循环流化床锅炉保养论文
循环流化床锅炉保养论文
关于中小型循环流化床锅炉飞灰含碳量偏高问题的讨论论文
摘要:本文介绍了循环流化床锅炉的发展历史,并针对现阶段中小型循环流化床锅炉运行中突出的飞灰含碳量高的问题展开讨论,提出一些降低飞灰含碳量的措施。
关 键 字:中小型循环流化床锅炉 飞灰含碳量偏高
0 循环流化床锅炉发展概况
循环流化床燃烧技术是国内外公认的一种洁净煤燃烧技术。循环流化床锅炉具有煤种适应性广、燃烧效率高、环境性能好、符合调节范围大和灰渣综合利用等优点,近十年来在工业锅炉、电站锅炉、旧锅炉改造和燃烧各种固体废弃物等领域得到迅速的发展。我国是以煤为主要一次能源的国家,燃用的煤种最为齐全。近十几年来,我国循环流化床技术发展迅速。
1981年国家计委下达了“煤的流化床燃烧技术研究”课题,清华大学与中国科学院工程热物理研究所分别率先开展了循环流化床燃烧技术的研究,标志着我国循环流化床锅炉的研究和产品开发技术正式启动。到2005年4月为止,我国运行的循环流化床锅炉CFBB已超过100台,已经投运的最大机组是安装在四川内江、从奥斯龙公司进口的410t/h(100WM)循环流化床高压电站锅炉,由于运行台数较少,各方面的经验还有待积累。
另外,我国正在引进一台Alstom公司的1025t/h的常压循环流化床锅炉及相应的关键配套设备,在四川白马电厂建立300MW循环流化床示范工程;国家电力公司热工研究院夜设计了300MW循环流化床锅炉方案标志着我国循环流化床锅炉将朝着大型化方向发展。现在,我国已成为世界上CFB机组数量最多、总装机容量最大和发展速度最快的国家。
1 循环流化床锅炉目前存在的问题
但是这种超常规的循环流化床锅炉的发展速度使循环流化床锅炉运行出现了一些问题。诸如:①炉膛、分离器以及回送装置及其之间的膨胀和密封问题。特别是锅炉经过一段时间运行后,由于选型不当和材质不合格,加上锅炉的频繁起停,导致一些部位出现颗粒向炉外泄漏现象。②由于设计和施工工艺不当导致的磨损问题。炉膛、分离器以及返料装置内由于大量颗粒的循环流动,容易出现材料的磨损、破坏问题。一些施工单位对循环流化床内某些局部部位处理不当,出现凸台、接缝等,导致从这些部位开始磨损,然后磨损扩大,导致炉墙损坏。③炉膛温度偏高以及石灰石选择不合理导致的脱硫效率降低问题。早期设计及运行的循环流化床锅炉片面追求锅炉出力,对脱硫问题重视不够,炉膛温度居高不下,石灰石种类和粒度的选择没有经过仔细的试验研究,导致现有循环流化床锅炉脱硫效率不高,许多锅炉脱硫系统没有投入运行,缺乏实践经验的积累。④灰渣综合利用率低的问题。一般认为,循环流化床锅炉的灰渣利于综合利用,而且利用价值很高,但由于各种原因,我国循环流化床锅炉的灰渣未能得到充分利用,或者只进行了一些低值,需要进一步做工作。⑤飞灰含碳量高的问题。这些问题的存在影响了循环流化床锅炉的连续、安全、经济运行,还带来了维修工作量大、运行费用高等问题。就中小型循环流化床锅炉来说,飞灰含碳量高是一个比较普遍的问题。
2 飞灰含碳量的影响因素及应采取的措施
影响循环流化床锅炉飞灰含碳量的主要因素如下:
1、 燃料特性的影响。循环流化床锅炉煤种适应性广,但对于已经设计成型的循环流化床锅炉,只能燃烧特定的煤种(即设计煤种)时才能达到较高的燃烧效率。由于煤的结构特性、挥发份含量、发热量、水分、灰份的影响,循环流化床锅炉的燃烧效率有很大差别。我国主要按煤的干燥无灰基挥发分含量对煤进行分类,按照挥发分含量由低到高的顺序将煤分成无烟煤、贫煤、烟煤和褐煤等。挥发分含量的大小实际上反映了煤形成过程中碳化程度的高低,与煤的年龄密切相关。不同煤种本身的物理组成和化学特性决定了它们在燃烧后的飞灰具有不同的形态和特性。东南大学收集了山西大同烟煤、广西合山劣质烟煤和福建龙岩无烟煤等几种典型煤种在电站锅炉中燃烧生成的飞灰,制成样品,用扫描电镜进行了微结构分析。收到基灰发分含量为10%的广西合山劣质烟煤所生成的飞灰大部分是较密实的灰块,表面不光滑,没有熔融的玻璃体形态存在,大部分粒子的孔隙率都较小,仅有少数球状空心煤胞出现,但孔隙率也不大,壁面较厚,表面粗糙。该飞灰形态表明,该煤种燃尽率不高,取样分析其飞灰含碳量为10%左右。福建龙岩无烟煤挥发分含量较低,只有4%左右,属典型难燃煤种,表现为着火延迟、燃尽困难。虽然发热值高,燃烧时火焰温度可达1500℃以上,但燃尽率低,生成的球状煤胞中绝大多数为无孔或少孔,虽然也出现多孔薄壁球状煤胞,但数量极少。无孔或少孔的球状煤胞表面很光滑,有熔融的玻璃体形态存在,对燃尽是极为不利的。从煤粉锅炉种采取飞灰样,分析其含碳量在10%以上。山西大同烟煤飞灰中虽然也发现有极少部分少孔的密实球状煤胞,但绝大部分为多孔的疏松空心煤胞和骨质状疏松结构煤胞,这两种煤胞的孔隙率很大,这样就形成了很大的反映表面积,对煤粉的燃尽十分有利,因而这种烟煤的飞灰含碳量很低。
2、 入炉煤的粒径和水分的影响。颗粒过大,一方面床层流化不好,另一方面,碳粒总表面积减少,煤粒的扩散阻力大,导致反应面积小,延长了颗粒燃尽的时间,颗粒中心的碳粒无法燃尽而出现黑芯,降低了燃烧效率,同时造成循环灰量不足,稀相区燃烧不充分,出力下降。另外,大块沉积,流化不畅,局部结焦的可能性增大,排渣困难。颗粒过小,床层膨胀高,易燃烧,但是易造成烟气夹带,不能被分离器捕捉分离而逃逸出去的细颗粒多,对燃尽不利,飞灰含碳量高。通过实验发现:颗粒太小,由于煤粉在炉内停留时间过短,燃不尽,飞灰含碳量就大。相对而言,燃用优质煤,煤颗粒可粗些;燃用劣质煤,煤颗粒要细些。所以对于不同的煤质要调整二级破碎机的破碎能力来调整煤的粒度。煤中水分过大不仅降低床温,同时易造成输煤系统的堵塞,故对于水分高的煤进行掺烧。
3、 过量空气系数的影响。一次风作用是保证锅炉密相区料层的流化与燃烧,二次风则是补充密相区出口和稀相区的'氧浓度。调整好一二次风的配比,有效地降低飞灰、灰渣含碳量,是保证锅炉经济燃烧的主要手段。运行中适当提高过量空气系数,增加燃烧区的氧浓度,有助于提高燃烧效率。但炉膛出口过量空气系数超过一定数值,将造成床温下降,炉膛温度下降,总燃烧效率将下降,风机电耗增大。所以在符合变化不大时,一次风量尽量稳定在一个较合适的数值上,少作调整,主要靠调整二次风比例来控制密相区出口和稀相区的氧浓度。一二次风的配比,与锅炉负荷、煤种等有关,通过进行燃烧调整试验可建立锅炉不同负荷与一二次风量配比的经验曲线或表格,供运行调整时参考。
4、 燃烧温度的影响。和煤粉锅炉炉膛温度高达1400~1500℃相比,循环流化床运行温度通常控制在850~900℃之间,属低温燃烧,在此条件下煤粒的本正燃烧速率低得多,加上流化床内颗粒粒径比煤粉炉内煤粉粗得多,所需的燃尽时间长得多。提高燃烧温度,飞灰含碳量低;相反,燃烧温度低,飞灰含碳量高。
5、 分离器分离效率的影响。分离器分离效率高,切割粒径小,飞灰含碳量低;相反,分离器分离效率低,切割粒径大,飞灰含碳量高。经过20年的发展,目前我国循环流化床锅炉使用的高效分离器有三种:上排气高温旋风分离器、下排气中温旋风分离器和水冷方形分离器。
6、 飞灰再循环倍率的影响。飞灰再循环的合理选取要根据锅炉炉型、锅炉容量大小、对受热面和耐火内衬的磨损、燃煤种类、脱硫剂的利用率和负荷调节范围来确定。
7、 锅炉蒸发量的影响。锅炉蒸发量大,相应的燃烧室温度高,一次通过燃烧室燃烧的粒子(分离器收集不下来的粒子)燃烧时间长,燃尽度较高,飞灰含碳量低;相反,飞灰含碳量高。
8、 除尘灰再循环燃烧的影响。对难燃尽的无烟煤,采取分离灰循环燃烧之后,飞灰含碳量仍比较高。为了进一步降低飞灰含碳量,一个比较有效的措施是采用除尘灰再循环燃烧。德国一台循环流化床锅炉,当分离灰再循环倍率为10~15时,飞灰含碳量仍有23%左右。为了降低飞灰含碳量,采用了除尘灰再循环燃烧。当除尘灰再循环倍率为0.3时,飞灰含碳量降低到了10%左右;除尘灰再循环倍率为0.6时,飞灰含碳量降低到了4%。
3 结论
降低飞灰含碳量的措施有多种,应根据实际情况选择最经济最实用的措施。我厂四台循环流化床锅炉也存在飞灰含碳量高的问题,我们会借鉴前人的经验,尝试一些措施以降低飞灰含碳量。
参考文献:
[1] 路春美等,循环流化床锅炉设备与运行[M],中国电力出版社,2003
[2] 刘德昌等,循环流化床锅炉运行及事故处理[M],中国电力出版社,2006
你好,请问你有循环流化床锅炉的论文吗?
循环流化床锅炉结焦原因分析及预防措施
[摘要]
分析了循环流化床锅炉结焦的原因,认为其主要因床料局部或整体温度超过灰熔点或烧结温度,以及炉内流化工况不良等所致。对此,提出了改变燃煤焦结特性,严格控制运行参数,尽量缩短压火时间等措施,以避免循环流化床锅炉结焦。
[关键词]
1、床料;2、结焦;3、灰溶点;4、运行参数
循环流化床锅炉结焦一般分为高温结焦、低温结焦和渐进性结焦 3 种。
1、 低温结焦就是当床层整体温度低于灰渣的变形温度,由于局部超温或低温烧结引起的结焦,常在起动和压火时的床层中发生,并有可能发生在高温旋风分离器的灰斗内,以及外置换热器和返料机构内。
2、 高温结焦是指床层整体温度水平较高而流化正常时所形成的结焦现象。
其特点是面积大,甚至波及整个炉床,而且从高温焦块表面上看是熔融的,冷却后呈深褐色,质地坚硬,并夹杂少量气孔。
3、渐进性结焦是运行中较难察觉的一种结焦形式,主要因布风系统设计和安装质量不好、给煤颗粒度超出设计值、运行参数控制不当、风帽错装或堵塞等所致。
这 3 种结焦类型并不是明显分离的,不论是哪种类型的结焦,一旦渣块在床料中存在并随着时间的推移,焦块将越来越大,结果会堵塞排渣管甚至被迫停炉。
1、循环流化床锅炉结焦原因分析
循环流化床锅炉结焦的主要原因是床料局部或整体温度超过灰熔点或烧结温度,以及炉内流化工况不良等。
(1)燃料的影响
若煤的灰熔点低,当煤颗粒在炉膛内较高温度下熔化成液态或软化状态时,相互黏结,且自身燃烧放出的热量无法及时传出,就会产生结焦。其次,运行中给煤量过大,使料层中含煤量过多,料层温度升高,燃烧气氛更加趋于还原性气氛,煤的灰粒容易达到熔融及软化状态而结焦。另外,煤种变化太大,燃料制备系统选择不当,煤粒度太大,或粗颗粒份额较多也会严重影响床层的流化,导致密相区超温而结焦。
(2)运行参数的影响
运行中一次风量太小或减风至流化极限以下,会造成料层流化不好而出现局部温度过高的情况,一旦局部出现结焦就会黏结周围的颗粒而使结焦扩大。
这种情况主要发生在起动过程中,因为起动时料层太低,风量较小,整个料层未能均匀地达到较好的流化状态。另外,料层差压是一个反映燃烧室料层厚度的参数,在锅炉运行中,料层厚度大小会直接影响锅炉的流化质量,如料层厚度过大,有可能引起流化不好造成炉膛结焦或灭火。
(3)返料影响
返料风过小,或返料器突然由于耐火材料的塌落而堵塞,或因料层差压高放循环灰外泄失控等原因,返料无法正常返至炉内,都会造成床温过高而结焦。若此时再通过加煤来维持压力及汽温,则床温在返料未回炉膛及加煤的双重作用下会急剧上升而导致床上结焦。若运行中返料温度过高,可能会造成返料器内结焦。
(4)结构方面的影响
布风板设计不良、风帽布置不合理或风帽损坏,造成布风板布风不均,会造成部分料层不流化而产生结焦。另外,返料阀设计不当,返料风可能导致阀体内可燃物的燃烧,从而使返料温度升高造成返料器内结焦。
(5)运行操作人员问题
这一点是以上问题发现和解决的因素,以上谈的第一条(燃料影响)、第二条(运行参数的影响)操作人员在有丰富经验,处理果断、准确就能把问题化解成安全运行,假如一位没有经验+头脑简单=事故!还有第三条(返料影响)、第四条(结构方面影响),同上!因为锅炉
2、预防循环流化床锅炉结焦的措施
(1)改变燃煤的焦结特性,保证良好而稳定的入炉煤质,入炉煤颗粒度符合要求。
(2)在每次锅炉起动前认真检查风帽、风室,清理杂物。起动时,应进行冷态流化试验,确认床层布风均匀,流化良好。
(3)加快起动速度,尽量缩短油煤混烧时间。点火初期当床温达到投煤温度时,应立即投煤,燃烧稳定后果断断油。
在事故处理过程中,也应及时断油,使煤油混燃时间缩短,防止结焦。
(4)锅炉起动期间,返料装置必须充满灰后方可投入,以防风反窜。点火初期先不投返料风,待底料中的细灰充满返料装置后则应开返料风
(一般是点火后半小时),保证床内有料。
(5)点火过程中,床温达到 500℃以上可加入少量的煤以提高床温。刚开始投煤时,不得过快过猛,遵循少量间断的原则。如果加煤量过多,由于煤粒燃烧不完全,整个床料含碳量增大,一旦加大风量,就会猛烈燃烧,床温上升很快,甚至超过灰的软化温度,结果造成整床超温结焦。点火给煤过程中若发现底料局部发亮或底料温度急剧升高,说明底料有结焦的趋势,则应该减少给煤量,增加风量防止结焦。
(6)综合考虑结焦和控制 NOx 的影响,床温应控制在(850 ~ 950)℃
之间,最高不应超过 1000℃,通过调整风煤配比及返料量控制。如因煤粒变粗或煤质变差等原因引起床温波动,应视情况适当提高一次风量来流化床层,抑平床温,以免出现大颗粒沉积,造成局部或整体超温结焦现象。如床温几点极不平衡或个别点极高,应遵循就高不就低的原则及时进行处理。
国外的研究报告和国内运行经验证明,流化床中的结焦温度比煤粉炉中低得多,一般情况下,流化床中温度低于灰软化温度(150 ~ 250)℃就开始结焦,因此建议控制局部床温不能高于(950 ~ 1000)℃。另外,在低负荷运行时,如发现床温突然下降,除了断煤外,很可能是床料沉积,这时若增大给煤量,反而会加剧沉积,使流化床的流化质量变差,造成局部结焦。当判明是床料沉积时,应打开冷渣排放管放渣,待床温正常后,适当调节至较高负荷下运行。变负荷运行时,也应控制床温在允许范围内,做到升负荷先加风后加煤,降负荷先减煤后减风,燃烧调节要平稳,避免床温大起大落。
(7)运行时应控制返料温度最高不能超过1000℃+ T%温度过高有可能造成返料器内结焦,特别是在燃用较难燃的无烟煤时,因为存在燃料后燃情况,温度控制不好极易发生结焦。返料温度可以通过调整给煤量和返料风量来调节,如温度过高,可适当减少给煤量并加大返料风量,同时检查返料器有无堵塞,及时清除,保证返料器的通畅。
(8)料层差压应控制在(5 ~ 7) kPa 之间。料层差压(料层的厚度)可以通过炉底放渣管排放底料的方法来调节。锅炉运行中,如果料层差压超出正常范围,说明流化不正常,下部有沉积或结渣,此时,可短时开大一次风,吹散焦块,并打开放渣管排渣;如不能清除,应立即停炉检修。采用人工放渣要及时,做到少放勤放,不允许一次放过多的床料,不得用压风的方式降低料层差压。排出的炉渣有渣块应汇报司炉,排渣结束后排渣门要关闭严密。
(9)运行过程中,保持合理的风煤配比及一、二次风配比。运行中一次风量不得低于对应料层厚度下的最低临界流化风量,以保证床料流化正常。二次风补充燃烧中氧的不足,其调整应根据燃煤挥发分的高低随负荷进行。
(10)压火时首先关闭返料阀风、二次风机,然后停止给煤机,待料层温度比正常温度降低 50 ℃左右时,立即停止一次风机和引风机,并迅速关严送风门,使料层从流化状态迅速转变为静止堆积状态,与空气隔绝,动作越快越好。
(11)对于高温分离器,保证任何时候含氧量不低于 3 %~ 5 % ,以降低飞灰可燃物含量,防止分离器和返料机构内发生二次燃烧而超温。运行中要定期察看返料的情况,监视返料器床层的温度是否正常。
(12)应确保合格的炉内浇注料及耐火耐磨材料质量及施工质量,防止因浇注料等材料塌落而引起结焦。
3、结语
循环流化床锅炉结焦不仅会影响到锅炉的安全稳定运行,甚至还会损坏设备。在流化床锅炉运行中,要认真做好冷态试验,保证良好的流化质量,同时要认真调整好煤量、风量,严格控制床温及料层差压等运行参数,这样可以避免流化床锅炉结焦。
锅炉运行方面技术论文(2)
锅炉运行方面技术论文篇二
锅炉经济运行技术浅谈
【摘要】锅炉机组运行的优劣在很大程度上决定了整个电厂运行的经济性。衡量燃煤发电厂经济性的主要指标是供电煤耗。供电煤耗的大小取决于发电煤耗和厂用电率,影响发电煤耗的主要因素是锅炉效率。因此,研究电厂锅炉的经济运行方式,对提高电厂的经济性具有重要意义。
【关键词】锅炉,经济,燃煤
1、概述。锅炉是国民经济中重要的热能供应设备。电力、纺织、造纸、食品、机械、冶金、化工等行业, 以及工业和民用采暖都需要锅炉供给大量的热能。锅炉是将燃料的化学能转变为热能的燃烧设备,它尽可能的提供良好的燃烧条件,以求能把燃料的化学能最大限度地释放出来并使其转化为热能,并利用热能加热锅内的水。
2、锅炉的分类。锅炉按照不同的方式分为以下几类:按锅炉的用途分为:生活锅炉、工业锅炉、电站锅炉和热水锅炉。按锅炉燃用的燃料分类可分为:燃煤炉、燃油炉和燃气炉。按燃烧方式分类可分为:层燃炉、室燃炉和介于二者之间的沸腾(流化床)炉。按有无汽包可分为:汽包锅炉和直流锅炉。按蒸汽压力分类可分为:低压锅炉、中压锅炉、次高压锅炉、高压锅炉、超高压锅炉、亚临界压力锅炉和超临界压力锅炉。按锅炉水循环方式分类可分为:自然循环锅炉、强制循环锅炉和复合循环锅炉。
3、锅炉的应用。利用锅炉产生的热水或蒸汽可直接为生产和生活提供所需要的热能,也可通过蒸汽动力装置转换为机械能,或再通过发电机将机械能转换为电能。提供热水的锅炉称为热水锅炉,主要用于生活,工业生产中也有少量应用。产生蒸汽的锅炉称为蒸汽锅炉,是蒸汽动力装置的重要组成部分,多用于火电站、船舶、机车和工矿企业。
4、锅炉的结构。锅炉是热能生成设备的主要构成,锅炉中的炉膛、锅筒、燃烧器、水冷壁过热器、省煤器、空气预热器、构架和炉墙等主要部件构成生产蒸汽的核心部分,称为锅炉本体。是由“锅”和“炉”两部分组成的。“锅”是汽水系统,它主要任务是吸引收燃料放出的热量,使水加热、蒸发并最后变成具有一定热能的热水或过热蒸汽。它由省煤器、汽包、下降管、联箱、水冷壁、过热器和再热器等设备及其连接管道和阀门组成。炉膛又称燃烧室,是供燃料燃烧的空间。锅筒的主要功能是储水,进行汽水分离,在运行中排除锅水中的盐水和泥渣,避免含有高浓度盐分和杂质的锅水随蒸汽进入过热器中。
5.锅炉的工作原理。锅炉主要有以下系统来完成燃料的化学能到蒸汽具备足够的动能(以煤粉炉为例):汽水系统、风烟系统、燃料(煤粉和助燃油)系统、制粉系统、灰渣系统等。制粉系统用于磨制合格的煤粉储存于粉仓内,通过给粉机,由一次风送入炉膛进行燃烧。煤粉在炉膛内和高温烟气充分混合燃烧加热水冷壁内给水,同时产生大量的高温烟气,经各级低温、高温过热器通过辐射、半辐射半对流、对流充分换热冷却后的烟气由风烟系统中的引风机在经过电除尘、布袋除尘器等使烟气粉尘达标后由烟囱排向大气,炉内给水通过各级吸热后,形成高温高压蒸汽输送出去。煤粉燃烧产生的炉渣通过灰渣系统输送出去。
6.锅炉的维护保养。在锅炉的日常运行过程中,各系统辅机运转正常,要注意维持各项参数在许可范围之内,严格控制压力、温度等超标,定期排污维持合格汽水品质,延长设备使用寿命。锅炉停运后仍要进行保养,锅炉保养的方法都是通过尽量减少锅炉水中的溶解氧和外界空气漏入来减轻锅炉的腐蚀。最常见的保养方法一般有湿式保养法、充氮置换法、烘干防腐保养法等几种。
7.锅炉的经济运行。锅炉机组运行的优劣在很大程度上决定了整个电厂运行的经济性。衡量燃煤发电厂经济性的主要指标是供电煤耗。供电煤耗的大小取决于发电煤耗和厂用电率,影响发电煤耗的主要因素是锅炉效率。因此,研究电厂锅炉的经济运行方式,对提高电厂的经济性具有重要意义。
由于炉膛内燃料的燃烧工况、温度水平、各级受热面的沽污与热交换状态以及辅助动力消耗的不同,其运行经济性也各不相同。必须进行精细的燃烧调整试验,以求得各种负荷下的最佳运行工况,作为日常运行调整的依据,以保证锅炉机组的经济运行状况良好。运行中应根据煤种变化掌握燃烧器特性、风量配比、一次风煤粉浓度及风量调整的规律,重视燃烧工况的科学调整,使炉内燃烧处于最佳状态。为了使燃料在炉膛内与氧气充分混合燃烧,实际送入炉内的空气量总要大于理论空气量。虽然多送入空气可以减少不完全燃烧热损失,但排烟热损失会增大,还会加剧硫氧化物腐蚀和氮氧化物生成。因此除通过合理的风粉配比、调节火焰的充满度和合适的火焰燃烧中心外还应依据锅炉的性能试验,设法改进燃烧技术,争取以尽量小的过量空气系数使炉膛内燃烧完全。
煤粉炉通常采取以下措施来提高锅炉的经济性能:
7.1合理配煤以保证燃煤质量。将各煤种精心混配,减少燃煤的大幅度变化,维持运行参数基本稳定。
7.2合理调整煤粉细度。煤粉细度是影响飞灰可燃物含量的主要因素。经济煤粉细度要根据热力试验进行选取。
7.3控制适量的过量空气系数。煤粉燃烧需要足够的氧气,但过多的冷空气会降低炉内温度水平,且使排烟容积增大。合理的过量空气系数应根据燃烧调整试验及煤种确定。
7.4重视燃烧调整。炉内燃烧状况的好坏、温度水平及煤粉着火的难易程度直接影响灰渣可燃物的含量。
为了考核性能和改进设计,锅炉常要经过热平衡试验。直接从有效利用能量来计算锅炉热效率的方法叫正平衡,从各种热损失来反算效率的方法叫反平衡。考虑锅炉的实际效益时,不仅要看锅炉热效率,还要计及锅炉辅机所消耗的能量。 单位质量或单位容积的燃料完全燃烧时,按化学反应计算出的空气需求量称为理论空气量。为了使燃料在炉膛内有更多的机会与氧气接触而燃烧,实际送入炉内的空气量总要大于理论空气量。虽然多送入空气可以减少不完全燃烧热损失,但排烟热损失会增大,还会加剧硫氧化物腐蚀和氮氧化物生成。因此应设法改进燃烧技术,争取以尽量小的过量空气系数使炉膛内燃烧完全。
8.排放锅炉烟气中所含粉尘(包括飞灰和未燃尽的煤粉)、硫和氮的氧化物都是污染大气的物质,未经净化时其排放指标可达到环境保护法规限定指标的几倍到数十倍。控制这些物质排放的措施有燃烧前处理、改进燃烧技术、除尘、脱硫和脱硝等。借助烟囱只能降低烟囱附近地区大气中污染物的浓度,不能彻底根除污染物。烟气除尘所使用的作用力有重力、离心力、惯性力、附着力以及声波、静电等。对粗颗粒一般采用重力沉降和惯性力的分离,在较高容量下常采用离心力分离除尘静电除尘器和布袋过滤器具有较高的除尘效率。湿式和文氏—水膜除尘器中水滴水膜能粘附飞灰,除尘效率很高还能吸收气态污染物。为了达到较高的除尘效率,一般燃煤机组通常采用多级除尘,电除尘、布袋除尘等并通过脱硫脱销,使烟气的各项指标达到国标要求。
9.锅炉的发展。锅炉未来将向着进一步提高锅炉和电站热效率的方向发展;将进一步降低锅炉和电站的单位功率的设备成本;将极大的提高锅炉机组的运行灵活性和自动化水平;将会发展更多锅炉品种以适应不同的燃料;将会继续提高锅炉机组及其辅助设备的运行可靠性;将会下大力气采取措施减少对环境的污染。
参考文献:
[1]张爱存.发电厂燃煤锅炉运行调整与经济性分析[D].华北电力大学 毕业 论文,2003.
上一篇:翻译论坛2020年期刊
下一篇:时代教育杂志社唯一官网