介绍一种金属功能材料论文
介绍一种金属功能材料论文
多孔金属材料的制备工艺及性能分析
多领域有着广泛的应用前景。本文概述了多孔金属材料的常用制备方法及其主要性能。
关键词:多孔金属材料;制备;性能;应用
摘 要
:多孔金属材料是一种性能优异的新型功能材料和结构材料
,具有独特的结构和性能
,在很
科学家极大的兴趣
,成为材料类研究的热点方向之
1 引言
一
,自
20世纪
90年代以来
,美国的哈佛大学、英国
在传统的金属材料中
,孔洞
(宏观的或微观的
)的剑桥大学、德国的
Fraunhofer材料研究所、日本的
被认为是一种缺陷
,因为它们往往是裂纹形成和扩东京大学等对多孔金属材料的制备工艺和性能进行
展的中心
,对材料的理化性能及力学性能产生不利了广泛的研究
,获得了一批研究成果
[2-5]。在我国
,
的影响。但是
,当材料中的孔洞数量增加到一定程多孔金属材料的基础和应用研究也逐步得到重视和
度时
,材料就会因孔洞的存在而产生一些奇异的功发展。近年来
,研究队伍不断壮大
,在制备技术、结
能
,从而形成一类新的材料
,这就是多孔金属材料。构和物性等方面的基础研究以及在各种民用和国防
按照孔之间是否连通
,可以把多孔金属材料分为闭领域的应用研究均取得了一定的进展
,已经引起我
孔和通孔两类
,如图
1所示。该类材料具有良好的国政府、中科院和航空航天等部门的高度重视
,尤其
吸能性能、高阻尼性能、吸声性能、电磁屏蔽性能及值得一提的是
,我国在
2005年立项的国家重大基础
良好的导热导电性能
[1] ,因而在一般工业领域
(如研究计划
(973计划
)“超轻多孔材料和结构创新构
汽车工业
)、国防科技领域及环境保护领域等有着型的多功能化基础研究
”
,更是体现了对该类材料
广泛的应用前景
,它的设计、开发和应用引起了中外研究的重要性和迫切性。
水化物等,然后将均混的混合物压制成密实块体即
到目前为止
,已开发的制备多孔金属的方法很
多
,涉及到的领域也非常广。根据在制备过程中金
属所处的状态
,可将多孔金属的制备工艺分为以下
三类
:液相法、粉末烧结法和沉积法。
2. 1 液相法
液相法包括的种类比较多
,且较易制备大块的
多孔金属和产品易商业化
,成为多孔金属材料制备
的主要手段,液相法主要包括以下几种:
2. 1. 1 颗粒渗流法
颗粒渗流法[ 6 ]原理是首先将颗粒在模具内压
实,烘干形成预制块。然后通过压力将金属液渗入
中,并强烈搅拌使空心小球分散,最后得到空心球与
金属基体形成的多孔金属材料。空心球铸造法的特
点是孔径和孔隙率易于控制,材料综合力学性能好。
2. 2 粉末冶金法
粉末冶金法主要包括粉末烧结发泡法、烧结-
脱溶法、松散粉末烧结法、中空球烧结法等。
2. 2. 1 粉末烧结发泡法
这种工艺[ 12 ]是首先将金属粉末和相应的发泡
剂按一定比例均匀混合,发泡剂可以是金属氢化物、
半成品,最后将此半成品加热到接近或高于混合物
熔点的温度,使发泡剂分解,金属熔化,从而形成多
孔泡沫材料。此种方法易于制作近半成品的零件和
到颗粒预制块的间隙中,最后将颗粒溶除即可得到
通孔结构的多孔金属材料。
2. 1. 2 精密铸造法
精密铸造法
[8]是首先用耐火材料浆料填满海
绵状泡沫塑料的孔隙
,待耐火材料固化后
,加热除去
塑料
,即形成一个多孔预制块体。然后把液态金属
液浇入到预制块上
,加压渗流
,这一点类似于渗流过
程。最后再除去耐火材料
,就形成与原来海绵状塑
料结构相同的多孔金属材料。
2. 1. 3 熔融金属发泡法
熔融金属发泡工艺可分为两种
,发泡剂发泡和
通气发泡
[9, 10 ]。前者是在熔融的金属液中加入发泡
剂
(如
TiH2 ) ;后者则是在金属液中通入气体
(如惰
性气体
)。这两种工艺的共同特点是可制备孔隙率
高、尺寸大、闭孔结构的多孔金属
,但过程控制较为
复杂
,孔结构分布均匀性不高。
2. 1. 4 空心球铸造法
空心球铸造法
[11 ]的原理是先采用商用酚醛塑
料小球在惰性气体环境中加热直至塑料碳化
,形成
中空的小球。然后将这些中空的小球加入到金属液
三明治式的复合材料
,而且孔隙率较高
,孔分布均
匀。
2. 2. 2 烧结
-脱溶法
这种制备工艺
[13 ]首先是将金属粉末和可去除
填充颗粒均匀混合
,其中可去除填充颗粒一般包括
两类
,一类为可溶于水或其它溶剂的盐
(如
NaCl
等
),一类为可分解有机物
(如尿素、碳酸氢氨等
),
均混后把混合物压制成致密的半成品
,然后在一合
适的温度烧结。若填充颗粒为可分解有机物
,则烧
结过程中颗粒会分解气化
;若填充颗粒为可溶性盐
,
则在烧结后可用溶剂将其溶去便得到多孔金属材
料。
2. 2. 3 松散粉末烧结法
松散粉末烧结
[14 ]是把松散状态的金属粉末不
经压实直接进行烧结的方法。此种方法可用于生产
多孔金属电极。
2. 2. 4 中空球烧结法
通过将金属中空球烧结
,使之扩散结合而制造
多孔材料的方法。此方法制造的多孔材料兼有通孔
和闭孔。金属中空球可通过下述方法制备
:在球形
树脂上化学沉积或电沉积一层金属
,然后将树脂除
明显的三阶段特征
,即初始的弹性段
(Linear Elasticity)、中间的平台段
( Plateau)和最后
的致密段
(Densification)。其中
,平台段的起始点应
力称为泡沫材料的屈服或坍塌强度
,此强度远小于
其基体的屈服强度
[1]。当多孔金属材料受到外加
载荷时
,因屈服强度低很容易发生变形
,而且变形量
大、流动应力低
,在变形过程中通过孔的变形、坍塌、
破裂、胞壁摩擦等形式消耗大量能量而不使应力升
的。
高
,从而能有效地吸收冲击能。这种在较低应力水
形成金属烟。金属烟在自身重力作用及惰性气流的平下吸收大量冲击能的特征正是冲击缓冲所需要
携带下沉积和冷却。因其温度低
,原子难以迁移和
扩散
,故金属烟微粒只是疏散地堆砌起来
,形成多孔3. 2 高阻尼性能
泡沫结构
[16 ]。
多孔金属材料可看作是由三维网络状金属骨架
去
,或将树脂球和金属粉一同混合
,随后烧结使金属
粉结合
,同时树脂球挥发
[ 15 ]。
2. 3 沉积法
沉积法主要包括金属气相蒸发沉积法、原子溅
射沉积法和电化学沉积法三种。
2. 3. 1 金属气相蒸发沉积法
在较高惰性气氛中
,缓慢蒸发金属材料
,蒸发出
来的金属原子在前进过程中与惰性气体发生一系列
碰撞作用
,使之迅速失去动能
,从而部分凝聚起来
,
与高压惰性气体原子碰撞
2. 3. 2 原子溅射沉积法
在惰性气体的压力下,元素原子在飞溅路程中
,金属原子一方面捕获气
体原子
,另一方面凝聚成金属液滴
,然后到达衬底。
在衬底上获得均匀包裹气体原子的金属体
,最后在
高于金属熔点的温度下把金属加热足够长的时间使
捕获的气体膨胀
,形成多孔金属材料。这种方法的
特点是孔结构非常理想
,但成本昂贵
,不易制备大
件
[ 17 ]。
2. 3. 3 电化学沉积法
这种方法是以聚氨基甲酸乙脂发泡材料为骨
架
,进行电解沉积
,然后加热去除有机聚合物骨架
,
得到多孔金属材料。这种方法制备的多孔材料不但
孔隙率高
,孔分布均匀
,且孔互相连通呈三维网状结
构
[ 18 ]。
3 多孔金属材料的主要性能
多孔金属材料作为一类区别于致密材料的新型
材料
,具有一些其基体或母体所不具备的特殊性能
和功能
,主要表现如下
:
3. 1 吸能性能
图
4 多孔金属材料典型的压缩应力
-应变曲线
多孔金属材料的应力
-应变
(σ
-ε)响应具有
与孔洞所组成的两相复合材料。除了孔洞与金属基
体之间所形成的界面外
,材料内部还存在其它大量
微观的
(主要是位错
)和宏观的
(较小的孔洞和裂
纹
)缺陷
,其组织状态和缺陷分布极不均匀。因此
当外力作用于多孔金属材料上时
,将在基体中产生
不均匀的应变
,特别是在孔洞
(宏观的或微观的
)或
裂纹附近
,其应变情况更为复杂
,从而引起缺陷区域
原子重排。缺陷区的这种响应是粘滞性的
,因而引
起粘滞性应变
,造成能量的损耗
,导致材料的阻尼增
加。
3. 3 吸声性能
多孔金属材料的高孔隙率结构使其具有良好的
吸声性能
[19 ]。一般来讲
,通孔或半通孔多孔金属的
吸声效果比闭孔的好。多孔金属材料的吸声机制主
要可归为两种
,即声波经过多孔金属时流动阻力的
升高造成的粘性损失以及声波与孔洞表面热量交换
造成的热损失。
3. 4 电磁屏蔽、导热和导电性能
多孔金属具有良好的导电性和很高的比表面
积
,因此具备很高的电磁屏蔽性能
,即良好的吸收和
反射电磁波的能力。同时又具有良好的导热性
能
[ 20, 21 ]。
3. 5 其它性能
质轻
,易着色
,易加工
,耐高温。
4 结语
(1)多孔金属材料具有良好的理化性能和力学
性能
,因而可以作为功能材料和结构材料
,具有良好
的应用前景。多孔金属材料的制备工艺很多
,因而
可以满足多样化的需求
,可以根据不同的应用需求
采用不同的制备工艺。
and energy absorbing characteristic of foamed aluminum.
(2)部分制备工艺在结构的可控性、孔径的均Metall[J]. Mater. Trans, 1998 (A29): 2497-2502.
匀性、样品的大尺寸化等方面仍存在局限性
,因而制[10 ]Cymat Corp, Canada. Product Information Sheets. http: / /
备工艺还需要进一步的探索和完善。
www. cymat. com.
(3)随着工业和科技的进步
,人们对多孔金属
[11 ]张勇
,舒光冀
,何德坪
.用低压渗流法制备泡沫铝合金
[J ].材料科学进展
, 1993 (7) : 473 -47.
材料的需求量越来越大
,要求也越来越高
,但目前的
[12]J. Baumeister, J. Banhart, M. Weber[M]. German Pa2
研究也只是涉及到了多孔金属材料的一部分性能特terntDE 4426627. 1997.
点
,相当多的潜在价值尚未被开发出来
MechanicalBehaviorofMetailicFomas[J].
. Mater. Sci, 2000 (30):191-227.
Olurin,N.A.
,或仅局限在
(44) : 105 -110.
[ 14 ]B. C.
社,1982.
[13]YA Novel sintering
processformanufacturingAlfoams[J].
. Y. Zhao, D. X. Sun. -dissolution
实验室阶段
,因而对性能的研究又提出了新课题。Scr. Mater, 2001
参考文献
:
[1]L. J.
Gibson, M. F. Ashby. Cellular Solids: Structure and 拉科夫斯基
.工程烧结材料
[M ].冶金工业出版
Properties. 2nd ed[M ], Cambridge University Press, UK,
1997.
[15]O. Andersen, U. Waag, L. Schneider, G. Stephani, B.
[2 ]L.
J. Gibson. Kieback. Novel Metallic Hollow Sphere Structures [ J ].
Annu. RevAdv. Eng. Mater, 2000 (2) : 192 -195.
[3]O.
B. Fleck, M. F. Ashby, Deformation and [16]张流强
,常富华
.低密度金属泡沫的研制
[J ].功能材
FractureofAluminum Foams[J]. Mater. Sci. Eng. 2000 料
, 1996, 27 (1) : 88 -91.
(A291): 136-146. [17]E.J. Lavernia,N. J. Grant. SprayDepositionofMetals?:
[4]J.
Banhart, W. Brinkrs. FatigureBehaviorofAluminum AReview[J]. Mater. Sci. Eng, 1998 (98):381-394.
Foams[J]. J. Mater. Sci, 1999 (18):617-619. [18]X. Badiche, S. Forest, T. Guibert, Y. Bienvenu, M.
[5]Y. Yamada, C. Wen, K. Shimojima,M. Mabuchi. Effects Corset, H. Bernet. MechanicalPropertiesandNon-Hom2
ofCellGeometryon theCompressivePropertiesofNickelFo2 ogeneousDeformation of Open -Cell Nicked Foams?: Ap2
mas[J]. Mater. Trans, 2000 (41):1136-1138. plicationoftheMechanicsofCellularSolidsandPorousMa2
[6]张勇
,舒光冀
,何德坪
.用低压渗流法制备泡沫铝合金
terials[J]. Mater. Sci. Eng, 2000 (A289):276-288.
[J ].材料科学进展
,1993 (7):473 -478. [19]许庆彦
,陈玉勇
,李庆春
.加压渗流铸造多孔铝合金及
[7 ]J.
Banhart. Manufacture, characterization and application 其吸声性能
[J]1铸造
,1998 (4):1 -4.
ofcellularmetalsandmetalfoams[J]. ProgressinMateri2 [20 ]黄福祥
,金吉琰
,范嗣元等
.发泡金属的电磁屏蔽性能
als Science, 2001 (46) : 559 -632. 研究
[J]1功能材料
, 1996 (27) : 52 -54.
[8]F. Frei, V. Gergely, A. Mortensen, T.W. Clyne. The [21]J. Kovacik, F. um FoamModulusofE2
effectofpriordeformationon thefoamingbehaviorof“form2 lasticity and Electrical Conductivity According To Percola2
grip”precursormaterial[J ] 1Adv. Eng. Mater, 2002 (4): tionTheory[J]. Scr. Mater, 1998 (39):239-246.
749 -752. [责任编辑 朱联营
]
[9]F. S. Han, Z. G. Zhu , J. C. Gao. Compressive deformation
On the Preparation and Properties of the PorousMetallicMaterials
HAO Gang -ling1 , HAN Fu -sheng2 ,
LIWei-dong1, BAIShao-min1,YANGNeng-xun 1
(1. College of Physics and Electronic Information, Yanan University, Yanan, Shaanxi 716000
2. KeyLaboratoryofMaterialsPhysics, InstituteofSolidStatePhysics,
Chinese Academy of Sciences, Hefei, Anhui 230031)
Abstract: Porousmetallicmaterialswithuniqueexcellentstructuresandpropertiescanbeutilizedasnew function2
aland structuralmaterials, which indicatsthattheporousmetallicmaterialshaveawidelypromisingapplication in
manyfields. Thevariouspopularmanufacturingmethodsandthemainpropertiesoftheporousmetallicmaterials,
in the present paper, were summarized.
Key words: porousmetallic materials; preparation; properties; ppplication
求一篇关于《合金》的小论文?
镁是最轻的结构金属。几种常用结构金属的密度(g·cm-3)(20o)如下:
AL Mg Ti Fe Cu
2.70 1.74 4.51 7.87 8.96
可见镁的密度约分为Al,Ti,Fe,Cu的64%,39%,22%,19%。
由于镁的密度小,它的合金也以质轻著称。一般镁合金的密度在1.8g·cm-3以下,镁,锂合金的密度低于镁 1.6g·cm-3.某些超轻型镁.锂合金密度甚至低于1,比水还轻.镁得镁和金的低密度使其比性能提高.例如,20o时的弹性模量为45Gpa,比铝(70Gpa)和Ti(120Gpa)的低,但三者的比弹性模量相同(~26Gpa).镁和镁合金质量小的特点,使其在交通运输、航空工业和航天工业上具有巨大的应用前景.
镁的熔点为 651℃,沸点为1107℃.镁的蒸气压很高,627℃时为215215.95Pa,727℃时为1037.1Pa,因此镁铍极易挥发.镁原子最外层的两个电子很易失去,是很活泼的金属.常温下镁能与F、CL、BR、I等元素作用生成相应化合物.加热时镁能与硫、氮作用生成MgS和Mg3N2。在空气中镁会慢慢氧化,失去银白光泽而变黑.若温度提高至400℃以上,镁的氧化速度增快,超过500℃以后氧化速度更快,会着火燃烧,此时会生成氧化镁和少量氮化镁.镁燃烧时会发出非常强烈的光亮.镁的这一特点,颇受人们的青睐.早期就被利用于摄影照明,给人们留下美好的形象和记忆.战争时期,被用来制造照明 弹,把战场和目标照明得如同白昼.又被用于制造燃烧 弹,点燃战区的物资装备,杀伤对方有生力量.人们还利用镁的这一特点,将镁粉、铝粉和其它原料制成烟花.每当节庆的夜晚,随着阵阵悦耳响声,人们可以看到”嫦娥奔月””天女散花”……各种形色的烟花在夜空飞舞,多彩多姿,给人们带来极大的欢乐.顺便提一下,镁的这种”牺牲自我””乐于助人”精神处处可见.例如它仗着活泼的电化学性质做了牺牲自我的阳极,保护着其它的金属和设备.它又作为原电池阳极,耗尽了自己,照亮了他人.
由于化学活泼性高,金属镁是耐腐蚀性能最差的金属之一.在酸性、中性和弱碱性溶液中它都会受到腐蚀而变成Mg2+离子.各种类型大气均会对镁产生程度不同的腐蚀作用.在干燥的空气中,它的表面上形成一层暗淡的的疏松多孔氧化膜,在潮湿大气中,生成的产物组成大致为Mgco3·3H2O+Mgso4·7H2o+Mg(OH)2.大气湿度增加,工为地区和海洋环境的大气中所含的二氧化硫和氯化物等物质,能加重镁的腐蚀.镁中氯化物杂质及铁杂质也会加速镁的腐蚀.因此,工业生产的镁锭必须镀膜钝化,涂油及以蜡纸包覆.
镁是地壳中分布最广的元素之一,占地壳重量的2.77%,为第四个最丰富的金属元素(位于Al、Fe、Ca)之后.在自然界中镁只能以化合物的形态存在.在已知的1500多种矿物中,含镁矿物的有200多种,主要为碳酸盐、硅酸盐、硫酸盐、氧化物.海洋及盐湖中的镁比陆地上更多,是镁的主要来源.海水中含有10多种元素,镁的含量排第三,位居Na、K之后.海水中含镁0.13%每立方千米海水中有130万t镁,相当于世界镁年消耗量的4倍(见表2.8)盐湖水的镁浓度比海水更高.以东以色列、约旦之间的”死海”(实为另一内陆湖),受到千万干旱气候的造化,湖水极浓,含镁竟高达4%.仅此一处的镁,就能满足全世界2.2万年的需要.
纯镁不适合做结构材料.作为结构材料应用的镁主要是镁合金和铝-镁合金.全世界约有千种铝合金牌号,若按化学成份归类的话,约为300多种.这300多种铝合金几乎都含有镁,其中以镁作为主要添加剂的铝-镁合金(镁含量最高为10.5%)约为40种.全世界各国镁合金品牌共有200多种,这些品牌按化学成份可归为30多种.共中变形镁合金黄色10多种,铸造镁合金20多种,铸造镁合金主要有以下3个体系.
1) 镁-铝合金.这种合金自第一次世界大战被德国使用以来,成了最广泛使用的铸造镁合金的基础.大部份含有8%~9%的铝及少量的锌(使拉伸性能有某些提高)和锰(改善抗蚀性)
2) 镁-铝-锌合金.镁-铝合金中加锌会产生一定的强化作用,其中高含锌量的合金具有很吸引人的压铸特性.如Mg-8AL-8ZN,具有足够大的流动性.,可用于压铸件,而且流动性和抗蚀性超过传统铝-锌合金.
3) 含锆镁合金.锆能细化晶粒,改善镁合金的拉伸性能,提高镁合金蠕变能力,以满足航空和航天工业的需要.属于这一系列的合金有镁-锌-锆合金,镁-稀土-锌-锆合金,以及镁-钍系为基和镁-银系为基的含ZR合金.这种含稀土金属和或含钍的合金都可焊.钍也能改善铸造性能.银可以进一步提高拉伸性能.一些铸造镁合金的性能示于表3.2.
镁是立方晶格的金属,可以承受的形变量有限(特别是在低温下).其变形材料主要在300~500℃温度范围内通过挤压、;轧制和压力锻造进行生产.变形合金可以按照它们是否含锆而分成两类.按照变形产品种类可分为三类:1薄板和厚板轧制金.如AZ31(Mg-Al-Z系),ZM21(Mg-Zn-Mn系)和ZE10(Mg-Zn-RE系),这三种合金都可焊,后两种强度较低.LA141A(Mg-Li-Al)等也属这一类,前面已作详细介绍.属于这一类的还有含钍的HK31(Mg-Th-Zr系)以及随后研制的HM21(Mg-Th-Mn等),它们的高温强度更高.2挤压合金.这类合金含铝量大多在1%~8%之间.
镁合金都具有密度小的特点,特别是某些镁-锂合金(见前),密度甚至低于1。美英俄等国正在研制含钇镁合金。一种Mg-8.5Y-1.25Zn-0.5Zr合金,其密度小于1.9g·cm-3 ,抗拉强密度420Mpa, 0.2%屈服强度360Mpa,比现有任何一种变形镁合金的都高,同高强度铝合金强度相当。
镁铝合金又名铝镁合金,分子式:Mg4Al3分子量:178.22颜色为灰褐色,比重约为2.15g/cm3,熔点463℃,燃烧时产生的温度达2000℃-3000℃。在烟花生产过程中起着非常重要的还原剂作用,也可作为白光剂和照明剂。
镁铝合金是用镁锭和铝锭在保护气体中高温熔融而成。长期以来关于镁铝合金的结构有两种说法。一种说法是镁铝合金是简单物理混合;另一种说法是镁铝合金内部改变了晶体结构,不是简单的物理混合。
镁锭和铝锭在高于1150K时,部分铝与空气中的氧气反应,生成a-Al2O3,氧化铝的此种晶体化学性质呈惰性,起着屏障、隔离作用。低于1150K时,生在B-Al2O3而这种晶体与酸反应,保护不了内部的镁铝合金。
标准的镁铝合金中镁、铝的含量各约为50%。活性铝含量的多少对烟花的安全生产和产品的质量有很大的影响。但是现在生产镁铝合金的企业多为私营企业,近几年来铝锭比镁锭贵,受利益的驱动,大多未按国标生产。现在镁铝合金粉中铝的含量普遍低于50%,有的铝含量低到了40%。镁含量的增加使得镁铝合金的性质接近镁粉的性质,使得烟火 药的撞击感度、摩擦感度增加,烟火剂更加敏感,从而增加隐患。我们可能以用下面的化学机理来检验镁铝合金中铝的含量。
1、盐酸与镁铝合金的反应
Mg+2HCl=MgCl2+H2↑
2Al+6HCl=2AlCl3+3H2↑
2、混合溶液与氢氧化钠溶液反应(混合溶液中滴几滴石蕊或酚酞试剂作指示剂,以避免氢氧化钠过量)
MgCl2+2NaOH=2NaCl+Mg(OH)2↓
AlCl3+3NaOH=3NaCl+Al(OH)3↓
3、过滤、烘干、称重,重量为G1克
4、氢氧化铝与过量的氢氧化钠反应
Al(OH)3+NaOH=NaAlO2+2H2O
5、未反应的为氢氧化镁。过滤、烘干、称重,重量为G2克
镁铝合金的中铝的含量 Al%=(G1-G2)/G×34.62%
GB150-85规定了镁铝合金中铝的含量的范围为47-53%,铝含量低于这个范围镁铝合金容易引起质量事故和安全事故,应慎用。
镁锭在镁铝合金中的应用:镁铝合金由镁锭和铝锭在保护气体中高温熔融而成,其组成有:简单的物理混合与已改变晶体结构的物理混合两种说法。
求1500论文,金属材料发展
国家计委和科技部日前共同发布了《当前优先发展的高技术产业化重点领域指
南(2001年度)》,确定了当前应优先发展的十个产业的141个高技术产业
化重点领域新型金属材料产业优先发展的领域如下:
1、稀土材料及其应用
稀土是信息产业、绿色能源和环境保护等产业的重要支撑材料我国稀土储量
、产量和出口量均占世界首位
已形成较齐全的工业体系
近期产业化的重点是:高性能稀土永磁材料及制品、稀土催化材料、稀土贮氢
材料、稀土发光材料、超大磁致伸缩材料、高温超导材料、稀土硫化物涂料及颜料
的规模生产;加快发展高纯稀土氧化物和高纯稀土单质分离提取工业化生产技术和
装备;加快稀土在钢铁冶金、有色金属、玻璃、特种陶瓷、石油化工及农业等方面
的应用
2、复合金属材料制备工艺及其成套设备
由于异质金属复合材料的性能功能化和较低的成本及应用范围广泛,提高了传
统金属材料的发展潜力
近期产业化的重点是:建设铝-不锈钢、铝-钢、钛-钢、铜-钢带液-固相
复合工艺生产线
表面复合精饰技术制
备薄覆层(0.008-0.1mm)金属复合板带生产线;开发颗粒增强铝基复
合材料规模化生产技术、半固态成形技术、连续包敷复合高速钢材料及制品,并实
现产业化
3、高性能密封材料及制品
密封件是保证机械装备高效、长期、安全和稳定运行的重要基础件
其技术水
平、质量及性能直接影响配套主机产品质量和运行可靠性我国密封材料及制品经
过十多年的发展和技术引进,形成了一定的生产能力和规模
一般产品能满足各类
主机的配套要求,但高压、高速、精密、耐高温低温和耐腐蚀的密封件与国际水平
有较大差距
近期产业化的重点是:轿车及中高档轻型车动力传动、减振、制动系统用密封
材料及制品规模化生产示范基地建设;重大成套设备中高压、液压、气动系统用密
封件;电力设备中高温、高压机械密封;石化工业中高速透平压缩机非接触气膜密
封;金属磁流体动密封
4、纳米材料和特种粉末及其制品
纳米材料因其纳米效应而具有特殊的性能和广泛的用途
是目前科技发展重要
热点之一近年来
我国在纳米材料的研究开发和应用方面取得了很大进展
形成
了一批拥有自主知识产权的技术并开始产业化
近期产业化的重点是:以纳米粉体材料、纳米膜材料、纳米催化材料和纳米晶
金属材料为重点
实现低成本、环境友好以及质量稳定的规模化生产;加快纳米材
料规模化应用于信息、通信、医疗和环保等新兴产业以及能源、交通、化工、建材
、纺织和轻工等基础产业,改进性能,提高效率
促进技术进步;加快发展粉末冶
金摩擦材料、高温合金粉末以及高纯超细陶瓷粉体材料
链接:
二十一世纪将是材料-电子一体化的世纪作为新型功能材料家庭中的重要成员,形状记忆合金在工程机械和日常生活中得到了广泛的应用由形状记忆合金构成的结构简单、控制灵活、功率密度大的各类记忆合金驱动器,在轻型机器人及小型化系统中具有独特的技术优势本文详细阐明了形状记忆合金的晶体学、热力学特性,概述了该材料的几种典型应用实例在此基础上,综述了这一功能材料的应用优势
用金属元素写作文
我是化学元素铁;我的化学符号是Fe,原子序数是26,在化学元素周期表中位于第4周期、第VIII族,是铁族元素的代表。是最常用的金属。我是过渡金属的一种,是地壳含量第二高的金属元素。我被发现于公元前3500年的古埃及。它们包含7.5%的镍,表明它们来自流星。古代小亚细亚半岛(也就是现今的土耳其)的赫梯人在3500年前(公元前1500年前)是第一个从铁矿石中熔炼出我的,这种新的、坚硬的金属给了他们经济和政治上的力量,铁器时代开始了。中国也是最早发现和掌握炼铁技术的国家之一。1973年在中国河北省出土了一件商代铁刃青铜钺,表明3300多年以前中国人认识了我,熟悉了我的锻造性能,识别了我与青铜在性质上的差别,把铁铸在铜兵器的刃部,加强铜的坚韧性。经科学鉴定,证明铁刃是用陨铁锻成的。随着青铜熔炼技术的成熟,逐渐为铁的冶炼技术的发展创造了条件。另外人体中也含有我。我是血红蛋白的成分,帮助氧气运输;
我质地软,不过如果是我与其他金属的合金或者是掺有我,熔点降低,硬度将增大,具体要看杂质或者合金的性质了;
我是工业部门不可缺少的一种金属。我与少量的碳制成合金——钢,磁化之后不易去磁,是优良的硬磁材料,同时也是重要的工业材料,并且也作为人造磁的主要原料。我有多种同素异形体。我是比较活泼的金属,在金属活动顺序表里排在氢的前面,我的化学性质比较活泼,是一种良好的还原剂。我是一变价元素,0价只有还原性,+3价只有氧化性,+2价既有还原性又有氧化性。常温时,我在干燥的空气里不易与氧、硫、氯等非金属单质起反应,若有杂质,在潮湿的空气中易锈蚀;在有酸气或卤素蒸气存在的湿空气中生锈更快。在高温时,则剧烈反应,如我在氧气中燃烧,生成Fe3O4,赤热的我和水蒸气起反应也生成Fe3O4。加热时均能同卤素、硫、硅、碳、磷等化合。除生成+2和+3价氧化物外,还有复合氧化物Fe3O4(是磁性氧化物)生成。我易溶于稀的无机酸中,生成二价铁盐,并放出氢气。在常温下遇浓硫酸或浓硝酸时,我表面生成一层氧化物保护膜,使我“钝化”,故可用铁制品盛装冷的浓硫酸或冷的浓硝酸。在加热时,我可以与浓硫酸或浓硝酸反应,生成+3价的铁盐,同时生成SO2或NO2等等。
金属争王位旁白:金属王国的居民们一直过着平静的生活。
说是“王国”,可金属王国却从来没有国王。于是有一天,王国里资格最老的金属铜把大家召集了起来。
铜:“我看这样下去不行,人家的王国都有国王,哪像咱们这样,还过着原始的生活。现在,我们就来推选一位国王吧!”旁白:众金属听后,顿时议论纷纷,不知该选谁当国王好。
正当大伙儿犹豫之际,闪闪发光的金跳了出来。金(大声叫道):“这还用选吗?当然是我来当国王了!我是金属中身价最高的金属之一,我的名声地球人都知道。
怎么样,我当之无愧吧!”铁(满不服气地说):“哼,身价高有什么了不起!要说国王的最佳人选,还是我老铁。一来我的资格也很老,只比铜老晚生了一些年头;二来我的用途十分广泛,那可要比任何金属都广,因而我也是目前世界年产量最高的金属。
甚至连人的体内也缺不了我呢!这样看来,国王归我当吧!”旁白:年轻的金属铝面对长辈毫不讲礼铝:“且慢!你们两位都靠边儿,你们一个说身价高,一个说产量大,我看都没资格!看看我,我可是地壳中元素含量第三、金属元素含量最高的,可供开采的年限也高居榜首,远超过你铁大爷了。再说了,人们现在对我可谓是关怀备至,而对铜、铁二位则不如从前,甚至还有了‘破铜烂铁’这样的贬义词。
如此,我当国王实不为过吧!”旁白:资格最老的铜在一旁气得胡子都翘起来“放肆!你竟然当众侮辱我──你的长辈,要说当国王,还是我来比较好。首先我的资格比你们都老,早在商朝时期人们就开始使用青铜器了;然后由于我的导电性能良好而又不昂贵,被广泛应用于人类的电力事业,就算你们不服,也要尊重我这个长辈以及我对人类的贡献吧!”旁白:听了他们四种金属激烈争辩之后,大家更是议论纷纷,选举的场面顿时紧张了起来。
各种金属都拿出了自己的看家本领,想压倒其他金属,大家都想当国王了。铜:“打住打住,今天先到这吧,推选国王的事改日再说……”。
金属材料是指由金属元素或以金属元素为主构成的具有金属特性的材料的统称。包括纯金属、合金、金属间化合物和特种金属材料等。
人类文明的发展和社会的进步同金属材料关系十分密切。继石器时代之后出现的铜器时代、铁器时代,均以金属材料的应用为其时代的显著标志。现代,种类繁多的金属材料已成为人类社会发展的重要物质基础。我们对金属材料的认识应从以下几方面开始:
一、分类:
金属材料通常分为黑色金属、有色金属和特种金属材料。
①黑色金属又称钢铁材料,包括含铁90%以上的工业纯铁,含碳 2%~4%的铸铁,含碳小于 2%的碳钢,以及各种用途的结构钢、不锈钢、耐热钢、高温合金、精密合金等。广义的黑色金属还包括铬、锰及其合金。
②有色金属是指除铁、铬、锰以外的所有金属及其合金,通常分为轻金属、重金属、贵金属、半金属、稀有金属和稀土金属等。有色合金的强度和硬度一般比纯金属高,并且电阻大、电阻温度系数小。
③特种金属材料包括不同用途的结构金属材料和功能金属材料。其中有通过快速冷凝工艺获得的非晶态金属材料,以及准晶、微晶、纳米晶金属材料等;还有隐身、抗氢、超导、形状记忆、耐磨、减振阻尼等特殊功能合金,以及金属基复合材料等。
金属材料按生产成型工艺又分为铸造金属、变形金属 、喷射成形金属,以及粉末冶金材料。
铸造金属通过铸造工艺成型,主要有铸钢、铸铁和铸造有色金属及合金。
变形金属通过压力加工如锻造、轧制、冲压等成型,其化学成分与相应的铸造金属略有不同。
喷射成形金属是通过喷射成形工艺制成具有一定形状和组织性能的零件和毛坯。
金属材料的性能可分为工艺性能和使用性能两种。
二、性能
为更合理使用金属材料,充分发挥其作用,必须掌握各种金属材料制成的零、构件在正常工作情况下应具备的性能(使用性能)及其在冷热加工过程中材料应具备的性能(工艺性能)。
材料的使用性能包括物理性能(如比重、熔点、导电性、导热性、热膨胀性、磁性等)、化学性能(耐用腐蚀性、抗氧化性),力学性能也叫机械性能。
材料的工艺性能指材料适应冷、热加工方法的能力。
三、生产工艺:
金属材料生产,一般是先提取和冶炼金属 。
有些金属需进一步精炼并调整到合适的成分,然后加工成各种规格和性能的产品。提炼金属,钢铁通常采用火法冶金工艺,即采用转炉、平炉、电弧炉、感应炉、冲天炉(炼铁)等进行冶炼和熔炼;有色金属兼用火法冶金和湿法冶金工艺 ;高纯金属以及要求特殊性能的金属还采用区域熔炼、真空熔炼和粉末冶金工艺。金属材料通过冶炼并调整成分后,经过铸造成型,或经铸造、粉末冶金成型工艺制成锭、坯,再经塑性加工制成各种形态和规格的产品。对有些金属制品,要求其有特定的内部组织和力学性能,还常采用热处理工艺 。常用的热处理工艺有淬火、正火、退火、时效处理(将淬火后的金属制件置于室温或较高温度下保温适当时间,以提高其强度和硬度)等。
四、发展趋势:
金属材料的发展已从纯金属、纯合金中摆脱出来。随着材料设计、工艺技术及使用性能试验的进步,传统的金属材料得到了迅速发展,新的高性能金属材料不断开发出来。如快速冷凝非晶和微晶材料、高比强和高比模的铝锂合金、有序金属间化合物及机械合金化合金、氧化物弥散强化合金、定向凝固柱晶和单晶合金等高温结构材料、金属基复合材料以及形状记忆合金、钕铁硼永磁合金、贮氢合金等新型功能金属材料,已分别在航空航天、能源、机电等各个领域获得了应用,并产生了巨大的经济效益。
先说喜欢的元素再介绍
12图
镁 听语音 [měi]
英国戴维于1808年用钾还原氧化镁制得金属镁。它是一种银白色的轻质碱土金属,化学性质活泼,能与酸反应生成氢气,具有一定的延展性和热消散性。镁元素在自然界广泛分布,是人体的必需元素之一。
中文名
镁
外文名
Magnesium
化学式
Mg
相对原子质量
24.3050
化学品类别
活泼金属单质
发现简史 听语音
第一个确认镁是一种元素的是Joseph Black,在爱丁堡(英国)于1755年。他辨别了石灰(氧化钙,CaO)中的苦土(氧化镁,MgO),两者各自都是由加热类似于碳酸盐岩,菱镁矿和石灰石来制取。另一种镁矿石叫做海泡石(硅酸镁),于1799年由Thomas Henry报告,他说这种矿石在土耳其更多的用于制作烟斗。[1]
不纯净的镁金属在1792年由Anton Rupprecht首次制取,他加热苦土和木炭的混合物。纯净但非常小量的金属镁在1808年由Humphry Davy电解氧化镁制取。然而,是法国科学家Antoine-Alexandre-Brutus Bussy使用氯化镁和钾反应制取了相当大量的金属镁于1831年,之后他开始研究它的特性。
许多世纪以前,古罗马人认为“magnesia”(希腊Magnesia地区出产的一种白色镁盐,镁元素即因此得名)能治疗多种疾病。直到1808年,英国化学家戴维采用电解苦土(含镁)的方法分离出元素镁。20世纪30年代初 E·V·McCollum 及其同事首次用鼠和狗作为实验动物,系统地观察了镁缺乏的反应。1934年首次发表了少数人在不同疾病的基础上发生镁缺乏的临床报道。证实镁是人体的必需元素。[1]
镁是在自然界中分布最广的十个元素之一(镁是在地球的地壳中第八丰富的元素,约占2%的质量,亦是宇宙中第九多元素),但由于它不易从化合物中还原成单质状态,所以迟迟未被发现。
这是什么东西?哦抱歉,没听说过化学是什么····我是来凑热闹的.这是网上找的,祝你早日找到答案吧.汗···我读文科······化学两字都快忘记怎么写了.化合价的代数和为零这是基本原理.例KNO3,K和O都是固定的化合价,可以直接标上去,N因为有多种的化合价,就应用“化合价的代数和为零”,算出N是+5价.以后叫你标价,先标化合价固定的元素,如H,0等等,再利用“化合价的代数和为零”,列个等式就算出来了.差量法 差量法是依据化学反应前后的莫些“差量”(固体质量差、溶液质量差、气体体积差、气体物质的量之差等)与反应物或生成物的变化量成正比而建立的一种解题法.此法将“差量”看作化学方程式右端的一项,将已知差量(实际差量)与化学方程式中的对应差量(理论差量)列成比例,其他解题步骤与化学方程式列比例式解题完全一致.用差量法解题的关键是正确找出理论差量.[差量法在化学计算中有广泛的用途,其中较为常见的是“质量差法”和“体积差法”] 差量法的适用条件:(1)反应不完全或有残留物.在这种情况下,差量反映了实际发生的反应,消除了未反应物质对计算的影响,使计算得以顺利进行.(2)反应前后存在差量,且此差量易求出.这是使用差量法的前提.只有在差量易求得时,使用差量法 才显得快捷,否则,应考虑用其他方法来解.SiO2 +4 -2MgO +2 -2SO3 +6 -2CO2 +4 -2K2O +1 -2AgCl +1 -1Cu 0 H2 0 NaOH +1 -2 +1O2 0很好写的,单质都是0;化合物的话,氢肯定+1,氧肯定-2,剩下的加一起代数和是0就行。
论钠的性质
钠,一种金属元素,质地软,能使水分解释放出氢。在地壳中钠1的含量为2.83%,居第六位,主要以钠盐的形式存在,如食盐(氯化钠)、智利硝石(硝酸钠)、纯碱(碳酸钠)等。钠也是人体肌肉和神经组织中的主要成分之一。在古汉语中,“钠”字的意思是锻铁。
化学性质
钠原子的最外层只有1个电子,很容易失去。因此,钠的化学性质非常活泼,在与其他物质发生氧化还原反应时,都是由0价升为+1价。金属性强。
1.钠跟氧气的反应
在常温时4Na+O2=2Na2O (白色固体)
在点燃时2Na+O2=Na2O2 (淡黄色粉末)
钠在空气中点燃时,迅速熔化为一个闪亮的小球,发出黄色火焰,生成过氧化钠。过氧化钠比氧化钠稳定,氧化钠可以和氧气化合成为过氧化钠,化学方程式为:2Na2O+O2=2Na2O2
2.钠能跟卤素、硫、磷、氢等非金属直接发生反应,生成相应的化合物,如
2Na+Cl2=2NaCl
2Na+S=Na2S(硫化钠)(钠与硫化合时研磨会发生爆炸)
3.钠跟水的反应
在烧杯中加一些水,滴入几滴酚酞溶液,然后把一小块钠放入水中。
观察到的现象及由现象得出的结论有:
1、钠浮在水面上(钠的密度比水小)
2、钠熔成一个闪亮的小球(钠与水反应放出热量,钠的熔点低)
3、钠在水面上四处游动(有气体生成)
钠单质与水的反应
4、发出嘶嘶的响声(生成了气体,反映剧烈)
5、事先滴有酚酞试液的水变红(有碱生成)
反应方程式
2Na+2H2O=2NaOH+H2↑
钠由于此反应剧烈,能引起氢气燃烧,所以钠失火不能用水扑救,必须用干燥沙土来灭火。钠具有很强的还原性,可以从一些熔融的金属卤化物中把金属置换出来。由于钠极易与水反应,所以不能用钠把居于金属活动性顺序钠之后的金属从其盐溶液中置换出来。
4、钠与酸溶液反应
钠与酸溶液的反应涉及到钠的量,如果钠少量,只能与酸反应,如钠与盐酸的反应:
2Na+2HCl=2NaCl+H2↑
如果钠过量,则优先与酸反应,然后再与酸溶液中的水反应,方程式见3
5、钠与盐反应
(1)与盐溶液反应
将钠投入盐溶液中,钠先会和溶液中的水反应,生成的氢氧化钠如果能与盐反应则继续反应。
如将钠投入硫酸铜溶液中:
2Na+2H2O=2NaOH+H2↑
2NaOH+CuSO4=Na2SO4+Cu(OH)2↓
(2)与熔融盐反应
这类反应多数为置换反应,常见于金属冶炼工业中,如
4Na+TiCl4(熔融)=4NaCl+Ti(条件为高温)
Na+KCl=K+NaCl(条件为高温)
钠与熔融盐反应不能证明金属活动性的强弱
6、钠与有机物反应
钠还能与某些有机物反应,如钠与乙醇反应:
2Na+2C2H5OH→2CH3CH2ONa+H2↑(生成物为
铁合金的定义、用途及分类 1.1.1.铁合金的定义 铁合金是由一种或两种以上的金属或非金属元素与铁元素组成的,并作为钢铁和铸造业的脱氧剂、脱硫剂和合金添加剂等的合金。
例如硅铁是硅与铁的合金;锰铁是锰与铁的合金;硅钙合金是硅与钙组成的合金。就生产方法与用途而言,铁合金还包括含铁极低的锰、铬、钒及工业硅等合金金属。
1.1.2铁合金的用途 铁合金是钢铁工业和机械铸造行业必不可少的重要原料之一,其主要用途:一是作为脱氧剂,消除钢液中过量的氧;二是作为合金元素添加剂,改善钢的质量与性能。随着我国钢铁工业持续、快速地发展,钢的品种、质量的不断扩大和提高,对铁合金产品提出了更高要求,铁合金工业日益成为钢铁工业的相关技术和配套工程。
下面概述它们的用途: (1)用作脱氧剂。炼钢过程是用吹氧或加入氧化剂的方法使铁水进行脱碳及去除磷、硫等有害杂质的过程。
这一过程的进行,虽然使生铁炼成钢,但钢液中的含量增加了。[O]在钢液中一般以[FeO]的形式存在。
如果不将残留在钢中多余的氧去除,就不能浇铸成合格的钢坯,得不到力学性能良好的钢材。为此,需要添加一些与氧结合力比铁更强,并且其氧化物易于从钢液中排除进入炉渣的元素,把钢液中的[O]去掉,这个过程叫脱氧。
用于脱氧的合金叫脱氧剂。 钢水中各种元素对氧的结合强度,即脱氧能力,从弱到强的顺序如下:铬、锰、碳、硅、钢、钛、硼、铝、锆、钙。
因而,一般炼钢脱氧常用的是由硅、锰、铝、钙组成的铁合金。 (2)用作合金剂。
合金钢中因其含有不同的合金元素而具有不同的性能。钢中合金元剂。
常用的合金剂有硅、猛、铬、钼、钢、钨、钛、钴、镍、硼、铌、锆等铁合金。 (3)用作铸造晶核孕育剂。
改善铸铁和铸钢的性能的措施之一是改变铸件的凝固条件。为了改变凝固条件,往往在浇铸前加入某些铁合金作为晶核,形成晶粒中心,使形式成的石墨变得细小发散。
晶粒细化,从而提高铸件的性能。 (4)用作还原剂。
硅铁可用作生产钼铁、钒铁等其他铁合金时的还原剂;硅铬合金、锰硅合金分别用作中低碳铬铁和中低碳猛铁生产的还原剂。 (5)其他方面的用途。
在有色冶金和化学工业中,铁合金也越来越被广泛地使用。例如,中低碳猛铁用于生产电焊条;硅铝合金用于生产硅铝明中间合金;铬铁用作生产铬化物和镀铬的阳极材料,有些铁合金用作生产耐高温材料。
1.1.3铁合金产品的分类 随着现代科学技术的发展,各个行业对钢材的品种、性能的要求越来越高,从而对铁合金也提出了更高的要求。铁合金的品种在不断地扩大。
铁合金的品种繁多,分类方法也多。一般按下方法分类; (1)按铁合金中主元素分类,主要有硅、锰、铬、钒、钛、钨、钼等系列铁合金。
(2)按铁合金中含碳量分类,有高碳、中碳、低碳、微碳、超微碳等品种。 (3) 按生产方法分类,有高炉铁合金,包括:高炉高碳猛铁、低硅猛合金、低硅铁等;电炉铁合金,包括高碳猛铁、高碳铬铁、硅铁、猛硅合金、硅铬合金、硅铝合金、硅钙合金、磷铁、中低碳和微碳铬铁、中低碳猛铁、精炼钒铁等;炉外法(金属热法)铁合金,金属铬、钼铁、钛铁、硼铁、钒铁、锆铁、高钒铁等;真空固态还原法铁合金,包括超微碳真空铬铁、氮化铬铁、氮化猛铁等;转炉铁合金,包括转炉中碳铬铁、转炉低碳铬铁、转炉中碳猛铁等;电解法铁合金,电解金属铬、电解金属猛等。
此外,还有氧化物压块与发热铁合金等特殊铁合金。 (4) 含有两种或两种以上合金元素的多元铁合金,主要品种有硅铝合金、硅钙合金、猛硅铝合金、硅钙铝合金、硅钙钡合金、硅铝钡钙合金等。
1.2铁合金生产的主要方法 铁合金的生产法很多,其中大部分铁合金产品是采用火法冶金生产的。根据使用的冶炼设备、操作方法和热量来源,主要有以下几种(详见表1-1 所示)。
1.2.1.1高炉法 高炉法所使用的主体设备为记炉。高炉法是最早采用的铁合金生产方法。
高炉法冶炼铁合金和高炉冶炼生铁基本相同。目前主要是生产高炉高碳锰铁。
高炉锰铁生产主要原料为锰矿、焦碳和熔剂以及助燃的空气或富氧。把原料从炉顶装入炉内,高温空气或富氧经风口鼓入炉内,使焦炭烧获得高温及还原气体对矿石进行还原反应,熔化了的炉渣、金属积聚在炉底通过渣口、铁口定时出渣出铁。
随着炉料的熔化、反应和排出,再不断加入新炉料,生产是边连续进行的。 用高炉法生产铁合金,具有劳动生产率高,成本低等优点。
但鉴于高炉炉缸温度的局限性,以及高炉冶炼条件下金属被碳充分饱和,因此高炉法一般只用于生产易还原元素铁合金和低品位铁合金,如高碳锰铁、低硅铁、低锰硅、镍铁及富锰渣等。 1.2.1.2 电炉法 电炉法是生产铁合金的主要方法,其产量约占全部铁合金产量的4/5,所使用的主体设备为电炉。
电炉主要分为还原电炉(矿热炉)和精炼炉两种: (1) 还原电炉(矿热炉)法。还原电炉法是以碳作还原剂还原矿石生产铁合金的。
炉料加入炉内并将电极插埋于炉料中,依靠电弧和电流通过炉料而产生的电阴电弧热,进行埋弧还原冶炼操作。熔化的金属和熔渣集聚在炉底并通过出铁口定时出铁出。
谁能给我一篇金属材料工程的论文 ,有关于金属材料发展现状及展望的论文。网上有的多找几篇
国外金属功能材料的现状和展望.pdf
金属基复合材料的发展现状及展望.pdf
国外金属功能材料的现状和展望.pdf
金属基复合材料的现状和展望_国家材料咨询局金属基复合材料特设委员会报告.pdf
金属基纳米复合材料的研究现状和展望.pdf
已发
满意记得采纳
上一篇:赞助个人出书
下一篇:中国发表白皮书是什么意思