能够反映所给的实际问题。

通常的作法是:
由于在模型假设中,忽略了一些对问题影响的次要因素,这或多或少的使问题得到了简化,但必然会产生一些误差;另外解决问题的方法是很多的,在论文中可能只用了其中的一两种方法,思维可能显得比较局限;而模型本身也会有它的优势和缺陷。因此,我们在这部分应该做的工作主要有下面三点:
A.是否能用其他方式或方法解决。
B.模型的优缺点分析。
C.模型的误差分析或灵敏度分析。

做好上面的工作,既是对原问题的补充说明,更表现一种思维的严谨和逻辑的严密,使你的论文一气呵成,显得很完备。

(8).模型的评价与推广
什么样的数学模型是好的呢?一般来说一个好的模型应该具备以下五点:

(1)对所给的问题有较全面的考虑。在一个实验问题中往往有许多的因素同时对所研究的对象发生作用,进行数学描述时,应该全面地对这些因素加以考虑。这项工作可分为三步进行:
①列举各种因素;
②选取主要因素计入模型;
③考虑其他因素的影响,对模型进行修正。

(2)在已有的模型上进行创造性的改进。数学模型是现实对象的抽象化,理想化的产物。它不为对象所属领域所独有,可以转移到另外的领域。在生态,经济,社会等领域内建模就常常借用物理领域中的模型,能否对已有的模型作为创造性的改造,是考虑一个数学模型的优劣的重要标志

(3)善于抓住问题的本质,简化变量之间的关系。数学模型应当是实际问题的本质刻画,模型过于复杂,则无法求解或求解困难,反之则不能客观的反映客观实际。

(4)注重结果分析,考虑其在实际中的合理性。数学模型是一个从实际到数学,再从数学到实际问题的过程。由于现在的模型仅仅依赖题中的数据,如果从模型中得到的结果与实际吻合,模型是成功的,反之则失败,要求我们进一步修改。

(5)具有较好的稳定性。数学模型是依赖已有的数据和其他的信息建立起来的,他的价值在于能够从已知的信息预测到未知的东西。因此,一个好的数学模型的结果对原始的数据有较好的依赖性,即原始的数据和参数有微小的变化不会引起结果很大的变动,这是模型适应性和有效性的保证。
由于论文本身的局限性,在这里可以对一些问题做更深入的探讨,这是文章又一亮点,实力比较强的队伍可以在这一块充分发挥。这部分对于整个论文的作用在于画龙点睛。另外,我们对问题的探讨与延拓方式是多种多样的:可以把假设的条件适当放宽了来考虑问题;可以对你的算法做出改进等等,但我认为在这里做做定性的分析就够了,最后主要对问题的横向和纵向两方面进行发散。因为评委的评阅工作至此已经基本结束了。

(9).参考文献

这里注意一下格式问题,参赛要求有明确规定:
A.书籍的表述方式为:[编号] 作者,书名,出版地:出版社,出版年。
B.参考文献中期刊杂志论文的表述方式为:[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。
C.参考文献中网上资源的表述方式为:[编号] 作者,资源标题,网址,访问时间。
至于附录,附上相关程序及运行结果,数学上的证明即可,
最后注意一下论文的整体感,特别是文字表述是否准确严密。

三、用数学通用软件编写程序
在编写计算机程序时,基本原则是使用通用的、自己使用最熟悉的软件进行编写,这样可以尽快出结果,即使出错也能很快查出并进行改正。数学通用软件是建立在一定的理论基础和算法基础上的,其计算结果具有一定的可信度,因此,尽量使用matlab、mathematicas、lindo、lingo等数学软件编写的程序,能增加模型结果的可信度。另外,也可利用一些二次开发程序。如TSP,EXCEL,DPS等。

四、要善于合理使用图表
在论文写作中一定要注意能用图表的地方尽量用图表来表示,用图表比用文字阐述要来得清楚直接,一张图表往往能代替一大段干巴巴文字,并且图文并茂也可以为论文增加更多色彩。要知道评委们大都是老教授老专家,为了教授专家们的眼睛,减轻他们受文字的折磨,多用图表绝对是不错的选择。须注意的是图表的引用要规范,在交叉引用的时候一定要小心,不要错位,为此应给每一张图、每一个表都编上号,而且整篇文章的图、表的号码应该连续。图和表在论文中应尽量交替出现,同时排版时也应该让它们处于页面的中部,尽量避免出现在最顶端,这样可以增加文章的视觉美。

五、充分发挥团队的作用
在比赛中,队员之间的配合很重要,每个人对自己这个组的特长,要有一个比较清醒而统一的认识,擅长做哪种类型的题,不擅长做哪种。这样,在选题的时候才不会耽误太多时间。

分工的原则:
•建模:推导数学模型,数学能力强
•编程:计算机能力强
•论文写作:写作能力强

其次,参赛队中应有核心队员,他的作用就相当于计算机中的CPU,核心队员发挥好了,就能带动一个队正常有效开展工作。无论是选题、讨论、写作、协调甚至情绪等,核心队员都应该充分发挥好,起领导作用,才能使整个队伍充满信心地、高效地完成比赛,否则可能导致队伍的情绪低落,没有信心,甚至前功尽弃。
六、合理控制写作进度
做任何事情,合理的时间安排非常重要,建模也是一样,事先要做好一个规划,论文一般分十个大的板块:摘要,问题提出,模型假设,问题分析,模型假设,模型建立,模型求解,结果分析,模型的评价与推广,参考文献,附录。要求我们的队员每天要做完哪几个板块的工作一般先要确定好,这样做才会使工作临阵不乱,保证在规定时间内完成论文写作,以避免由于时间已经用完而任务没有完成的被动局面,严重的最后无法完成论文。

通常的竞赛时间安排:
第一天:上午:确定题目,并查阅文献
下午:开始分析,建立初步模型
晚上:编程,得到初步计算结果 12:00 PM 休息
•第二天:上午:得到第一个模型的合理结果
下午:开始写论文,并考虑对第一个模型的改进

晚上:得到第二个模型的初步结果 12:00 PM 休息

•第三天:上午:得到第二个模型的合理结果

下午:考虑对前二个模型的进一步优化,得到第三个数学模型,

或对前二个模型的正确性进行验证

晚上:得到最后结果,完成整篇论文

参考的论文:

一篇2000字的论文,内容为数学与生活,尽量快点,谢了

  数学源于生活,生活中又充满着数学。学生的数学知识与才能,不仅来自于课堂,还来自于现实生活实际。在课堂教学中,把数学和学生的生活实际衔接起来,让数学贴近生活,使学生感到生活中处处有数学,学起来自然、亲切、真实。实现“人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展”。 如何把握数学与生活的衔接,提高教学效果,我在教学中注意从以下几方面入手。

  一、 数学语言生活化,理解数学

  前苏联数学教育家斯托利亚尔曾说过:数学教学也就是数学语言的教学。在课堂教学的师生交往中,主要是通过言语交流。同一堂课,不同的教师教出来的学生接受程度不一样,主要还是取决于教师的语言素质如何,尤其是在我们数学课堂教学中,要将抽象化的数学使学生形象地接受、理解。一个没有高素质语言艺术的教师是不能胜任的。看似枯燥无味的数学,实则里面蕴藏着生动有趣的东西。鉴于此,教师的数学语言生活化是学生引导理解数学、学习数学的重要手段。教师要结合儿童的认知特点、兴趣爱好、心理特征等个性心理倾向,在不影响知识的前提下,对数学语言进行加工、装饰,使其通俗易懂、富有情趣。

  如认识“ <”、“>”,教师可引导学生学习顺口溜:大于号、小于号,两个兄弟一起到,尖角在前是小于,开口在前是大于,两个数字中间站,谁大对谁开口笑。区别这两个符号对学生来说有一定的难度,这个富有童趣的顺口溜可以帮助学生有效的区分。

  又如把教学长度单位改成“长长短短”;把教学元、角、分改成“小小售货员”,把比大小说成“排排队”等等,学生对这些生活味十足的课题知识感到非常好奇,感到学习数学很有趣。

  二、数学问题生活化,感受数学

  新的课程标准更多地强调学生用数学的眼光从生活中捕捉数学问题,探索数学规律,主动地运用数学知识分析生活现象,自主地解决生活中的实际问题。在教学中我们要善于从学生的生活中抽象数学问题,从学生的已有生活经验出发,设计学生感兴趣的生活素材以丰富多彩的形式展现给学生,使学生感受到数学与生活的联系——数学无处不在,生活处处有数学。因此,通过学生所了解、熟悉的社会实际问题(如环境问题、治理垃圾问题、旅游问题等等),为学生创设生动活泼的探究知识的情境,从而充分调动学生学习数学知识的积极性,激发学生的探索欲望。

  比如:生活中每时每刻都要用到估算,要求学生估算一下每天上学到校需多少时间,以免迟到;或估算一下外出旅游要带多少钱,才够回来等等。在教学中引导学生寻找生活中的数学问题,既可积累数学知识,让学生通过如此切身的问题感受到学数学的价值所在,更是培养学生探索意识和应用意识的最佳途径。

  三、数学情境生活化,体验数学

  教育心理学的研究表明:学生在没有精神压力,没有心理负担,心情舒畅,情绪饱满的情境下,大脑皮层容易形成兴奋中心,思维最活跃,实践能力最强。在日常的教学中,应该提供这样的思维环境,创设与学生生活环境、知识背景密切相关的、又是学生感兴趣的学习情境,使学生感觉到在课堂上学习就像在日常生活中遇到了数学问题一样,需要大家一起来实践解决,通过自己的动手操作,集体的共同研究,最终得出学习结论。

  如在空间与图形的教学中,要充分利用学生生活中的事物,引导学生探索图形的特征,丰富空间与图形的经验,建立初步的空间观念。教学中可以组织学生分小组到操场上选定一个建筑物,让学生站在不同角度看这个建筑物,体会从不同的角度看同一个物体时,所看到的形状的变化,并用简单的图形画下来。也可让学生在方格纸画出示意图:假设图书馆在学校的正东方向200米处,小红家在学校正北方向500米处,医院在学校的正南方向1000米处,车站在学校的正西方向800米处。学生可以根据这些信息,在方格纸上确定适当的单位距离,标出相对位置后,教师再及时组织引导学生进行交流,逐步发展学生的空间观念。

  又如教学“元角分的认识”,组织学生开展一次“我是一位出色的售货员”活动,让他们在逼真的买卖中掌握、消化和应用知识。再如,相遇问题应用题教学,教师采用学生登台表演,情景再现的方法,把抽象的相关的各种数学术语让学生迅速地理解,既活跃了课堂气氛,又高效率地完成了教学任务。

  四、数学作业生活化,运用数学

  数学来源于生活而最终服务于生活。尤其是小学数学知识 ,在生活中都能找到其原型。把所学的知识应用到生活中,是学习数学的最终目的。由于课堂时间短暂,所以作业成了课堂教学的有益延伸,成了创新的广阔天地。学生适当运用课堂内容的自然延伸,能从广阔的大千世界中学习知识。教师在教学中应努力激发学生运用知识解决问题的欲望,引导学生自觉地应用知识解决生活中相关的问题。

  如学习了长度单位,可以测自己和父母的身高,从家到学校的路程;认识了人民币可以用自己零用钱买所需要的东西;学习了统计知识和百分比应用题,可以去统计本校学生人数以及男女生比例;会计算图形面积可以算一算自己家里的面积,所用瓷砖的块数等。

  再如布置学生“观察你家中的物品,找出几道乘法算式”;“你家一天的生活费用是多少,记录下来,制成表格,再进行计算”,这样把抽象的知识具体化,有助于学生理解,同时能用所学的知识解释生活中的现象,也培养学生收集处理信息的能力、观察能力、实践能力。这样,学生在轻松愉快地交流中,学得积极、主动,思维随之展开,兴趣随之激起。

  将数学教学与生活相衔接,让学生从生活中寻找数学素材,感受生活中处处有数学,学习数学如身临其境,就会产生强烈的亲近感和认同感,有利于形成似曾相识的接纳心理。教学实践使我体会到:数学即生活,只有将学生引到生活中去,切实地感受数学在生活的原型,才能让学生真正的理解数学,使学生感受到我们生活的世界是一个充满数学的世界,从而更加热爱生活,热爱数学

  生活中的数学

  在现实生活中,人们的生活越来越趋向于经济化,合理化.但怎样才能达到这样的目的呢?

  一天,我就遇到了这样一道实际生活中的问题:

  某报纸上报道了两则广告,甲商厦实行有奖销售:特等奖10000元1名,一等奖1000元2名,二等奖100元10名,三等奖5元200名,乙商厦则实行九五折优惠销售。请你想一想;哪一种销售方式更吸引人?哪一家商厦提供给销费者的实惠大?

  面对问题我们并不能一目了然。我做了一个假设,假如有16人,其中8人愿意去甲家,6人喜欢去乙家,还有两人则认为去两家都可以。调查结果表明:甲商厦的销售方式更吸引人,但事实是否如此呢?

  在实际问题中,甲商厦每组设奖销售的营业额和参加抽奖的人数都没有限制。所以我们认为这个问题应该有几种答案。

  一、苦甲商厦确定每组设奖,当参加人数较少时,少于213(1十2+10+200=213人)人,人们会认为获奖机率较大,则甲商厦的销售方式更吸引顾客,

  二、若甲商厦的每组营业额较多时,它给顾客的优惠幅度就相应的小。因为甲商厦提供的优惠金额是固定的,共14000元(10000+2000+1000+1000= 14000)。假设两商厦提供的优惠都是14000元,则可求乙商厦的营业额为280000元(14000÷5%=280000)。

  所以由此可得:

  (l)当两商厦的营业额都为280000元时,两家商厦所提供的优惠同样多.

  (2)当两商厦的营业额都不足280000元时,乙商厦的优惠则小于14000元,所以这时甲商厦提供的优惠仍是14000元,优惠较大。

  (3)当两家的营业额都超过280000元时,乙商厦的优惠则大于14000元,而甲商厦的优惠仍保持14000元时,乙商厦所提供的实惠大。

  像这样的问题,我们在日常生活中随处可见。例如。有两家液化气站,已知每瓶液化气的质和量相同,开始定的价也相同.为了争取更多的用户,两站分别推出优惠政策.甲站的办法是实行七五折错售,乙站的办法是对客户自第二次换气以后以7折销售。两站的优惠期限都是一年.你作为用户,应该选哪家好?

  这个问题与前面的问题有很大相同之处。只要通过你所需要的罐数来分析讨论,这样,问题便可迎刃而解了。

  随着市场经济的逐步完善,人们日常生活中的经济活动越来越丰富多彩.买与卖,存款与保险,股票与债券,……都已进入我们的生活.同时与这一系列经济活动相关的数学,利比和比例,利息与利率,统计与概率。运筹与优化,以及系统分析和决策,都将成为数学课程中的“座上客”。

  作为跨世纪的小学生,我们不仅要学会数学知识,而且要会应用数学知识去分析、解决生活中遇到的问题。这样才能更好地适应社会的发展和需要。

  再给你一些地址:
  
  自己拼接吧

浅谈学习运筹与优化软件的心得

科普推广运筹学一直以来是【运筹OR帷幄】平台的初衷。本次我们邀请到了平台优化板块的责编团队的成员,结合各自独特的业界工作体会,分享他们眼中在业界发光发热的运筹学。

一、元器件行业中的运筹学

本人在一家做元器件服务的公司实习,军用元器件使用的时候有两个典型场景:替代和统型。

替代是设计师针对进口元器件找到可替代的国产型号;统型是在一个产品的BOM内确定某几个不同元器件是否可以统一使用一种,以此减少元器件品种数。

目前行业内开始从依赖专家经验(比如知道某个国产元器件就是对标某个进口元器件做的),转向从元器件性能参数的相似度出发进行判断,所以涉及到相似度和聚类方法的应用。

相比方法本身,解决问题的更大阻碍是元器件性能参数数据的复杂性和不规范性。例如不同类别的元器件性能参数不同,即使在同一类别下,不同生厂商给出的性能参数形式也不同,对此进行规范需要有元器件专业知识,所以实际中,数据清洗往往耗费最多人力,也是影响方法使用效果的一大因素。

二、电力行业中的运筹学

本人领域是电力系统最优化,可能大家没有察觉,但是现在中国的电力网络毫无争议的走在了世界的最前沿。强如美国,最近也又一次出现了大规模停电问题。(上次是1977年加州大停电)这次美国的停电持续了25个小时,约至少4万人受到了影响,经济损失至少3000万美金以上。但是中国自从普及用电后,从没发生过如此大规模的停电问题。除了电力人的辛勤奋斗外,这也离不开运筹学在电力系统中的应用。

众所周知,我们现在的电力网是交流输电网络。交流输电网络中的参数远比直流输电网络要复杂得多。最明显的不同,在交流网络中我们需要处理线路的有功功率无功功率。除此之外,线路的损耗、输电节点的电压和相角也是我们需要考虑的因素。为了保证整个电力系统的损耗最小,我们需要建立相关的数学模型进行分析计算,然后再由调度中心进行调控。但是实际问题的复杂程度远远超乎想象,单一个最优潮流问题就是一个大规模非凸非线性的问题。为了求解这类问题,相关学者提出了诸多算法和理论。诸如:半正定规划、现代内点法、凸松弛技术,模型近似技术等。这些理论已经发展了数十年,但即便如此,也没有一套成熟的理论被应用到实际中。

在电力网中,我们不单要考虑线路损耗的降低,更重要的是要保证供电的可靠性。我们常常需要提前一天或数天对电力系统进行调度安排,这类问题往往是一个多层优化问题,对于这类问题,我们常见的求解办法是Benders分解和列生成。除此之外,我们需要不定期对线路检修,发电厂的维护,而线路的通断、发电厂的启停在数学模型中又成了一个整数规划问题。整体的求解难度又上升了一个层次。另外,在国家大规模倡导新能源接入的今天,风电和光伏电站不断被接入电力网络中,而新能源不能得到普及的一个重要因素是我们不能准确预知新能源电厂在下一时刻能够发出多少电能供我们使用。为了分析这类问题,我们的模型在混合整数非线性规划上又需要考虑不确定因素带来的影响。对这类问题的求解,我们又提出了随机规划、鲁棒优化、分布鲁棒等。还有一点,我们的输电线路可能会由于雷击、树枝接触等导致出现输送功率出现扰动。系统中的这些小扰动可能会对用户供电的电压和频率产生波动,对于普通家庭来说可能影响不大,但是对于一些高精技术的产业,一次电压或频率的波动就可能导致整个生产线的崩溃。如何建立相关的数学优化模型来预防这一问题也是当前的研究热点之一。

最后,大家也十分熟知我们国家有一个西电东送的工程,这也是我认为最困难的一个点,我们国家的电力网络是连在一起的,是一个十分庞大且复杂的系统,而我们电力网络是时时波动的,我们需要在秒级做出优化,并给出方案。目前针对这种超大规模的含不确定性的多层混合整数非线性规划问题,我们没有办法在有限的时间内得到一个最优解。

但即便困难重重,在一线的电力工作者仍在尽自己最大的努力来保证电力网络的安全可靠运行,为中国电力点赞。

三、制造业中的运筹学

本人目前是某厂的算法工程师,参与过企业的排班,调度,决策优化等场景的项目,主要想结合自己的经历和大家分享一下运筹优化在企业中的一些应用,主要包括任务规划/排班和实时调度两个方面,围绕场景定义,方法论和实际中的困难三个点进行阐述。

1、任务规划/排班

(1)场景定义

首先说一下什么是任务规划,什么是排班。任务规划是基于设定好的任务输入,进行任务的排期规划,以达到资源的有效利用和工作效率的提升。任务规划主要用于传统制造业/工厂排程,建筑工程规划排程,物流运输线路任务打包等场景。任务规划后输出给虚拟人或者其它虚拟资源创建的带有时间窗的任务包,排班则基于这些任务包,把它对应到实际的人或者其它真实车辆,机械等资源中,规划出某些资源在什么时候做什么任务的结果,以及该任务需要消耗多少其它资源。

(2)方法论

主要的规划方法也是传统运筹优化使用的方法。首先了解真实的业务场景,抽象业务规则和约束,搭建数学模型,运用规划求解器(Cplex,Gurobi等)或者启发式算法(Local Search,Iterative Forward Search等以及各种变种)进行求解。启发式算法可以在现有的solver上进行基于不同场景的二次开发,也可以自行开发。业界一般采用第一种方式。

(3)实际运用困难点

在实际场景中,给不同资源的排班会有很多实际因素要考虑。给人排班要考虑人的工作班次时长,人历史的上班习惯(如习惯上晚班,晚班后不能接早班),人所拥有的技能,个人的偏好(偏好某个工种或者上班时间段),法律规定以及不同工厂因为地域有不同的差异,如香港是8小时工作制,而大陆班次时长可以是10小时等。当我们处理实际问题的时候,先要梳理实际场景,总结管理规律,构建多种配置参数,进行建模。相比于排班来说,任务规划因为是针对虚拟资源而构建,所以可以不用考虑过多的资源属性(如人习惯)等因素。

2、实时调度

(1)场景定义

基于实时数据输入,进行任务的整合和任务的分配。主要的场景有:O2O外卖即时配送,打车软件车辆实时调度,仓储叉车/AGV,分拣中心分拣机器人实时调度等场景。实时调度的场景主要集中于新业务,而非传统的制造业和实体企业。传统的制造业和实体企业骄傲于他们的规划,而前面场景定义所提到的一些新业务场景,无法采用有效地长期规划手段,更多地是依赖短期的预测和实时的规划调度。

(2)方法论

上述提到的短期预测:如外卖下单到餐品完成的时间估计,车辆调度Supply和Demand的平衡,仓储/分拣中心的任务需求预测等,一般基于不同场景搭建机器学习模型,或者各种深度学习模型的Ensemble进行训练和预测。

实时的规划调度包括:如外卖下单后分给哪个外卖小哥,车辆订单来了分给哪辆车,任务需求来了分给哪辆叉车,AGV或者机器人。主要的方法有:

● 短时间压单后进行任务分配,以牺牲一定的最优性而换来快速高效地计算,采用传统并行的多个Tabu Search,Simulated Annealing等进行TSP或者VRP的计算。

● 强化学习/动态规划方法。用收集的数据和规则搭建仿真环境,用强化学习构建任务需求(订单或者生产入库需求等)与资源(车辆,外卖效果,叉车等)的匹配价值(Value),然后分配计算。

(3)实际运用困难点

● 大规模订单/任务需求的计算,需要一定的计算资源支持,以及牺牲算法的优化性来实现快速计算。

● 实时数据的采集。有些数据无法直接有效地采集,比如真实商家做餐时间。

● 如果要搭建仿真环境,也需要了解和抽象实际的业务规则。

3、关于运筹学在业界应用的思考

我在某公司实习了三个月,主要做的是生产计划。生产计划也是属于供应链的一个环节,与调度相比生产计划的制定要更加宏观一些。生产计划就是决策什么时间,在哪家厂/哪条生产线上,加工多少工件。生产计划的问题广泛的存在于制造业中,举个例子就是是手机的制造,一部手机有上千个零件构成,每个零件都在指定的供应商处生产,例如手机屏幕,手机摄像头,手机电池,手机充电器每个零件都由不同的生产厂来生产,然后将这些零件运送到最终的组装厂拼装成一台成品的手机。如何合理的安排每个厂在什么时候该生产多少零件是一个需要决策的重要问题。这个问题的核心在于要考虑尽量满足订单的需求要降低库存水位(或者是库存的周转率),同时要考虑到物料的约束,产能的约束,运输的约束等等因素。

在小规模的排产问题中人工调度员还能应对,一旦生产规模变大,生产工艺复杂之后,人工调度的弊病会逐渐凸显出来。目前国内有意识去做供应链的决策模型与算法的并不多,据我所知其中比较有代表性的是杉数科技。

杉数科技智能计划排程系统致力于为制造业及其上下游产业提供全链条技术服务,利用运筹学与机器学习将实际问题转化为数学模型求解,实现最优化的排程。个人认为,杉数科技在运筹学应用于制造业领域做了很好的探索,在很大程度上解决了如何用更少的人,更短的时间,生产更多的产品问题。

上面提到的生产计划问题本质上是一个混合整数规划问题,零件的个数就是一个整数变量,而生产这些零件的物料可能是整数的也可能是连续变量,因此该问题构成了一个混合整数规划问题。解决方案无非以下两种:

● 采用经典的混合整数规划的方法,先对原混合整数规划进行分解和重新建模,例如拉格朗日松弛,Benders 分解或者列生成等等方法,子问题的求解可以采用Gurobi或Cplex这些商用求解器。

● 针对问题特性设计元启发式算法,启发式算法。

实际运用困难点

我想谈谈混合整数规划在业界应用的gap到底在哪里,当然说大一点的话也是探讨运筹学在业应用的gap。

(1 )实际应用问题往往是大规模的

实际的生产问题往往是大规模的,例如我实习时所面临的实际问题其决策变量维数都达到上亿级别,业务部门要求是2小时之内给出结果,这对算法的效率实际上提出了非常大的挑战。即使是求解上亿规模的线性规划问题耗时都比较巨大,更不用说是整数规划问题了。我们经常说线性规划简单,哈哈,但是从实际应用的角度来看目前求解线性规划的速度在一些场景上还是不能满足我们实际应用的需求的。

目前在学术界大家很多情况下都是在小规模问题上自娱自乐玩一下,所以真正在公司的话,大规模的问题非常非常普遍。举个例子就是读运筹学的PhD的时候是学会在游泳池里游泳,真正在公司里边面对的问题可能就是得在大海里边游。这其实还是比较好的状况,更差的情况是一些童鞋可能在学校里只是学会了在浴缸里游泳而已。

(2) 实际数据往往都是病态的

实际问题的数据往往都是病态的,例如我在公司遇到的问题就是病态问题,具体来说就是优化问题约束或者目标函数的系数数量级的差别过大,导致求解过程的病态,实际问题的数据往往是千差万别和稀奇古怪的,数量级的差异经常超过10E20以上。这一点在学术界研究的相对较少一点,因为学术界研究的问题都比较理想化,即使有从实际中抽象一些原型出来,但是已经把病态啊这些问题都基本过滤掉了,但是在实际中你就发现病态问题太多了。

(3) 业务人员没有优化的意识,运筹优化的人缺乏业务知识,沟通成本非常高

业务人员没有优化的意识,很多时候他们不清楚运筹优化能做什么,甚至当运筹优化的算法工程师问题业务人员你们有什么要求没(约束条件),你们有什么量化的指标要越大越好或者越小越好(目标函数),业务人员很多时候也不能很清晰量化的描述出来这些东西,还有很多时候业务人员嘴巴上告诉你的目标函数和心里想的不一致。就相当于你是一个大厨,什么线性规划,拉格朗日松弛,列生成,半定规划,鲁棒优化这些菜你都会做,结果来一个顾客说他不知道吃点啥。

运筹学的理论的应用必然还是要有一个实际的背景问题,而不同的问题所处的行业不一样,每个行业都有自己的习惯自己的一套语言和模式,例如航空业就有很多专业术语,如果做航空优化的话,那么就要求运筹优化的算法工程师要具备一定的业务基础,否则你是无法和业务人员交流的,人家说话你都听不懂,1次2次不懂你可以问,十次八次不懂的话,人家就不爱和你说话了。而且运筹优化算法工程师一般都是作为乙方出现的,很多时候还必须是我们得放低姿态的去主动的接触业务学习业务才行啊,否则项目就很难进行下去。

(4) 测试困难,如何验证优化算法求解结果的正确性

好不容易,经过了重重阻碍,克服千难万险,我们的优化算法出炉了,我们可以得到一个结果。如何验证这个结果是正确的呢?其实非常抱歉的告诉你,基本没啥靠谱的方法去验证。现在在公司普遍的作法是两种,1是人为的构造一些类似benchmark的东西,这些东西的最优解比较显而易见,通过这些benchmark来检测算法的正确性;2是参考以前人工的经验来看,算法给出的解是不是合理,例如要是做一个调度算法呢,就找几个有经验的调度员来看这个算法是不是接近以前人工调度的结果,如果接近那就认为OK了。很显然这两种方法有很多的不足,第一种方法只能适用问题特别简单的时候,问题稍微复杂一点,规模大点benchmark就很难构造了,第二种方法虽然适用面更宽一些,但是问题也很明显,那就是以前人工调度的结果很难说是比较好的结果,那这个结果去和算法做对比本来参考系就有问题。

四、电商行业中的运筹学

本人目前在某电商供应链计划部门实习,该电商平台有八个事业部,每个事业部每天都有一定量级的产品上新、下架。目前平台上八大事业部的总商品数量量级是十万,对接不到2000家供应商。我所在职位的主要工作内容是,根据历史销量进行各个产品的需求量预测,由于产品发货渠道有商家自发货和平台发货两种渠道,选择平台发货的厂商需要结合产品的生产周期,并且按照与平台约定的补货周期将货物运到平台的自有仓库。

因此对于平台供应链计划部门来说,需要根据货物现有库存,结合日均销量预测(分大促日销和平常日销两种)实现补货量和补货时间点预测自动化,仓库效益最大化。将预测信息反馈到计划员和事业部同事进行产品调整。存在的难题有很多,比如对于新品的日销需求预测?长期在架产品的需求预测及库存管理实现效益最大化?当某产品的补货周期是一个月时,涵盖了大促时期和平销时期,如何库存管理和日销量预测,以实现仓库效益最大化,平台收益最大,且尽可能缩短断货时长?而这些都是运筹学和优化问题。

五、机器学习行业中的运筹学

本人最近在BAT(之一)的北美研究院实习,研究院本身的运作模式算是和本地业务团队稍有不同,成员多为国内外名校毕业的计算机、统计、数学、运筹学等专业的博士。除了写paper之外,团队也需要做能“落地”的业务支持项目(通常和国内的业务部门合作):如在线视频网站的推荐算法、二手商品平台的定价算法、新零售门店的多渠道库存控制算法等。

这些问题首先的一个共性是:海量的数据规模。这些问题对应的业务部门都有专门的数据团队,每天在公司内部的数据仓库会定时更新当日的数据(每日的数据量级都是上百TB)。因此,要在此基础之上,设计实用的优化算法,实际上对经典的运筹学模型和优化算法来说,也是巨大的挑战。

因此,在目前我注意到的这些业界的实际“优化”业务中,机器学习方法和运筹学模型基本上是要一起使用的。更具体的来说,业界更需要的是“数据驱动”的决策模型。比如,现有的机器学习、深度学习方法带给我们良好的预测模型,而所谓的决策模型/优化模型便往往可以基于这些预测模型之上。当然,最理想的状态是能够将预测和决策这两个看似分离的步骤结合起来,即,动态地基于预测调整决策,再通过现阶段的决策调整之后的预测。关于这点,目前学术界有了很多不错的理论,但距离工业界的实际“落地”还是有距离的。这或许便是业界当中机器学习和运筹学的未来吧。

请问运筹学在生活中的应用作为毕业论文题目怎么样

毕业论文题目最好具体,小一点,题目太大不好写。

上一篇:sci论文必须全英文吗

下一篇:本科论文字数一般不超过