欢迎来到学术参考网
当前位置:发表论文>论文发表

关于二次函数的数学论文

发布时间:2023-02-09 14:31

关于二次函数的数学论文

初中数学教学反馈与矫正探究 一、反馈与矫正的一般原则反馈是控制论的一种重要基本原理。它是指控制系统把信息输送出去,然后把其作用的结果返回来,并对信息的再输出发生影响,起到控制作用。通过反馈,可以不断地矫正偏向和失误,逐步达到预期的目的。一般说来,反馈与矫正有如下几条原则。(一)适时反馈,及时矫正在教学视导过程中,发现有两种不正常现象:一种是备课。教师根据主观意识,提前几天或几个星期备课,个别的教师甚至将纸张发黄的陈旧教案拿到课堂上照本宣科,不考虑学生现有知识基础和学习中出现的新情况,结果怎样呢?本来学生已经掌握的内容教师在津津乐道,而学生难于理解掌握的内容却蜻蜒点水,甚至根本没有涉及,教师陶醉于少数优生“热热闹闹”的发言,而多数学生一知半解。另一种是作业。有些教师要求学生数学作业本必须有四个,这样一来,学生做的练习最快也只能在三天后见到,有时一个星期后才见到,甚至一个单元的测试卷半个月或一个月后才与学生见面。这样反馈来的问题再不是一两个,而是一大堆,此时,师生双方都感到矫正无从下手。学生学习中出现的问题,教师若能及时发现,及时设法解决,就不会出现这种现象。反馈与矫正要落到实处,就必须切实抓好当堂了解、当堂消化、节节夯实、层层达标、分步到位。也就是说反馈要适时,矫正要及时。(二)真实反馈,准确矫正反馈来的信息是否真实,矫正的方法是否得力对反馈与矫正的效果起关键性作用。如果信息虚假或不全真实,那么教师就发现不了问题或不能全面地了解情况,也就不会采取及时、正确的矫正措施。教学实践表明,要做到真实反馈,准确矫正,一般要注意以下三个方面。首先,培养学生勤学好问、独立思考的优良学习习惯。有经验的教师都注意引导学生上课集中精力,勤于思考,积极动口、动手。这样学生提供的信息才是深层次的而不是表面的,是全面的而不是片面的,是真实的而不是虚假的。其次,建立民主、平等的师生关系。在教学中教师必须注意克服师道尊严的作风,经常深入到学生中去了解他们的困难和要求,积极热情地帮他们释疑解难,使他们体会到师长的温暖,尝试到因积极与老师配合、真实地提供信息而取得学习进步的甜头。再次,透过现象,抓住本质。教师在获取信息后,应认真分析其问题的实质,产生问题的原因,然后有针对性地设计矫正方案。不要被表面现象所迷惑,就题论题,就事论事,否则矫正就是低效的或无效的。(三)主动反馈,自觉矫正反馈与矫正有良性与恶性两类。反馈与矫正在教学中总是循环往复的,即反馈----矫正----再反馈----再矫正。良性的反馈与矫正不论从知识、技能、智力、习惯、情感的哪一方面来看,都是一种在不断地解决老问题、提出新问题的过程中,由低层次向高层次前进的教学活动;而恶性的反馈与矫正则是问题不断重复堆积的微效或无效的教学活动。要避免恶性循环,师生双方必须做到主动反馈,自觉矫正。因为反馈来的信息往往是教和学两个方面的问题,属于教的问题,教师应注意主动地去发现和收集,及时自觉矫正或调控,不能等待。属于学的问题,教师要主动辅导,及时令其矫正。再说,学生的主动性和自觉性必须靠教师有意识地培养,光有教师的主动性,而没有学生的自觉配合,其结果仍然是恶性的反馈与矫正。当然,如果教师只强调学生的主动和自觉,而不注意自身的主动和自觉,结果同样会是恶性的反馈与矫正。(四)矫正反馈,反馈矫正反馈与矫正是紧密联系的一个体系。矫正首先是为了解决问题,在解决问题的过程中,往往会发现信息不真,这时应对反馈进行矫正。如果不注意这种矫正,那么矫正也就不准。对一个问题进行矫正之后,是否就真正解决了问题,还需进行再反溃在教学视导过程中,发现有的教师常这样埋怨学生:“这种问题我已对你讲过多次了,怎么还不知道。”出现这种现象有两个原因:或是当时的矫正走了过场,没有真正解决问题,或是隔了一段时间后没有再去矫正,使矫正效果消失了。因此,矫正后相应地要设计巩固提高的反馈方案,检测矫正效果,获取新的信息,在更高层次上施以反馈矫正。二、反馈渠道与途径常规教学过程的备课、教学、批改、辅导、考试、评价就是教学反馈的主渠道,一般来说,反馈渠道与途径有以下几个方面:(一)备课时充分估计经验丰富的教师在备课时能预测到学生在课堂上对知识的理解、技能的掌握、方法的运用所出现的问题,并有针对性地设计教法。把问题解决在初发阶段,这样教师的主导作用就能得到较好的发

高一二次函数论文1000字

在初中教材中,对二次函数作了较详细的研究,由于初中学生基础薄弱,又受其接受能力的限制,这部份内容的学习多是机械的,很难从本质上加以理解。进入高中以后,尤其是高三复习阶段,要对他们的基本概念和基本性质(图象以及单调性、奇偶性、有界性)灵活应用,对二次函数还需再深入学习。一、进一步深入理解函数概念初中阶段已经讲述了函数的定义,进入高中后在学习集合的基础上又学习了映射,接着重新学习函数概念,主要是用映射观点来阐明函数,这时就可以用学生已经有一定了解的函数,特别是二次函数为例来加以更深认识函数的概念。二次函数是从一个集合A(定义域)到集合B(值域)上的映射�0�6:A→B,使得集合B中的元素y=ax2+bx+c(a≠0)与集合A的元素X对应,记为�0�6(x)= ax2+ bx+c(a≠0)这里ax2+bx+c表示对应法则,又表示定义域中的元素X在值域中的象,从而使学生对函数的概念有一个较明确的认识,在学生掌握函数值的记号后,可以让学生进一步处理如下问题:类型I:已知�0�6(x)= 2x2+x+2,求�0�6(x+1)这里不能把�0�6(x+1)理解为x=x+1时的函数值,只能理解为自变量为x+1的函数值。类型Ⅱ:设�0�6(x+1)=x2-4x+1,求�0�6(x)这个问题理解为,已知对应法则�0�6下,定义域中的元素x+1的象是x2-4x+1,求定义域中元素X的象,其本质是求对应法则。一般有两种方法:(1)把所给表达式表示成x+1的多项式。�0�6(x+1)=x2-4x+1=(x+1)2-6(x+1)+6,再用x代x+1得�0�6(x)=x2-6x+6(2) 变量代换:它的适应性强,对一般函数都可适用。 令t=x+1,则x=t-1 ∴(t)=(t-1)2-4(t-1)+1=t2-6t+6从而�0�6(x)= x2-6x+6二、二次函数的单调性,最值与图象。在高中阶阶段学习单调性时,必须让学生对二次函数y=ax2+bx+c在区间(-∞,-]及[-,+∞) 上的单调性的结论用定义进行严格的论证,使它建立在严密理论的基础上,与此同时,进一步充分利用函数图象的直观性,给学生配以适当的练习,使学生逐步自觉地利用图象学习二次函数有关的一些函数单调性。类型Ⅲ:画出下列函数的图象,并通过图象研究其单调性。(1)y=x2+2|x-1|-1
(2)y=|x2-1|
(3)= x2+2|x|-1这里要使学生注意这些函数与二次函数的差异和联系。掌握把含有绝对值记号的函数用分段函数去表示,然后画出其图象。类型Ⅳ设�0�6(x)=x2-2x-1在区间[t,t+1]上的最小值是g(t)。求:g(t)并画出 y=g(t)的图象解:�0�6(x)=x2-2x-1=(x-1)2-2,在x=1时取最小值-2当1∈[t,t+1]即0≤t≤1,g(t)=-2当t>1时,g(t)=�0�6(t)=t2-2t-1当t<0时,g(t)=�0�6(t+1)=t2-2 t2-2, (t<0) g(t)= -2,(0≤t≤1) t2-2t-1, (t>1)首先要使学生弄清楚题意,一般地,一个二次函数在实数集合R上或是只有最小值或是只有最大值,但当定义域发生变化时,取最大或最小值的情况也随之变化,为了巩固和熟悉这方面知识,可以再给学生补充一些练习。如:y=3x2-5x+6(-3≤x≤-1),求该函数的值域。三、二次函数的知识,可以准确反映学生的数学思维:类型Ⅴ:设二次函数�0�6(x)=ax2+bx+c(a>0)方程�0�6(x)-x=0的两个根x1,x2满足0<x1<x2<。(Ⅰ)当X∈(0,x1)时,证明X<�0�6(x)<x1。(Ⅱ)设函数�0�6(x)的图象关于直线x=x0对称,证明x0< 。解题思路:本题要证明的是x<�0�6(x),�0�6(x)<x1和x0< ,由题中所提供的信息可以联想到:①�0�6(x)=x,说明抛物线与直线y=x在第一象限内有两个不同的交点;②方程�0�6(x)-x=0可变为ax2+(b-1)x+1=0,它的两根为x1,x2,可得到x1,x2与a.b.c之间的关系式,因此解题思路明显有三条①图象法②利用一元二次方程根与系数关系③利用一元二次方程的求根公式,辅之以不等式的推导。现以思路②为例解决这道题: (Ⅰ)先证明x<�0�6(x),令�0�6(x)=�0�6(x)-x,因为x1,x2是方程�0�6(x)-x=0的根,�0�6(x)=ax2+bx+c,所以能�0�6(x)=a(x-x1)(x-x2)因为0<x1<x2,所以,当x∈(0,x1)时, x-x1<0, x-x2<0得(x-x1)(x-x2)>0,又a>0,因此�0�6(x) >0,即�0�6(x)-x>0.至此,证得x<�0�6(x)根据韦达定理,有 x1x2= ∵ 0<x1<x2<,c=ax1x2<x=�0�6(x1), 又c=�0�6(0),∴�0�6(0)<�0�6(x1), 根据二次函数的性质,曲线y=�0�6(x)是开口向上的抛物线,因此,函数y=�0�6(x)在闭区间[0,x1]上的最大值在边界点x=0或x=x1处达到,而且不可能在区间的内部达到,由于�0�6(x1)>�0�6(0),所以当x∈(0,x1)时�0�6(x)<�0�6(x1)=x1,即x<�0�6(x)<x1b24a(Ⅱ) ∵�0�6(x)=ax2+bx+c=a(x+-)2+(c- ),(a>0)函数�0�6(x)的图象的对称轴为直线x=- ,且是唯一的一条对称轴,因此,依题意,得x0=-,因为x1,x2是二次方程ax2+(b-1)x+c=0的根,根据违达定理得,x1+x2=-,∵x2-<0,∴x0=-=(x1+x2-)<,即x0=。二次函数,它有丰富的内涵和外延。作为最基本的幂函数,可以以它为代表来研究函数的性质,可以建立起函数、方程、不等式之间的联系,可以偏拟出层出不穷、灵活多变的数学问题,考查学生的数学基础知识和综合数学素质,特别是能从解答的深入程度中,区分出学生运用数学知识和思想方法解决数学问题的能力。二次函数的内容涉及很广,本文只讨论至此,希望各位同仁在高中数学教学中也多关注这方面知识,使我们对它的研究更深入。

急求关于一元二次方程,二次函数,一元二次不等式的区别与联系的数学论文

二次函数我们已经在初三的时候学过了,但听学姐说,高中还要继续学习二次函数。我原以为这东西已经被我们搞得很彻底了,没想到……真是神奇的二次函数啊!
作为最基本的初等函数,它既简单又具有丰富的内涵和外延。可以以它为素材来研究函数的单调性、奇偶性、最值等性质,还可建立起函数、方程、不等式之间的有机联系;作为抛物线,可以联系其它平面曲线讨论相互之间的关系。这些纵横联系,使得围绕二次函数可以编制出层出不穷、灵活多变的数学问题。同时,有关二次函数的内容,与近现代数学发展紧密联系,是学生进入高校继续深造的重要知识基础。因此,从这个意义上说有关二次函数的问题在高考中频繁出现,也就不足为奇了。
二次函数有两个典型特征:一是解析式,二是图像特征。从解析式出发,可以进行纯粹的代数推理,这种代数推理、论证的能力反映出一个人的基本数学素养;从图像特征出发,可以实现数与形的自然结合,这正是中学数学中一种非常重要的思想方法。
首先来说代数推理,由于二次函数的解析式简洁明了,易于变形(一般式、顶点式、零点式等),所以,在解决二次函数的问题时,常常借助其解析式,通过纯代数推理,进而导出二次函数的有关性质。例如:1、一般式为y=ax2+bx+c (c≠0) 中有三个参数a、b、c,解题的关节在于:通过三个独立条件“确定”这三个参数。2、利用函数与方程根的关系,写出二次函数的零点式y=a(x-x1)(x-x2)。3、紧扣二次函数的顶点式 ,对称轴、最值、判别式是合力。其次是“数形结合”,二次函数 y=ax2+bx+c (c≠0) 的图像为抛物线,具有许多优美的性质,如对称性、单调性、凹凸性等。结合这些图像特征解决有关二次函数的问题,可以化难为易,形象直观。例如:1、二次函数的图像关于直线x=- 对称,特别关系x1+x2= 也反映了二次函数的一种对称性。2、二次函数f(x)的图像具有连续性,且由于二次方程至多有两个实数根,所以存在m、n,且f(m)f(n)<0等价于在区间(m,n)上,必存在f(x)=0的唯一的实数根。3、因为二次函数f(x)= ax2+bx+c (c≠0) 在区间(-∞,- 和区间 - ,+∞)上分别单调,所以函数f(x)在比区间上的最大值、最小值必在区间端点或顶点处取得;函数|f(x)|在闭区间上的最大值必在区间端点或顶点处取得。
在来说说医院二次方程的解法。有人总结出一段顺口溜,式针对优选一元二次方程解法的步骤的。“一分解,二配方,形如x2=a开平方;前面三法均不易,求根公式再用上;字母系数需讨论,分类求解不能忘。”在具体解题时,须具体问题具体分析,千万不能忽视了一些隐含条件。
通过对二次函数的认识,我深深的认识到,在今后的日子里,无论是升学或是工作,二次函数都是一个必考点和得力助手,所以学好二次函数,也是我高中生涯必不可少的一项重要内容。

精品推荐 应用数学毕业论文:中学生怎样学二次函数

学理科东西学会求本质 做类推
二次函数都是抛物线函数(它的函数轨迹就像平推出去一个球的运动轨迹,当然这个不重要) 因此 把握它的函数图像就能把握二次函数
在函数图像中 注意几点(标准式y=ax^2+bx+c,且a不等于0):
1、开口方向与二次项系数a有关 正 则开口向上 反之反是。
2、必有一个极值点,也是最值点。如果开口向上,很容易想象这个极值点应该是最小点 反之反是。且极值点的横坐标为-b/2a。极值点很容易出应用题。
3、不一定和x轴有交点。当根的判定式Δ=b^2-4ac<0时,没有交点,也就是ax^2+bx+c=0这个方程式“没有实数解”(不能说没有解!具体你上高中就知道了)如果
Δ=0 那么正好有一个交点,也就是我们说的x轴与函数图像向切。对应的方程有唯一实数解。Δ>0时,有两个交点,对应方程有2个实数解。
4、不等式。如果你把上面3点搞清楚了 参考函数图像 不等式你就一定会解了。

二次函数的实际应用 论文

给你点资料吧,呵呵。
二次函数的实际应用——二次函数与物理的关系

二次函数是数学中很重要的一部分,想必与物理有相当密切的关系,毕竟数学和物理都属理科。物理学的各种计算都要用数学知识,二次函数当然也要用。

一 直线等加速运动

我们知道,在匀速直线运动中,物体运动的距离等于速度与时间的乘积,用字母表示为S=vt,而在直线等加速运动(即通常所说的加速度)中,速度的数值是时刻在改变的,我们仍用S表示距离(米),用v0表示初始速度(米/秒),用t表示时间(秒),用a表示每秒增加的速度(米/秒)。那么直线等加速运动位移的公式是:

S=v0t+ at2

就是说,再出是速度和每秒增加的速度一定时,距离是时间的函数,但不再是正比例函数,而是二次函数。

我们来看一个例子:v0=1米/秒,a=1米/秒,下面我们列表看一下S和t的关系。

注意,这里的时间必须从开始等加速时开始计时,停止等加速时停止计时。t的取值范围,很明显是t≥0,而S的取值范围,同样是S≥0。下面我们来看看它的图象:

下面我们再来看一个特殊情况。

二 自由落体位移

我们知道,自由落体位移是直线等加速运动的特殊情况,它的初始速度为0,而每秒增加的速度为9.8米/秒,我们用g表示,但这个g不是9.8牛顿/千克。

自由落体位移的公式为:

S= gt2

我们再来看看这个函数的表格:

图象我们就不画了,它只是直线等加速运动的特殊情况,图象大同小异。

三 动能

现在我们来看另一方面的问题。我们知道,物体在运动中具有的能量叫做动能,动能与物体的质量和速度有关。比如说,以个人走过来不小心撞上你,或许没什么,但如果他是跑步时撞上你,说不定会倒退几步,而假如你站在百米终点线上,想不被撞倒都不容易。这是因为对方具有的动能随速度的增大而增大。

我们用E表示物体具有的动能(焦耳),m表示物体的质量(千克),用v表示物体的速度(米/秒),那么计算物体动能的公式就是:

E= mv2

来看一个表格(m=1千克):
v的取值范围显然是v≥0,E的取值范围也是E≥0,所以它的图象和前两个没什么区别。

总结

通过上面几个问题的研究,我们认为二次函数在物理方面的实际应用中的特点,在于物理学上对取值范围的要求大部分都是要求该数值大于等于0,所以图象大部分是二次函数图象的一半,除原点外,图象都在第一象限。还有,物理学上用到的公式,一般很少有常数项。

关于二次函数与物理的关系,我们就研究至此。

上一篇:如何坚持绿色发展论文

下一篇:论文发表最好的网站知乎