欢迎来到学术参考网
当前位置:发表论文>论文发表

地球物理学报参考文献模板

发布时间:2023-02-11 13:11

地球物理学报参考文献模板

刘福田、曲克信等,1989.中国大陆及其邻近地区的地震层析成像,地球物理学报.32,281~290.

朱介寿、曹家敏等,1997,中国及其邻区地球三维结构初始模型的建立,地球物理学报,40(5)627~648.

袁学诚、华九如,1996.中国地球物理图集,地质出版社.

刘建华、刘福田等,1989.中国南北带地壳和上地幔的三维速度图像,地球物理学报,32,143~152.

许志琴、姜枚、杨经绥,1996,青藏高原北部隆升的深部构造物理作用,地质学报,70.195~206.

金振民、高山,1996,底侵作用及其壳幔演化动力学意义,地质科技情报,15;2,1~12.

杨文采,1993.地震道的非线性浑沌反演——Ⅰ.理论与数值实验,地球物理学报.36,222~226.

杨文采,1993,地震道的非线性浑沌反演——Ⅱ.关于Lyapunov指数和吸引子,地球物理学报,36,376~387.

许忠准、汪素云、黄雨蕊等,1989.由大量地震资料推断的我国大陆构造应力场,地球物理学报,32:636~646.

李春昱、王荃、刘雪亚等,1982,亚洲大地构造图说明书,地质出版社.

程国良、孙宇航、孙青格等,1995,显生宙中国大地构造演化的古地磁研究地震地质,17:69~78.

任纪舜,1994,中国大陆的组成、构造、演化和动力学,地球学报,94:3~4期,5~13.

Barton C.C..and Larsen E..l geometry of two-dimensional fracture and fault maps at Yucca Mountain,southern :nson(ed.). Fundamental of Rock .74~84.

Bird P.,ental delamination and the Colorado .,84,7561~7571.

Bott M.H.P.,1982,The Interior of the Earth:its structure,constitution and er.

Dott J.R.H.,and Batten R.I...ion of the -Hill Book Company.

Dziewonski A.M..g the lower mantle:Determination of later hetcrogeneity in P velocity up to dcgree and order .,89.5929~5952.

Forsyth D.W..face loading and estimation of the flexural rigidity of the continental ..90.12623~12632.

Fukao Y.. al.,ic implication of the whole mantle P-wave .100,4~23.

Hao scientific,Singapore.

Jacobs J.A.. earth's inner ,172.297.

Jacobs J.A..1974,A Textbook on .

Kalia R.K..and Vasishta P.(ed.).g,Location and cr Science Pub.

Korvin G.,Fractal Models in the Earth er,1992.

Kremenetsky A.A..and Krivtsov A.I.. and Cross-Sections of the Earth's crustbased on Superdeep Drilling Data of .

Liu Guangding,Hao Tianyao,Liu Yikc,1994,Tectonic framework of China and its relation with mineral e Sciences ..42:89~95.

Lin Watts D.R..magnentic constraints on Himalayan-Tibertan tectonic evolution in leton etal.(et)“Tectonic evloution of the Himalayas and Tibet.”.,A326,177~188.

Maruyama S..1994,Plume . .100.24~49.

Morgan W.J..t tracks and the opening of the Altantic and India ..The oceanic Lithosphere(The . 7),Wiley,443~487.

Nelson K.D.. unified view of craton evolution motivated by recent deep seismic reflection and refraction .,105,25~35.

Scheidegger A.,1982,The Principles of er-Verlag.

Schuster H.G..1987,Deterministic Chaos,An .

Shaw R.S.,1981,Strange Attractors,Chaotic Behaviour and Information orsch.36A.80.

Sleep N..ts and mantle plumes:some ..95,6715~6736.

Tanimoto T.,1990,Predominance of larger-scale hetorogeneity and shift of velocity anomalies between the upper and lower ,38,493~509.

Wang Jiyangetal..rmics in logical g.

Woodhouse Dziewonski A.M.,g the upper mantle:Three dimensional modeling of earth structure by inversion of seismic .,89,5953~5986.

Yang sical investigations for Pre-site selection of Dabie-Sulu scientific ct in“International workshop on Pre-site selection of scientific drilling in Dabie-Sulu UHPM Region”,holded at na.18~20 August.40~43.

Yang Wencai.1997,Crustal structure and development of Sulu UHPM Terrane in east-central China..Episodes.20:2.100~103.

Yang ormity like reflection pattern under the Moho in Sulu ental Dynamics.2:3,in press.

用图像处理技术研究油气田的航磁航放异常

张玉君

(地质矿产部航空物探遥感中心,北京100083)

摘要:用图像处理技术对下述与油气田异常有关的问题进行了研究:快速提取高频弱磁异常,估算高频磁异常源的埋深,放射性异常性质的归一化处理,典型异常剖面的分析,以及油气远景评价,提出了4个有希望含油气的异常。经验证,这4个异常中有3个见到油气显示,其中1个为工业气流。

关键词:油气田,烟囱效应,图像处理,航放Th归一化处理,油气远景评价。

一、前言

近10年,非地震物探方法寻找油气田的工作越来越受到人们的重视[1-8],原因之一是地震勘探生产费用日益昂贵;另一方面,近10年航磁、航放测量技术发生了重大变化,航空光泵磁力仪的灵敏度从1nT提高到0.1~0.01nT,大体积方柱形NaI(Tl)晶体和数字电路被引入航空放射性测量仪,不仅使其灵敏度提高了10多倍,而且使强度测量被4道(K、Th、U及总道)或多道(256或512道)能谱测量所取代。这一切促使物探工作者在油气勘查中更加注意应用具有大面积低消耗特性的航空物探技术。

柴达木中部地区的高灵敏度航磁、航空伽马能谱测量飞行线距1km,飞行高度约90m;安装在双水獭型飞机上的航放、航磁综合站包括GAD-6型4道能谱仪、MAP-4型质子旋进磁力仪、磁带收录机及多普勒雷达、航空摄影两种导航定位设备。能谱仪使用了3箱NaI(T1)晶体,总体积为48L,磁力仪的灵敏度为0.5nT。

放射性伽马测量普查油气已有50多年的历史,实践表明,在油气田上方有偏低的放射性异常,并在油气构造边缘存在比本低高的异常峰值。1979年美国Donovan T.J.等人在Cement油田发现了高频磁异常[13],10多年来人们公认了这种与油气田相关的高频磁异常[9]的存在。尽管对产生这些异常的机制存在不少争议,但最被接受的假说是烟囱效应,通常认为几乎所有的储油构造都从深部排出水份,烟囱效应将碳氢化合物和其他有机衍生物通过喷溢、溶液散逸、气体扩散等三种渗漏作用带到地表;地层中的液体和气体在从油、气层向上运移过程中,由于后成作用形成磁铁矿并沉淀放射性元素,从而形成可被航测发现的航磁航放异常,并作为判断地下赋存有碳氢化合物的标志。

提出用图像处理技术来研究这一问题,基于两点考虑:航空物探的大面积宏观数据通过图像处理可以快速获得直观结果;图像系统具备既适合位场数据(航磁)又适合统计学性质数据(航放)的处理功能。本文所做基础图像网度为317.5×317.5m2。除航磁、航放外还利用了陆地卫星影像 MSS(7、5、4波段)数据。

二、异常特征研究

1.高频弱磁异常的快速提取

柴达木盆地是我国重要的含油气盆地之一,在测区内已有多处井下油气显示,测区内人烟罕见,人文干扰较少,为研究油气田后成磁铁矿引起的高频弱磁异常特征的理想试验场地。

测区磁场动态范围为0~533 nT,在0~127 nT的低端仅有12个像素,占全图面的5/100000,并集中在东北部的局部负异常内,故采取限幅拉伸的方法:

张玉君地质勘查新方法研究论文集

式中 z(x,y)为磁场异常,单位nT,l(x,y)为图像灰度级或称灰阶。

每一灰阶代表1.598 nT,可见经限幅拉伸处理,使磁原始图像保留了更多的弱异常信息,再按(2)式[10]制作立体阴影图(彩版附图9(A))。

张玉君地质勘查新方法研究论文集

式中 θ为光源方位角;φ为光源高度角;λ为磁面法线矢量与光源矢量的夹角。

测区磁场彩色立体阴影图显示出沿着从西北角到东南角对角线两侧成群地存在着高频弱磁异常,其宽度为1~2km,幅度为2~15 nT,在黑白图像上有3~20灰阶的变化。

文献[2]认为,钻井套管和井盖可能引起幅度为2~5 nT的异常,但其波长更短(<300m),也就是说在317.5×317.5m网度的图像上,套管和井盖所引起的异常仅表现为孤立点。为了突出有用弱磁异常,用图1中的模板通过褶积功能制作了水平二次导数图像,通过邻域滤波消除孤立异常点。

彩版附图9(B)为航磁二次导数、经归一化处理U及油气异常分布叠加图像。青色点群为航磁水平二次导数异常;红色为经归一化处理 U;绿色和蓝色椭圆为已知异常位置;红色椭圆为新发现的有希望异常。10个已知油气显示全部都具有高频弱磁异常,这有力地表明这种仅用数分钟即可完成的磁场二次水平导数图对于提取与油气田有关的高频异常具有重要意义。

图1 求导褶积模板

2.高频弱磁异常的磁源埋深

对磁场(经镜像对称扩边)进行快速富氏变换,然后对变换结果计算功率谱,从功率谱图像上取径向剖面值,最后做径向功率谱图(图2),为了做图方便直接用图像上的点数作为横坐标。

该谱图表明全图由低频功率谱Pl和高频功率谱Ph组成,低频部分在该区主要由前泥盆系变质岩的磁性引起,高频部分主要由浅部后成作用局部矿化引起,用参数法求磁源埋深[14]

张玉君地质勘查新方法研究论文集

取对数

张玉君地质勘查新方法研究论文集

图2 径向功率谱

如果用半对数坐标成图,式(4)为线性方程,-2H与-2h分别为低频段(1~8点)与高频段(12~50点)的直线斜率,lna与lnb分别为二直线的截距,△r为径向频率间隔。

r=2π/(点数×点距)(5)

本测区点数为512,点距为317.5 m,∆r=38.65×10-6m,用最小二乘法求得二直线的截距和斜率分别为

a=254.1429,Kt=-13.5595, b=113.7212,Kh=-0.9182,

张玉君地质勘查新方法研究论文集

式中S被导入是因为图像处理所显示的对数功率谱值仅有相对意义,S的单位为m,其值可通过某已知异常源埋深求得。已知低频磁异常系由埋深为-5000至-15000m的前泥盆系变质岩引起,则

张玉君地质勘查新方法研究论文集

将H代入,S为0.0285~0.0855m。

张玉君地质勘查新方法研究论文集

即高频弱磁源埋深在0.3~1km之间。

3.航放图像对油气藏的反映

航放三元素合成图像[11-12]示于彩版附图9(C),叠加于其上的还有航磁二次水平导数异常。红为K,其含量变化为0~7.8%;绿为Th,其含量变化为0.0—39×10-6;蓝为U,其含量变化为0~14.9×10-6,彩版附图9(D)的上图为其色标;黄色点群为航磁水平二次导数异常。航放图像较之航磁水平二次导数对于油气显示的相关性要复杂得多,虽然并非所有已知油气显示都有清楚的航放异常,但还是有一些含油气构造反映较清楚,如彩版附图9(C)上的5号异常为已知鸭湖含油气穹隆。在双元素图像(彩版附图10(A),彩版附图9(D)的下图为其色标)上鸭湖构造也十分明显;在该图上部为R—Th,G—K,B—K合成图像,箭头所指为已知东台吉乃尔含油气构造;下部为R—Th,G—U,B—U合成图像,箭头所指为已知涩北1、2号含油气构造,它们都表现为周边高中间低的放射性异常。

如何增强或突出航放数据中与油气有关的信息,关键在于减少或压制岩性影响,为此,我们采用了主分量分析(在图像处理中称之为KL变换)和Th归一化处理[15]。

彩版附图10(B)为航放三元素主分量分析(即KL变换)图像,彩版附图9(D)的上色标亦为其图例;图中a、b、c分别为第1、第2、第3主分量,以KL(1)、KL(2)、KL(3)表示,d为其合成图像。各主分量的组成为:

张玉君地质勘查新方法研究论文集

式中,Xk、XTh、X。分别代表某像素K、Th、U之含量值。

在第1主分量ξ1中以K为主,减少了Th的作用;由于在大部分沙岩、砾岩中K和Th有正相关性,故经此处理的KL(1)大大压制了岩性的影响,突出了K与Th不相关的地质过程的反映,如钾盐的沉积及烟囱效应等。

ξ2综合了K、Th、U的变化,反映全区地质环境,对研究油气局部异常作用不明显。

ξ3中以U为主,又减弱了Th和K的作用,大大压制了岩性影响,对研究油气局部异常很重要。

为减少岩性影响,根据文献[15],在整理地面或航空放射性测量数据时,常常除以Th含量值,称之为Th归一化处理。在做这种处理时,认为Th能较多地代表砂砾沉积物中岩性的变化,K、U与Th在这些沉积物中有一定正相关关系,除以Th值便减少了或压制了岩性的影响。我们的改进在于在归一化处理之前,先做相关分析,求出相关系数,再按相关系数做Th归一化处理。彩版附图10(C)即为K和U经归一化处理前后的对比图像,左边为原始图像,彩版附图9(D)的上图为其色标;右边为归一化处理结果。

表1为已知及新发现异常统计表,共8项特征:K原始图像、K经KL变换、K经Th归一化处理、U原始图像、U经KL变换、U经Th归一化处理、U晕圈及MSS(7、5、4波段)图像上的晕圈反映。已知10处油气显示中有8个(占80%)有明显或较明显的航放异常;其典型特征是:在Th归一化图上中心部位K低、U低和U高值的外围晕圈。

Th归一化处理的作用对下述含油气构造的异常十分明显:使V1、V2、V5的K高变为K低,使V1、V5的U高显著降低。故Th归一化处理对于统一异常性质有明显效果。

4.典型异常的剖面图像

以鸭湖(V2)和红三旱四号(V1)做为典型的已知异常进行剖面研究。

鸭湖异常有以下典型特征(彩版附图10(D)):

(1)U在归一化处理前后(彩版附图10(D)右图中之蓝色曲线)异常中心部位都是低值;

(2)K在异常中心部位原为高值,经归一化处理后也获低值(彩版附图10(D)右图中之红色曲线);

(3)在异常周围U有明显的高峰和晕圈现象;

(4)有明显的高频弱磁异常,且中心处更强(彩版附图10(D)右图中之绿色曲线)。

表1 已知及新发现异常统计表

红三旱四号的异常特征为:

(1)U在归一化处理前异常中心部位为强高值,经归一化处理后显著降低;

(2)K在归一化处理前为高值,经归一化处理后为低值;

(3)经归一化处理后在异常周围U有明显的高峰,反映出晕圈现象;

图3 红三旱四号地面能谱测量剖面

(4)也有明显的高频弱磁异常。

综合典型异常分析,与油气藏有关的航磁航放异常识别标志为:航磁局部高频弱变化;Th归一化处理后局部低钾、低铀(也有达不到低值);以及铀在异常周边的高值晕圈现象。

我们对红三旱四号异常进行了地面检查,用4道能谱仪进行了剖面测量,总长10km,点距100~200m。所获剖面(图3)与空中测量结果一致,在异常中心部位为K高、U高和Th高,从中心向两侧先降低后又升高。

三、对含油气远景评价的讨论

本测区内已知含油气构造或点共10处,如表1所列:红三旱四号(V1,气),鸭湖(V2,气),马新高点(V4,油),东台吉乃尔(V5,见工业油气流),南陵丘(V6,油气),驼峰山(V7,油气),涩北1号(V8,油气),涩北2号(V9,油气),涩聂北(V12,气),涩聂东(V3,气)。这10个已知油气显示无一例外都有明显的航磁水平二次导数异常。前8个有明显或较明显的航放异常显示,表现为在经Th归一化处理的K元素图像和U元素图像上为中心部位的低值及U的周边升高的晕圈现象。后两个已知区航放异常不够明显,主要原因是,这两个已知油气显示点处于钾盐类沉积丰富地段,钾引起的放射性变化强于与碳氢化合物有关的弱放射性异常,后者未能明显表现出来。故本测区已知油气显示构造或点与航磁水平二次导数异常的吻合率为100%,与航放K、U异常的吻合率为80%。

李芦玲等李芦玲等.柴达木盆地中部地区航空磁测详查结果报告.地质矿产部航空物探遥感中心,1985。曾用传统的方法对本测区含油气远景进行了评价,圈出8个最有希望的含油气区,图像处理也完全证实了这一评价。经图像处理,我们认为还应补充提出以下4个有希望的含油气异常区:

(1)依克雅乌汝背斜构造(V3),位于鸭湖含油气背斜构造东30km,台吉乃尔含油气背斜北15km。其航磁航放、卫片异常均很典型,且与鸭湖异常极为相似,异常特征依据充分,可做为新发现的最有希望的含油气异常点。

(2)南陵丘西异常(V10),位于南陵丘已知含油气构造西约5km。有局部高频低幅磁异常、低钾、低铀及较明显可辨之周边闭合的高值U晕圈。可做为新发现有希望的含油气异常。

(3)洪上异常(V11),位于台吉乃尔洪积扇上部。除有局部高频弱磁异常外,有低U及隐约可见的周边U高值晕圈,可做为新发现较有希望的含油气异常。

(4)南八仙异常(V14),位于仙西南高点北缘。有局部高频弱磁、低钾和低铀异常。也可做为新发现之较有希望的含油气异常。

如前所述彩版附图9(B)上展示了l0处已知(蓝、绿、黄色椭圆)和4处新发现油气异常(红色椭圆)。并与归一化处理后之U(红)以及航磁水平二次导数异常(青点)叠加在一起。

上述远景评价于1990年完成,根据能源部1991年在柴达木中部地区进行的勘探成果,对比如下,上述4个含油气远景区中的3个见到了油气显示:即依克雅乌汝背斜构造(V3)于“伊中1”井见油气显示,洪上异常于“台中1”井见工业气流,南八仙异常于“仙3”井见油气显示。

本工作所预测的4个含油气远景区中有3个见到了油气显示,说明航磁、航放等综合参数通过图像处理所做油气田异常特征的研究是有效的。常规方法没有发现的异常,却由本方法预测,并已得到验证,说明该方法的价值。

参加野外验证的还有水恩海、史殿林、郭毅,屏幕图像均由杨星虹拍摄,能源部石油勘探开发科学研究院遥感地质所叶和飞给予了支持。在此表示诚挚的谢意。

参考文献

[1]Wold,R..郭武林整理.利用航磁和放射性测量直接寻找油气藏.地质科技动态,1984,(24):21~24.

[2]管志宁.利用航磁探测与化学剩磁有关的油气矿床.国外地质勘探技术,1985,(7):18~23.

[3]王家林,万明浩,金国英.磁测找油的进一步试验及有关问题的研究.石油地球物理勘探,1985,(20):397~404.

[4]郭玉琨编译.苏联地球物理直接找油方法概况.石油物探译丛,1985,(1):90~95.

[5]王秀文摘译.石油和天然气放射勘探的新远景.地质科技动态,1984,(18):17~20.

[6]赵改善编译.直接勘探油气田的放射性方法.石油物探译丛,1987,(6):95~104.

[7]李淑仪.核技术在石油天然气和地热勘探中的应用.国外地质勘探技术,1986,(4):22~27.

[8]王锡田编.油气勘查中用遥感方法检测烃类微渗漏.地质科技动态,1987,(11):13~16

[9]蔡振京.高精度大比例尺(1∶50000)航空物探在油气藏勘探中的应用.物探与化探,1989(13):401~410.

[10]Teskey,D.,Broome,J..Computer programs for production of shaded relief and stereo shaded relief paper.84—1 B,375—389,1984

[11]Zhang ation of image processing techniques to airborne radiometric ct of the Second Symposium on Exploration Geophysics,Xian,China,525—526,1986

[12]Zhang l image processing of airborne radiometric and magnetic data from central chaidam Overview of Exploration Geophysics in China,517—535,1989

[13]Donovan,T.J.,Forgey, R.L, Roberts, A.A..Aeromagnetic detection of diagenetic magnetite over oil in ofthe American Association ofPetroleum Geologists,63,245—248,1979

[14]Donovan,T.J.,Brien, D.P..Bryan,J.G., Cunningham, K.I..Near surface magnetic indications of buried gnetic detection and separation of spurious signals, IGARSS' 87 Remote Sensing: understanding the earth as a system,219—232,1987

[15]Alton etrics—a practical exploration n Oil Reporter'March,173,1982.

A STUDY OF AERO-MAGNETIC AND ETRIC ANOMALIES IN SOME OIL-GAS FIELDS BY IMAGE PROCESSING TECHNIQUES

Zhang Yu jun

(Center of Aero-Geophysics and Remote Sensing, Ministry of Geology and Mineral Resources , Beijing 100083)

Abstract

This work represents the results of study of the following problemsby image processing techniques: the quick extraction of weak magnetic anomalies with high frequency, the evaluation of depth for highfrequence magnetic anomalies,the normalization of radiometric anomalies, the analysis of typical anomalous profiles and the prediction of perspective anomalies to find oil and new perspective anomalies for oil gas were study had been finished at the beginning of ing with the results of exploration in 1991, we have been encouraged by the fact that not only on 3 out of the 4 anomalieas the oil and gas werefound, but also on one of them the gas was found.

Key words Oil-gas filed,The chimney effect,Image processing, The second holizontal gradient of magneticfield, The power spectrum, The Th normalization for aeroradiometrics, The perspective evaluation for oil-gas.

原载《地球物理学报》,1994,Vol.37,No.1。

水合物层下伏游离气渗漏过程的数值模拟及实例分析

苏正1,2,曹运诚1,吴能友1,22,Lawrence s3,陈多福1,2

苏正,(1980—),博士,助理研究员,主要从事天然气水合物及盆地流体活动的数值模拟研究,E-mail:。

注:本文曾发表于《地球物理学报》,2009,12:3124-3131,本次出版有修改。

1.中国科学院边缘海地质重点实验室/广州地球化学研究所,广州 510640

2.中国科学院广州天然气水合物研究中心/可再生能源与天然气水合物重点实验室/广州能源研究所,广州 510640

ment of Earth&Atmospheric Sciences,Cornell University,Ithaca,New York 14853-1504,USA

摘要:海洋环境中天然气水合物层是理想的毛细管封闭层,游离气被抑制在水合物层下,游离气层的气体压力随气体聚集和气层厚度的增加而升高,当气压超过封闭层的毛细管力时,游离气会克服毛细管进入压力、刺入上覆封闭层孔隙空间,毛细管封闭作用随之消失,从而形成水合物下伏游离气向海底的渗漏。通过对该过程进行的数值模拟计算表明:渗漏气体是以活塞式驱动上覆沉积层中的孔隙水向海底排出,水合物稳定带内流体渗漏速度随水流柱高度的减小而增加,当水流阻抗大于相应沉积层段的静岩压力时,沉积层将转变为流沙,流沙沉积被海流移除后便在海底留下凹陷麻坑。麻坑形成后流体运移通道演化为气体通道,气体快速排放。麻坑深度主要取决于游离气层的厚度和水合物封闭层(底界)的深度,而与沉积层的渗透率无关。麻坑深度一定程度上指示了渗漏前水合物层下伏游离气层的资源量。对布莱克海台海底麻坑的深度数值模拟计算表明,形成4 m深的海底麻坑需要至少22 m厚的游离气层。

关键词:天然气水合物;毛细管封闭;游离气渗漏;麻坑;布莱克海台

Numerical Computation and Case Analysis of the Venting Process of Free Gas Beneath Hydrate Layer

Su Zheng1,2,Cao Yuncheng1,2,Wu Nengyou1,2,Lawrence s3,Chen Duofu1,2

Key Laboratory of Marginal Sea Geology/Guangzhou Institute of Geochemistry,Chinese Academy of Sciences,Guangzhou 510640,China

Guangzhou Centerfor Gas Hydrate Research/CAS Key Laboratory of Renewable Energy and Gas Hydrate/Guangzhou Institute of Energy Conversion,Chinese Academy of Sciences,Guangzhou 510640,China

ment of Earth&Atmospheric Sciences,Cornell University,Ithaca,New York 14853-1504,USA

Abstract:A hydrate layer is an ideal capillary seal,beneath which free gas is overpressure increases as gas accumulates and gas column ary seals have the property that they fail completely when gas pressure reaches the point that they are invaded by gas,and thereafter they offer little resistance to gas the seepage is triggered,the venting gas will push the overlying water upward at increasingly higher velocities as the gas “piston”approaches the cal model shows that as the water velocity increases,the near surface sediments will become quick at a depth that the resistance of water flow exceeds the hydrostatic pressure of the sediment hosting the water quick sediments can then be removed by bottom ocean currents,leaving a hollow pockmark on the fter,afree gas pathway isformed below the pockmarks and the reservoir gas drains pockmark depth is afunction of thickness of free gas column beneath the hydrate and depth of the hydrate seal (bottom of hydrate layer).Interestingly,pockmark depth does not depend on sediment rk depth implies the resource amount offree gas beneath hydrate model shows that a 22-m-thick free gas layer at least is needed toform a 4-m-deep pockmark on the rise of Blake ridge.

Key words:gas hydrate;capillary seal;gas seepage;pockrnarks; Blake ridge

0 引言

在海洋环境水合物稳定带内孔隙水溶解甲烷浓度超过甲烷水合物形成的溶解度时,溶解甲烷会结晶形成水合物,随着水合物含量的增加,形成水合物层圈闭,并在其之下发育游离气层[1-4]。在特定的条件水合物层之下的游离气沿通道向上渗漏进入海底,并在海底形成麻坑、自生碳酸盐岩、生物群落、气泡羽状体,如俄勒冈外海水合物脊[5]、布莱克海台等[6]、北刚果陆坡[7-8]、挪威外海[9]以及中国南海[10]。虽然水合物层下伏游离气向上渗漏活动在水合物发育区比较普遍,但是水合物层下伏游离气向上渗漏的机制和泄漏过程中的流体动力学特征,及流体渗漏对海底沉积地层的破坏(形成麻坑)过程并不清楚。

水合物层下伏游离气受到水合物层毛细管作用的封闭,随气体聚集和气层厚度增长,水合物下伏游离气的压力持续增加,当气体超压克服毛细管封闭作用后气体渗漏被激发,超压气体推动孔隙水向上排出,在海底形成麻坑,麻坑深度反映了流体的破坏强度和游离气层的超压幅度。因此,本文将应用水合物层毛细管封闭机理和沉积孔隙流体渗漏动力学,研究水合物稳定带之下游离气如何向上突破的动力学过程,建立游离气层压力状态与麻坑深度之间的数值模型,通过海底麻坑特征揭示水合物系统游离气层的演化规律。

1 毛细管封闭及游离气渗漏机理

海底沉积层中存在2种毛细管力封闭作用。第一类毛细管力封闭作用是存在于小型的气藏顶部的毛细管封闭作用,属于低渗透率的气体捕集封闭。封闭层的孔隙度和渗透率较低,而水更倾向存在于较小的孔隙空间,因此封闭层的孔隙空间完全被水占有,而封闭层之下含气层的孔隙度和渗透率相对较高[11]。碎屑沉积物孔隙介质一般为水润湿相,气液界面处的毛细管力阻止天然气进一步向上运移,使气体处于孔隙较大的沉积层段,但当气体压力超过相应孔隙的气体的毛细管进入压力时,超压气体将刺入封闭层的小孔隙,气藏开始排气,并在上覆沉积层中产生气体的渗漏通道。侵入毛细管压力由拉普拉斯方程给出[12]:

南海天然气水合物富集规律与开采基础研究专集

其中:γ为界面张力,取值0.027 N/m[13],rf和rc分别代表小孔隙和大孔隙的有效孔隙半径。

第二类毛细管封闭作用存在于气-液二相共存的沉积孔隙中,气液二相均可流动[14-15]。由于整个沉积体是由沉积颗粒构成的孔隙介质,孔隙水优先占据并被吸附在孔隙的喉道位置,具有小孔径的孔喉部位产生的毛细管力抑制了孔隙腔中气体的流动。此类毛细管封闭条件是孔隙内2种流体共存,且二者均可流动。在渗漏活动初期这种情况出现在气流柱顶部和气柱周围的气-水混合的部位,沉积层中毛细管封闭线的位置随气柱的发育而变迁,这种毛细管封闭作用约束了气流柱的形状和发育,并使气流柱有一个相对平坦的顶部;同时也会形成一个相对稳定的通道直径,这意味着渗漏气柱顶部的气-水界面相对平坦,在理想均质介质中渗漏气体以“活塞”式向上推进。但是当渗漏气柱遇到渗透率在横向上不均匀或不连续(如断层)的沉积介质时会出现分支或扭曲的气体通道。

海洋环境扩散型水合物稳定带与下伏游离气之间属于第一类毛细管力的封闭,在水合物稳定带底部水合物含量最高[3,16],水合物的形成降低了孔隙介质的有效孔隙度和渗透率,使水合物层的孔隙度低于下伏游离气层的孔隙度,水合物层的有效孔隙半径小于游离气层的有效孔隙半径。亲水性的水合物沉积层内除水合物外的其余孔隙空间被水占据,而下伏沉积体的孔隙空间完全被气体充填,水合物层与游离气层之间就存在一个上覆孔隙水与下伏游离气的界面。因此在水合物层与游离气层界面(大孔隙与小孔隙之间)上产生毛细管力,其方向指向孔隙半径较大的含气层,阻止下伏气体进入上覆含水层(水合物层),抑制气体向上运移。但是当下伏游离气层中的气体压力超过上覆水合物封闭层的毛细管力时,超压气体将刺入水合物封闭层,使水合物层的毛细管封闭作用完全失效或仅剩很小的封闭作用,气体泄漏开始。超压的气体渗漏进入水合物稳定带后,随着气柱的增长气体逐渐侵占原有孔隙水所占的孔隙空间,驱使孔隙水向上排出,并最终泄漏进入海底。水合物稳定带内气柱的增长过程受第二类毛细管封闭作用的控制,使气流柱以“活塞”式增长,而没有出现气流弯曲和分支,这与地球物理资料显示的近于垂直的流体渗漏通道(气囱)特征一致[8-9,17-19]。

图1给出了海洋水合物层下伏游离气渗漏过程。游离气在水合物层底界之下聚集,气层厚度和气体超压逐渐增加(A),当气体压力超过水合物封闭层的毛细管力时,高压气体会在封闭薄弱点或气层最顶端刺穿封闭,使水合物毛细管封闭失效(B)。气流柱在高压作用下向上推进,并驱使上覆沉积孔隙水向外排出。气流柱高度(hg)逐渐增长,而水流柱高度(hw)相应缩短(B到C过程)。如果气压驱动力保持相对恒定,由于岩层对水的黏滞力(或水流阻抗)远大于其对气的黏滞力(或气流阻抗),随水流柱高度hw减小,流体渗漏速度将越来越快,在单位长度水流柱上的压降(等于岩层对水流的黏滞力)随流体速度的增长而增加。在气流接近海底时流体速度明显增强,浅层水流阻抗(即水流对地层的作用力)超过相应沉积体的静岩压力,浅层含水沉积将被流沙化,当流沙化的沉积物被海底底流搬运后,便在海底形成“新鲜的”麻坑,此时麻坑下形成单一的气体运移通道(D)。由于气体黏度远小于水的黏度(约为1/60),气体排放异常迅速,游离气藏中气体会很快排干,流体渗漏通道中的气流逐渐退化(E),孔隙流体压力回归静水压力,孔隙水重新占据水合物封闭层和流体渗漏通道的孔隙空间,在气量通量减小体系温度降低的过程中伴随者水合物的生成(此文中不做详细论述),并因此减小了流体流动速度,少量气体仍可滞留在流体渗漏通道内,在地震记录上显示为气烟囱,水合物层底部的毛细管封闭作用恢复,水合物层之下游离气的聚集过程再次启动(F)。

图1 水合物下伏游离气渗漏概念模型示意图[11]

Z为海底以下深度,h为水合物稳定带厚度(或水合物封闭层深度)。黑色带表示毛细管封闭层,浅灰色表示气体所占据孔隙沉积层。A.气体被封闭在水合物层之下;B.气体刺穿封闭层开始泄漏C.气柱高度增加,推动水流向外排出,水流柱高度相应缩短,流体运移速度不断增加;D.含水流沉积中孔隙压力超过静岩压力,在海底出现麻坑,形成单一的气流通道;E.游离气藏中的天然气被逐渐排空,孔隙超压消失,流体通道中的气流柱逐渐退化;F.气流柱完全消失,在海底留下气烟囱,并有水合物生成,水合物封闭作用恢复,并开始新的气体聚集

2 游离气渗漏过程的数学模型

气体渗漏过程中(图1)气柱和水柱都是在游离气超压的驱动下流动,流体运移的总驱动力等于气体超压(ρw-ρg)gd。气流柱不断增大,并且以同一速度推动渗漏通道内的上覆孔隙水向上流动。假定水合物稳定带为一种均质孔隙介质,渗漏通道内流体(水和气)的渗漏速率相同,孔隙介质内流体渗漏模型可用达西定律描述为

南海天然气水合物富集规律与开采基础研究专集

其中:Δp为流体运移总推动力,是施加在气流柱和水流柱上的压降之和(Δpg+Δpw),或者是气流阻抗与水流阻抗之和,等于气层底部的超压(ρw-ρg)gd;ρ为流体密度;d为游离气层的厚度;μ为流体黏度;V为流体速度;k为沉积体的渗透率;krg和krw分别为沉积体孔隙气和水的相对渗透率;hg和hw分别为气流柱和水流柱的高度。

假定气流柱中气的饱和度和水流柱中水的饱和度均为1,气和水的相对渗透率为1。由方程(1),流体(气体和水)的运移速度表示为

南海天然气水合物富集规律与开采基础研究专集

在方程(2)中,若 可知流体运移速度随气流柱高度(hg=h-hw)的增长而增加。对方程(2)进行积分得到气柱增长方程:

南海天然气水合物富集规律与开采基础研究专集

利用方程(3)既可以计算渗漏气流柱增长到某一高度所需要的时间,也可以计算某一时间点水合物稳定带内气流柱的高度。

由方程(1)和方程(2)可知,孔隙介质中单位长度流体柱所受阻抗随气流柱高度的增加(或水流柱高度的减小)而增加,也就是说沉积物格架所受流体的反作用力(流体阻抗)逐渐增加,当流体阻抗超过相应沉积体的静岩压力时,相应沉积层将被流体化而成为流沙[20],渗漏流体速度须满足 。流沙沉积被海流移除后在海底形成麻坑,被流沙化沉积体的底界确定了麻坑深度。用 替换方程(2)中流体速度V,麻坑深度hpm替换水流柱高度hw,即可得到麻坑深度方程:

南海天然气水合物富集规律与开采基础研究专集

方程(4)中,若μw≌60μg、krw≌krg≌1(假定水流柱中水的饱和度和气流柱中气的饱和度近似为1),方程(4)可简化为

南海天然气水合物富集规律与开采基础研究专集

在一定的温压条件下流体密度和黏度为常数[12]。因此,方程(5)中麻坑深度可近似为水合物下伏的游离气层厚度(d)和水合物封闭层深度(h)的函数,与沉积体的渗透率无关。模型计算中所有参数取国际标准单位。

3 模型应用及讨论

美国卡罗莱纳外海的布莱克海台区是典型的水合物发育区,既有完美的BSR显示,又有游离气的渗漏活动及在海底形成的麻坑[6,21-22]。大洋钻探计划(ocean drilling program)1 64航次对布莱克海台进行了钻探取心研究,其中997站位钻至海底之下750 m,穿过了BSR(海底之下450 m),其中180~462 m 层段含水合物,水合物平均饱和度为6%,位于水合物稳定带底部(462 m)的水合物体积分数最高为24%[4]。996站位于布莱克底辟链的最南端,处于997站位西北98 km,最大钻孔深度为63 m,刚好位于麻坑之中,地震剖面显示该区BSR深度为440 m,深部底辟作用使上覆地层变形、形成小型断层,成为有利的流体渗漏通道,在海底发育有深4 m、直径50 m的麻坑,并且正在发生气体渗漏(图2),钻探获得的水合物体积分数高,最高达沉积孔隙的99%[6,21-23]。

驱动流体运移的气体超压取决于游离气层的厚度。如果下伏游离气层厚度达100 m(图1),其总的流体驱动力(等于气体超压)可达到0.8 MPa;如果游离气层厚度为22 m,流体超压驱动力为0.18 MPa(图3最左端A点)。渗漏开始时水流柱高度分数(等于hw/h)为1,总水流阻抗等于气体总超压,整个气流柱高度增加而降低。但是由于水流速度增加,施加在单位长度水流柱上的驱动力和相应的黏滞力增加,水流阻抗逐渐趋近海底相应深度沉积层静岩压力,且在水流柱高度分别小于40 m(对于游离气层厚度为100 m)和4 m(对于游离气层厚度为22 m)时水流阻抗超过沉积介质的质量(图3D点)。该位置以上的沉积物被流沙化[20],转变成颗粒悬浮的液状混合体,这种流沙化沉积被海流搬运后在海底形成麻坑。利用方程(3)可以计算游离气从水合物稳定带底部渗漏到达海底所需的时间。假定渗漏率为10-12m2时, 100 m厚的游离气层泄漏到海底的时间大约为5 a。

图2 布莱克海台地震反射强度剖面揭示的BSR、底辟构造、海底麻坑及与ODP977站位揭示的BSR深度比较

a.地震反射强度显示布莱克海台水合物发育、气体聚集以及底辟构造顶端的流体渗漏[22];b.为ODP997站位BSR揭示的水合物封闭层深度[21]

图3 渗漏通道中的流体阻抗和含水沉积层的静岩压力曲线交点指示麻坑深度

水合物稳定带中气流柱高度增加(顶部坐标向右),水流柱高度减小(底部坐标向右),水流阻抗和静岩压力随之减小,水流阻抗大于静岩压力时发生流沙破坏,曲线交点位置指示麻坑深度(D点)。布莱克海台100 m的游离气层发生渗漏时在海底可形成40 m深的麻坑,而22 m厚的气层泄漏时可形成4 m深的海底麻坑(最右边灰色阴影)

方程(2)中流体渗漏速率与渗透率成正比,但方程(4)中麻坑深度不依赖于沉积体渗透率,只是水与气体相对渗透率比的函数,而相对渗透率决定于孔隙流体的饱和度[12],因此沉积体渗透率控制流体渗漏速率,但不控制麻坑形成。实际上,渗透率越大,气体渗漏越快,麻坑形成越快;气体超压在水流柱和气流柱之间的分配不依赖于渗透率,而是决定于气体的超压幅度,以及流体黏度和气流柱高度(或水流柱高度)。

利用方程(5)可以简单计算海底麻坑深度,同时在已知水合物底界(封闭层)深度和麻坑深度,也可以通过方程(5)计算游离气层的厚度。图4显示麻坑深度与游离气层厚度和封闭层深度的关系。在给定封闭层深度,麻坑深度随游离气层厚度的增加而增大,相反较深的沉积层厚度削弱了渗漏流体对麻坑的挖掘作用,水合物封闭层越浅,形成一定深度的麻坑所需的游离气层厚度越小。

图4 水合物封闭层深度和麻坑深度与游离气层厚度的关系

麻坑深度主要决定于游离气层厚度和水合物封闭层埋深,与游离气层厚度呈正比,与水合物层埋深呈反比。如果水合物封闭层深700m,形成4m深的麻坑需要27m的游离气层,如果水合物封闭深度为440 m,则需要22 m的游离气层,如果水合物封闭层深100m,仅需要1l m厚的游离气层

地球物理显示布莱克海台ODP996站位周围的BSR深度为440 m,而在ODP996站位正下方游离气藏气体沿底辟构造上升至大约220 m(图2)处,在沿小断层渗漏至海底,由方程(5)可知麻坑深度与渗透率无关,取决于游离气藏的埋深和游离气层的厚度。对于海底4 m深的麻坑,计算表明在水合物层之下至少需要有22 m厚的游离气层。苏正和陈多福[4]计算了布莱克海台997站位的水合物和游离气体积分数分布,在水合物稳定带底界之下26 m处的气体饱和度为28%,底界之下74 m处气体饱和度为0.2%,其中水合物体积分数分布与同一区域的ODP995站位是相近的[24]。28%的气体饱和度大于气体流动所需20%的饱和度,而底界之下74 m处0.2%的气体饱和度不能流动,也不能传递孔隙气体压力。如果20%的饱和度指示可传递气层的底界,则气层的有效压力传递厚度约为30 m,这与笔者22 m厚的游离气层模型计算结果相近(图5)。实际上,该钻位水合物平均体积分数约为6%[4],可封闭气层厚度为24 m(三角点所示),接近模型估计的22 m。此外,在水合物稳定带底部的水合物饱和度达24%[4],其毛细管作用可封闭约33 m的游离气层(菱形点所示),与Flemings等[25]估计的极限破坏厚度29 m相似(虚线所示位置),接近但略小于30 m的参考厚度。然而,在996站位游离气发生泄漏后, 997站位扩散型水合物的体积分数仍在持续增加[26],水合物层的封闭能力也相应增强,游离气层厚度不断增长,因此,997站位游离气厚度(30 m)大于996站位游离气发生泄漏时的22 m气层厚度是合理的。

图5 布莱克海台的水合物饱和度和所能封闭的游离气层厚度

气层厚度随水合物饱和度增加而增高,水平虚线与气层厚度曲线的交点(29 m)为Flemings等预测的997站位气层的临界水力压裂厚度[25],圆形点标示约30 m的实际气层厚度,三角形点显示平均饱和度6%的水合物能封闭24m的气层,而饱和度24%的水合物可封闭33 m的游离气层(菱形点)

4 结语

本文构建了水合物层下伏游离气渗漏动力学过程的数学模型,游离气被水合物层的毛细管作用所圈闭,下伏游离气的超压随游离气层的增长而增加;当气体超压超过作用于水合物与游离气层界面的毛细管阻力时,游离气渗漏进入上覆水合物稳定带,并以“活塞式”驱动上覆孔隙水向外排出,渗漏速度随水流柱高度的减小而增加;当水流阻抗超过相应层段的静岩压力时沉积体变为流沙,流沙沉积被海流带走便在海底留下麻坑。模型显示麻坑深度为游离气层厚度和水合物封闭层埋深的函数,而与沉积介质的渗透率无关。游离气渗漏形成的海底麻坑对水合物下伏游离气层的厚度具有指示作用,在已知水合物封闭层深度和海底麻坑深度条件下,模型可以计算水合物层下伏游离气藏发生渗漏时的气层厚度,在布莱克海台海底发育有4 m深的麻坑,它的形成需要至少22 m厚的游离气层。

致谢:挪威国家石油公司Martin Hovland教授提供了全球麻坑基础资料和最新信息,表示感谢。

参考文献

[1]Xu W ,Ruppel ting the Occurrence,Distribution,and Evolution of Methane Gas Hydrate in Porous Marine Sediments[J].Journal of Geophysical Research,1999,104:5081-5095.

[2]Davie M K,Buffett B A.A Steady State Model for Marine Hydrate Formation:Constraints on Methane Supply from Pore Water Sulfate Profiles[J].Journal of Geophysical Research,2003,108(B10): 2495,doi:10.1029/2002JB002300.

[3]Chen Duo-Fu,Su Zheng,Cathles L of Gas Hydrates in Marine Environments and Their Thermodynamic Characteristics[J].Terrestrial Atmospheric and Oceanic Sciences,2006,17(4) :723-737.

[4]苏正,陈多福.海洋环境甲烷水合物溶解度及其对水合物发育特征的控制[J].地球物理学报,2007,50(5): 1518-1526.

[5]Trehu A M,Bohrmann G,Rack F R,et dings ofthe Ocean Drilling Program,Initial Reports Volume 204[M].TX:Ocean Drilling Program,2003.

[6]Paull C K,Spiess F N,Ussler W Ⅲ,et e-Rich Plumes on the Carolina Continental rise: Associations with Gas Hydrates[J].Geology,1995,23: 89-92.

[7]Sahling H,Bohrmann G,Spiess V,et rks in the Northern Congo Fan area,SW Africa: Complex seafloor features shaped by Fluid Flow[J].Marine Geology,2008,249 : 206-225.

[8]Gay A,Lopez M,Berndt C,et ical Controls on Focused Fluid Flow Associated with Seafloor Seeps in the Lower Congo Basin[J].Marine Geology,2007,244 (1/2/3/4):68-92.

[9]Hovland M,Svensen H,Forsberg C F,et x Pockmarks with Carbonate-Ridges off Mid-Norway:Products of Sediment Degassing[J].Marine Geology,2005,218:191-206.

[10]陈多福,李绪宣,夏斌.南海琼东南盆地天然气水合物稳定域分布特征及资源预测[J].地球物理学报,2004,47(3):483-489.

[11]Cathles L s in Sub-Water Table Fluid Flow at the End of the Proterozoic and Its Implicationsfor Gas Pulsars and MVT Leadzinc Deposits[J].Geofluids,2007,7(2): 209-226.

[12]Bear cs of Fluids in Porous Media[M].New York:Elsevier,1972.

[13]Vigil G,Xu Z,Steinberg S,et ctions of Silica Surfaces[J].J Colloid Interface Sci,1994,165:367.

[14]Cathles L ary Seals as a Cause of Pressure Com-partmentation in Sedimentary Basins:Presented at the Gulf Coast Section SEPM Foundation 21 st Annual Research Conference on Petroleum Systems of Deep-Water Basins,2001:561-572.

[15]Shosa J D,Cathles L mental Investigation of Capillary Blockage of Two-Phase Flow in Layered Porous Media,in Petroleum Systems of Deep-Water Basins: Global and Gulfof Mexico Experience: Proceedings ofthe GCSSEPM Foundation.21 st Annual Bob s Research Conference,2001:725-739.

[16]苏正,陈多福.海洋天然气水合物的类型及特征[J].大地构造与成矿学,2006,30(2).

[17]Hovland M,Judd A Pockmarks and on Geology,Biology and the Marine :Graham&Trotman Ltd.,1988.

[18]Hovland M,Svensen ine Pingoes:Indicators of Shallow Gas Hydrates in a Pockmark at Nyegga,Norwegian Sea[J].Marine Geology,2006,228:15-23.

[19]Gay A,Lopez M,Cochonat P,et al.I so1ated Seafloor Pockmarks Linked to BSRs,Fluid Chimneys,Polygonal Faults and Stacked Oligocene-Miocene Turbiditic Palaeochannels in the Lower Congo Basin[J].Marine Geology,2006,226(1/2):25-40.

[20]Nicholl M J,Karnowski tory Apparatus for the Demonstration of Quicksand[J].Journal of Geoscience Education,2006,54(5): 578-583.

[21]Matsumoto R,Paull C,Wallace Leg 164 Scientific party[C]//Gas hydrate sampling on the Blake Ridge and Carolina Rise: ODP,Leg 164 Preliminary Report,1996.

[22]Taylor M H,Dillon W P,Pecher I ng and Migration of Methane Associated with the Gas Hydrate Stability Zone at the Blake Ridge Diapir:New Insights from Seismic Data[J].Marine Geology,2000,164:79-89.

[23]Paull C K,Matsumoto R,Wallace P J,et ,s[C].164:TX:Ocean Drilling Program,2000.

[24]王秀娟,吴时国,刘学伟.天然气水合物和游离气饱和度估算的影响因素[M].地球物理学报,2006,49(2):504-511.

[25]Flemings P B,Liu X,Winters W al Pressure and Multiphase Flow in Blake Ridge Gas Hydrates[J].Geology,2003,31: 1057-1060.

[26]Liu X,Flemings P c Multiphase Flow Model of Hydrate Formation in Marine Sediments[J].Journal of Geophy sical Resea rch,2007,112,B03101,doi:10.1029/2005JB004227.

上一篇:化工车间节能降耗的文章

下一篇:高中历史小论文3000字